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Independent Terms

P(q|d): LM: Linear mixture and event space mix
P(d |q): “Extreme” mixture explains TF-IDF

Disjoint Terms

Document-Query Independence (DQI)
Integral TF-IDF(t) =

∫
DQI(t , x) dx ; x is term probability

Summary & Outlook
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1 Uncover TF-IDF: Why?
2 TF-IDF: Math
3 Integral

∫ 1
x dx = log x

4 TF-IDF and BIR
5 TF-IDF and LM
6 TF-IDF and Poisson
7 Other approaches
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TF-IDF is intuitive. “Probabilistic” interpretations “heavy”?
LM has a probabilistic and “light” interpretation:

1 Start: P(q|d)
2 Assume independence: P(q|d) =

∏
t∈q P(t |d)

3 Assume mixture: P(t |d , c) = δ · P(t |d) + (1 − δ) · P(t |c)
4 Normalise

Probabilistic and “light” interpretation of TF-IDF?
Achieve a probabilistic relational framework for modelling
ALL retrieval models ([Roelleke et al., 2008])

unifies IR models and
supports tuple rather than “just” document retrieval
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RSVTF-IDF(d , q, c) :=
∑

t

tf(t , d) · tf(t , q) · idf(t , c)

tf(t , d) tf(t , q) idf(t , c)
nL(t ,d)

nL(t ,d)+K nL(t , q) log 1
P(t |c)

P(t |d)? P(t |q)? 1
P(t |c)?

P(d |t)? P(q|t)? P(t |c)?

Probabilistic interpretation of TF-IDF, tf(t,x), and idf(t,c)?
[Zaragoza et al., 2003], Bayesian extension of LM, integral over
model parameters ... ∫

1
x

= log x
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TF-IDF and BIR

[Robertson, 2004]: understanding IDF: on theoretical
arguments

wBIR-simplified(t , r , r̄) :=
PD(t |r)
PD(t |r̄)

log
PD(t |r)
PD(t |r̄)

= log
1

PD(t |c)
= idf(t , c)

[Croft and Harper, 1979]: constant P(t |r)
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TF-IDF and LM

[Hiemstra, 2000]: probabilistic interpretation of TF-IDF

wLM(t , d , c) := 1 +
δ

1 − δ
· PL(t |d)

PD(t |c)

Event space mix?
Should it be

PL(t |d)

PL(t |c)
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TF-IDF and Poisson

[Roelleke and Wang, 2006]: parallel derivation, Poisson bridge

Relationship between location-based and document-based
probabilities PL(t |c) and PD(t |c)

2-Poisson ([Robertson and Walker, 1994]) motivates
tfBM25 := n

n+K
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Other approaches

Information-theoretic [Aizawa, 2003]
H(t) :=

∑
t P(t) · − log P(t)

IDF is deviation from Poisson [Church and Gale, 1995]

Probability of being informative [Roelleke, 2003]; Euler

convergence e−λ = limN→∞
(
1 − λ

N

)N

[Amati and van Rijsbergen, 2002]: risk times information
gain: 1

n+1 · n · idf
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Independence: P(q|d) =
∏
t∈q

P(t |d)nL(t ,q)

Disjointness: P(q|d) =
∑

t

P(q|t) · P(t |d)

P(q|d) LM ?
P(d |q) ? TF-IDF?

Independence Disjointness
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Retrieve the cities (documents) that imply the weather (query):

P(q|d) = P(Weather|City)

A weather (query) instance: q = rainy, windy, rainy, sunny

Independent P(rainy, ...|glasgow) =
∏

t∈{rainy, ...}

P(t |glasgow)nL(t ,q)

What if P(sunny|glasgow) = 0!?
P(sunny|glasgow) = δ ·P(sunny|glasgow)+(1−δ)·P(sunny|uk)

Disjoint P(rainy, ...|glasgow) =
∑

t

P(rainy, ...|t) · P(t |glasgow)
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1 P(q|d): “Fix” of the event space mix in LM
2 P(d |q): “Extreme” mixture explains TF-IDF
3 O(r |d , q): ... in paper
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P(q|d): Language Modelling (LM): Event space mix
P(d|q): “Extreme” mixture explains TF-IDF

P(q|d , c) =
∏
t∈q

P(t |d , c)nL(t ,q)

Linear mixture:

P(t |d , c) = δ · PL(t |d) + (1 − δ) · PD(t |c)

Mix of Location-based and Document-based term
probabilities!?

Result 1: “Fix” of the event space mix in LM.
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P(q|d): Language Modelling (LM): Event space mix
P(d|q): “Extreme” mixture explains TF-IDF

P(d |q, c) =
∏
t∈d

P(t |q, c)nL(t ,d)

“Extreme” mixture:

P(t |q, c) =

{
1 · P(t |q) + 0 · P(t |c), if t ∈ q, then δ = 1
0 · P(t |q) + 1 · P(t |c), if t 6∈ q, then δ = 0

... after few steps ...∑
t∈d∩q

nL(t , d) · − log PD(t |c)

Result 2: “Extreme” mixture explains TF-IDF.
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TF-IDF is Integral of DQI over Term Probability PD(t|c)

1 Decomposition of joint probability P(d , q)

2 Document-Query Independence (DQI)
3 TF-IDF is integral of DQI over term probability PD(t |c)
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Document-Query Independence (DQI)
TF-IDF is Integral of DQI over Term Probability PD(t|c)

P(d , q|c) =
∑

t∈d∩q

P(d |t) · P(q|t) · P(t |c)

P(d , q|c)

P(d |c) · P(q|c)
=

∑
t∈d∩q

P(t |d) · P(t |q) · 1
P(t |c)
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Document-Query Independence (DQI)

DQI(d , q|c) :=
P(d , q|c)

P(d |c) · P(q|c)
=

=
∑

t

avgdl(c)

avgtf(t , c)
· PL(t |d) · PL(t |q) · 1

PD(t |c)

> 1: the overlap of document and query is greater than
if they were independent

= 1: document and query are conditionally independent

< 1: the overlap is less than if they were independent
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DQI(t,x) = 100/2 * 2/100 * 1/5 * 1/x
         (avg term in avg document)

TF-IDF(t,0.1) =
            = int(0.1, 1) DQI(t,x) dx
            = 1/5 * -log 0.1
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TF-IDF is Integral of DQI over Term Probability PD(t|c)

Start: ∫
1
x

dx = log x

Refinement: Definite integral:
∫ 1

x0

1
x dx = − log x0

∫ 1.0

PD(t |c)
DQI(t , x) dx = TF-IDF(t)∫ 1.0

PD(t |c)
m · P(t |d) · P(t |q) · 1

x
dx = m · P(t |d) · P(t |q) · idf(t , c)
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Independent Terms
1 P(q|d): “Fix” for event space mix in LM
2 P(d |q): “Extreme” mixture explains TF-IDF
3 O(r |d , q): r = q

Disjoint Terms
1 Derivation of Document-Query Independence (DQI)
2 TF-IDF is an integral of DQI over the collection-wide term

probability P(t |c)
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1 So? A contribution to explain and relate IR models.
2 DQI

independent terms?
entropy, dependence measures, ...?

3 DQI(t) = 1 for query term selection?
4 Is this study a basis for an analytical factor between

TF-IDF and LM?
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Thank you.
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