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Abstract

We prove that any optimal tree resolution proof of
PHP™ is of size2?(*1°6™) independentlyirom m, even
if it is infinity. Sofar, only a 2%(") lower boundhasbeen
known,in the genell case We also showthat any, not
necessarilyoptimal, regular tree resolutionproof PH P
is boundedby 20( 18 ™) To bestof our knowledg, this is
for thefirsttime theworst caseproof compleity is consid-
ered. Finally, we discusspossibleconnection®f our result
to Riis’ compleity gaptheoremfor treeresolution.

1 Introduction

Pigeon-HolePrinciple (P H P) is probablythe simplest
and at the sametime the mostwidely usedcombinatorial
principle. In its classicaformulations,it stateghatthereis
no injectivemapfrom a finite m-elementsetto a finite n-
elementsetif m > n. PHP! is very intuitive for the hu-
manway of thinking, andit is alsoeasilyprovablewithin set
theory Thisis however notthe casefor somepropositional
proof systemsin his seminalpaper{6], Hakenshavedthat
ary resolutionproof of PH P+ is of size2?(™). His proof
hasbeensimplifiedandgeneralisedh [16], [4], [2], [1]. For
quite a while, the bestknown resulthad beena 99(n*/m)
lower boundon ary resolutionproof of PH P, thushav-
ing left the casem = Q (n?/logn) asanimportantopen
problemin resolutionproof complexity. A partial progress
had beenmadein [4], [9], [13], wherelower boundsfor
somerestrictedkind of resolutionhave beenproven. Re-
cently, a2("*) lowerboundonary regular resolutionproof
of PH P" hasappearedn [9]. Shortlyafterthat,the prob-
lem hasfinally beensolvedin [12] , wherethe latter result
hasbeenextendedo geneal, DAG, resolution.

In the paper we considertreeresolution. Even though
it is oneof thewealestpropositionabproof system studied,
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the exact complexity of tree resolutionproofs of PHP"

has not beenknown so far. A 2% lower bound was
shawvn in [3], whereasone canconstructonly a 20(nlogn)

tree proof by “unfolding” the 2°(") DAG resolutionproof
givenin thesamepaper A 29(n1og7) |owerboundhasbeen
provedin [7], but only for ordinary pigeon-holeprinciple,
i.e. PHPI L,

Thefirst contribution (section3) of our paperis closing
the gap. We prove a 224”198 7) |ower boundon ary tree
resolutionproof of PH P", independentlyfrom m, even
if it is infinity. It is tight up to a constanffactorin the ex-
ponentor, in otherwords, up to a polynomialtransforma-
tion. As a consequenceye geta supefpolynomialsepara-
tion betweerDAG andtreeresolution.We shouldhowever
notethatmuchstrongey almostoptimal,suchseparations
known for anotherkind of tautologies.

The secondcontritution (section4) of the paperis con-
sidering the worst-casetree regular resolution proofs of
PHP™. To bestof our knowledge thisis for thefirst time,
the worst caseproof compleity is considered.We prove
anupperboundof 29(2leem) whichis non-trivial, asthere
aremn variables,and one canthereforeexpectthe worst
caseo beasbadas2™™ (we considerof courseonly proofs
which do not containvacuouswealeningof axioms). This
hasthe following very interestingconsequenceConsider
PHP", wherem is polynomially boundedby n, andde-
noteit by PH P2°'*™  Theoptimalandtheworst-casdree
regular resolutionproofs of PH PPY™ are polynomially
related,andso areary two randomtreeregular resolution
proofs. This hasaninterestingconsequencéor automated
theoremproving, asit shovsthattherearenaturalproblems
for which any DLL-proof searchheuristicis asgoodasary
other

Finally (section5), we discusssome possiblerefine-
mentsof Riis’ compleity gaptheoremfor treeresolution,
motivatedby our results.



2 Preliminaries

Wefirst give somedefinitions.A literal is eitherapropo-
sitionalvariableor the negationof a propositionalvariable.
A clauseis a setof literals. It is satisfiedby atruth assign-
mentif atleastoneof its literalsis true underthis assign-
ment. A setof clausesds satisfiableif thereexists a truth
assignmensatisfyingall the clauses.

Aswehavealreadysaid,by PH P we denotetheclaim
thatthereis no injective mapfrom a setof sizem to a set
of sizen, wherem > n. We encodeits negationasthe
following setof clauses

1. {pi1,pi2,---Pin}for1 <i<m
2. {p;;,Dy}for1 <i<m,1<j<k<n

We allow m to beinfinity. In this casewe have aninfinite
setof clausesput all the clauseghemselesarefinite. Al-
thoughwe considerthe injective PH P, all the resultsand
proofsfrom the paperremainvalid for the bijective PH P,
too.

Resolutioris a proof systemdesignedo refutegivenset
of claused.e. to prove thatit is unsatisfiable This is done
by meansof theresolutionrule

CiU{v} CiU{-w}
lonvIe )

Thus, we canderive a new clausefrom two other clauses
that containa variableand its negationrespectiely. The
goalisto derivetheemptyclausdromtheinitial ones.Any-
wherewe saywe provesomepropositionwe meanthatfirst
we take its negationin a clausalform andthenresolutionis
usedto refutetheseclauses.

Thereis an obvious way to representevery resolution
refutationas a directedacgyclic graphwhosenodesare la-
belledby clauses.The sourcesi.e. theverticeswith noin-
comingedgesaretheinitial clausesTheonly sink,i.e. the
vertex with no outgoingedgesjs the emptyclause.Every-
wherein the paper we say“the sizeof a proof” , we really
meanthe numberof verticesin the correspondingraph.

We cannow definetwo importantrestrictedversionsof
resolution. First oneis treeresolutionwhenthe graphis a
treeor, in otherwords,we arenot allowedto reuseary pre-
viously derivedclausesThe otheroneis regular resolution
wheneveryvariableis resol\edatmostoncealongary path
from asourceto the sink.

For an unsatisfiableset of clause,we can considerthe
following seach problem givena truth assignmentfind a
clausewhich is falsifiedunderit. Thereis a closeconnec-
tion betweerrefutinganunsatisfiablesetof clausedy some
proof systemand solving the correspondingsearchprob-
lem within somemodelof computation.n [8], it is proven

thattreeresolutionrefutationsareequivalentto booleande-
cisiontrees More precisely given a refutationof the set
of clausesijt canbe viewed asa decisiontree, solving the
searchproblemandvice versa. The sameresultholdsfor
regularresolutionrefutationsandread-oncéranching pro-
grams In contrastto these,generalresolutionproofs are
not equivalentto branchingprograms.As a matterof fact,
thereis a polynomial-sizebranchingprogram,solving the
searchproblemcorrespondingo PH P2+! while all reso-
lution refutationsareof exponentialsize.

Everywherein the paper we use the equivalencebe-
tweena tree resolutionproof and a booleandecisiontree.
All the proofsare,in fact, for decisiontrees,whereashe
resultsarestatedn termsof treeresolutionproofs. We only
considettreeresolutionproofsthatareregular. Thisis nota
restrictionatall asin adecisiontree, it doesnotmake sense
to queryary variablemorethanonce.Onthe otherhand,if
we do not setthis restriction,we would notbeableto prove
ary upperbounds,asary given proof canbe extendedby
(unboundednumberof “meaningless’applicationsof the
resolutionrule. Thus,from now on, everytime we say“tree
resolution”,wereallymean‘treeregularresolution”. As al-
readymentionedwve do notallow proofsto containvacuous
wealeningof axioms. In termsof decisiontreesa branch
terminatesassoonasa contradictionis reached.

A very important technique,we use to prove lower
boundson proofs, is consideringa proof as a Prover
Advesarygame It isfirstintroducedn [11] anddeveloped
furtherin [10] for generalresolution. For treeresolution,
it canbe simplified, asdonein [5]. Adversaryclaimsthat
thereis a satisfyingassignmentProver's taskis to expose
him. In orderto do that, Prover asksquestionsaboutvari-
ablesaccordingto a decisiontree,sheholds. Clearly, there
is noway for Adversaryto win the game.His taskis there-
fore to enforcea big enoughsubtreecontainedn Prover’s
decisiontree. If he hasa strateyy, enforcingthat,no matter
what stratey Prover uses,we have a lower boundon the
treeresolutionrefutationsof the givensetof clauses.

3 Optimal proofs

We first constructa 29(n1eg ) tree resolutionproof (in
fact,booleandecisiontree,aswe have alreadymentioned),
andwe provethe correspondindower bound.

Herewe fix somenotationsthatwe will usein boththis
andthe next section. We denotethe bigger m-elementset
by M, andthe other n-elementsetby N. We consider
M and N asthetwo partsof the completebipartite graph
K., », andthenthereis 1-1 correspondenceetweenthe
edgeof thegraphandvariablegp. Thuswe canspeakabout
apartialmatchingn K, , insteadf apartialfunctionform
M to N. All thequeries/questiongtom the decisiontree,
areaboutthe edges.We canhowever saythata questionis



abouta vertex, too if the correspondingdgeis incidentto
thatvertex.

Upper bound

The sketchof the constructionis asfollows. Obviously,
Prover canrestrictherselfto thefirst n + 1 elementof M.
Sheasksconsecutrely all the questionsaboutthefirst ele-
mentfrom M, namelypi1, p12, ... p1n. If all theanswers
are“no”, acontradictionis found. Otherwise suppose ;
is thefirst questiorwith a positive answer Proverthenasks
all the remainingquestionsaboutthe j-th elementof N,
namelyps;, psj, - . . Pnt1, - If atleastoneansweits “yes”,
a contradictionis found. If not, we cansafelyremove the
firstelemenfrom M andthej-th elemenfrom N, andthen
look for acontradictionona PHP™ " instance.

Thebooleandecisiontreeis givenonthefigure 1 below.
The internalnodesarelabelledwith the queriedvariables,
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Figure 1. An optimal decision tree for PHP®

andthe edgesare marked with the correspondinganswer
Every externalnode(leave) is labelledby the foundcontra-
diction,i.e. aclausefalsifiedunderthe(partial)truthassign-
mentcorrespondingdo the pathfrom the root to this node.
Thenodesmarkedby PHP™ ! are,in fact,subtrees.
Whatremainsis to estimatethe size. The decisiontree
for PHP]* consistsof n copiesof the decisiontree for
PHP,T_‘I1 plusaquadratidn n overheadMore precisely

[ nS(h=-1)+2n+n+1 ifn>1
() { 5 ifn=1"

whereS (n) is thesizeof thedecisiontreefor PHP!™.

It is now easyto prove by induction that S (n) <
6 (n + 1)!. Finally, anapplicationof Stirling’s approxima-
tion of thefactorialgivesthe desiredupperbound.

L ower Bound
The main ideain our proof is to definea function on

the nodesof the decisiontree. Thevalueof the functionat
ary nodeshouldbe alower boundof the sizeof the subtree

rootedby thatnode. After having donethat, it sufficesto

computethefunctionvalueontheroot. Theresultis alower

boundon the size of ary decisiontree, solving the search
problemfor PHP}".

We assumew.l.0.g.,thatn is even.W.l.0.g. we canalso
assumehat Prover’s decisiontreeis read-oncei.e. along
every pathary questioris askedat mostonce.Now, we can
explain Adversarys stratay.

An importantconceptwe introducehere,are countes.
A counteris attachedto every vertex in M which is not
matchedyet to ary vertex in N. In addition,thereis one
specialcounterthat will be explained later on. Initially
all the countersare setto zero. During the game, every
counteris an upperboundof the numberof verticesin N
that are “forbidden” for the correspondingvertex in M.
Whensomecounterreacheghe valuen, Adversary‘gives
up”, althoughit might be possibleto continuethe gamea
few morerounds.

We cannow classifyall the questionghatcanappeaiin
the decisiontree and shov how to maintainthe counters.
Let k bethesizeof thepartialmatchingobtainedsofar, i.e.
thenumberof “yes” answersalongthe pathfrom therootto
thecurrentnode.Therearethreekinds of queries:

1. Free-toice Neitherof thetwo verticesinvolvedis in
thecurrentpartialmatchingandthecounterof thever-
tex from M is lessthang + k. Adversarychoosesi-
ther“yes” or “no” answerwith someprobability The
actualprobability doesnot matter the importantpoint
is thatthefree choiceforcesProverto branchthe deci-
siontreeat that point. If the answeris “no”, only the
counterof the elementform M increasedy one. If
the answeris “yes” this counteris cancelledj.e. not
maintainedary more,but the countersof all the other
elementsn M areincreasedy one.

2. Critical. Neitherof thetwo verticesinvolvedis in the
currentpartial matchingbut the counterof the vertex
from M is equalto § + k. Adversaryanswersyes”,
he currentcounteris cancelledandthe countersof all
theotherelementsn M areincreasedy one.

3. Forced. Someof the verticesinvolved (or both)is al-
readyin the matching. Adversaryanswers‘'no” and
doesnot changeary of the countersattachedo theel-
ementsn M. He howeverincrease$y onethespecial
counterwhich countstheforcedquestions.

First of all, it is easyto seethatfor a givenelementin A,
its counteris an upperboundon the numberof elementsn
N that cannotbe matchedto thatelement. Thereare also
someothersimpleobsenationsto be made.First onesays
thatAdversaryalways“survives” certainnumberof rounds.



Lemmal A contradiction can be found only whensome
counterreachesthe valuen. In this case at least3 “yes”
answes mustbe presenton the path from the root to the
currentnode

Proof A simpleinductionon k provesthe following asser
tion: All the countersare boundedfrom above by % + &
alongary pathfrom a node,wherethe partial matchingis
of sizek, to thenode,wherethatsizebecomes: + 1. The
lemmathenfollows.O

The next lemmashaows that theremustbe a very long
branchin ary decisiontree. Togetherwith the mainresult,
it impliesthatevery suchtreeis unbalanced.

Lemma2 Ineverydecisiontreefor PH P, thereisapath
of lengthQ2 (n?).

Proof Considetthe path,whereAdversaryanswersno” to
every free-choicequestion. It is now easyto obsene that
when k-th critical questionsasked, the correspondinger-
tex from M hasa countervalueequalto ¢ + k — 1. That
counterhasbeenincreased: — 1 timesbecausef the pre-
vious k — 1 critical question. The remaining3 increases
areresultof “no” answergo free-choicequestionaboutthe
correspondingertex. Thus, alongthe particularpath, we
consider ary “yes” answeris precededyy 7 negative an-
swersaboutthe samevertex.

Thelemmal claimsthatevery pathcontainsat least 3

. 2
“yes” answersThereforeour pathcontainsatleast’- “no”
answersJ
We cannow provethemainresult.

Theorem 1 Everytreeresolutionproofof PH P]" is of size
29(71 log n).

Proof Firstwe defineanappropriatdunctionasit hasbeen
explainedin the beginningof the section.

Let usdenoteby k the sizeof the partialmatchingatthe
currentnodeuw, i.e. the numberof “yes” answersalongthe
pathfromtheroottou. Letusalsosortthem—k unmatched
verticesfrom M in decreasingrderof their countersand
denotethe valuesof the countershemselesby p; > py >
... > pm_k. Theforcedquestioncounteris denotecby pq.
Thevalueof thefunctionatthe nodeis thendefinedby

%4—]{3—7:—])2’

where ¢; = { ) if it is positive

elsavhere

Ontheroot,r, we have f (r) = (2 —1)!, sothat f (r) =
2%nlogn) |t only remainsto prove that at ary nodethe

function valueis a lower boundfor the size of the subtree
rootedby the node.
Theproofis by inductionon thetuplesof theform

m—k

D1,D2,--- 7p%—k7p0+ Z Di
=% —k+1

We orderthemasfollows. The shortera tuple, the smaller
it is. If two tupleshave equallength,the lexicographically
bigger oneis the smaller Clearly, this orderingmakesthe
inductionwork from the leavesto the root of the decision
tree,asthe tuple on ary nodeis strictly biggerthanthe tu-
plesonits successorms thetree.

The basiscaseis thenk = 7, wheref (u) = 1, asthe
productis empty Obviously, thefunctionvalueatthe node
is a lower boundof the correspondingsubtree,no matter
whatthe only elementf thetupleis.

To provetheinductionsteepwe needo considell pos-
sible kind of questionghat canappearat the currentnode
u.

1. Forced. We considerthe “no” branchonly. Denoting
its root (the“no” successoof u) by v, wehave f(u) =
f(w), asonly py increasedy onewhengoingfrom
tov and f doesnotdependrom po. By theinduction
hypothesisyve aredone.

2. Critical. W.l.0.g. we assumehatthe questionis about
the element,having p; asacounter It is so, because
a critical questionalwaysinvolvesthe biggestcounter
(Evenif therearemary counterswith thebiggestvalue
% + k, we canalways considerp;, astwo elements,
having the samecountervalueareindistinguishabldo
Adversarys strat@y). We considerthe “yes” branch
only. Denotingthe“yes” successoof u by v, we have
againf(u) = f(v). Thatis the case becausall the
countersps, ... ,pz _, increaseby one when going
from u to v, but sodoesk, thereforethe contributions
q2,--. gz -k donotchange.q; vanishesatw, but its
valueatu is one,asp; = 4 + k. By theinduction
hypothesisye aredone.

3. Free-choiceTherearethreesub-cases:

(@) The index involved, j, is greaterthan § — k.
W.lL.o.g. we canalsoassumepz . > p; since
if they wereequalAdversarycouldbehae asthe
questionwereabout? — k-th elemen{again,ary
two verticeshaving the samecountervalue are
indistinguishablego Adversarys strategy). The
“no” answerthendoesnot changearything ex-
ceptthelastelementof thetuple,but f doesnot
dependonit. So, f(u) = f(v), wherew is the
“no” successoof u. By theinductionhypothe-
sis,we aredone.



(b) Theindex involved, j, is betweenl and 3 — k,
but the contrikution, ¢;, of that elementto the
function f is one. Thatis similar to the previ-
oussub-caseasthe“no” answeleavesthevalue
of f unchangedvhengoingfrom fromw to to its
“no” successov.

(c) Theindex j is betweenl and4 — k andthecon-
tribution, g;, of that elementto the function f
is greaterthanone. This is the only non-trivial
casejn thesensahatwe needconsidembothsub-
treesof the currentnodew. Note that if there
aremary countershaving the samevalueequal
to p;, w.l.o.g. we canthink that j is the mini-
mum suchindex, so thatthe “no” answerdoes
notchangethe orderof the counters.

The“no” subtreggivesthetuple

(pla -..Pj—1,Dj + lapj-i—l B ,Pg—k;

m—k
Po + Z pi

i=2 —k+1
andthevalue
ok
fw)=(g -1 H 4
i=1
i # ]

The“yes” subtreagives

(41, pja+Lpia+1..,ps k+1,
m—k
n
m— 5 +p0 + Di
i=3—k+1

andthevalue

g

fw)= H qi
i=1
i £

The induction hypothesisthen appliesto both
subtreesso the size of the currentsubtreeis at
least

L+ f)+f(w)=1+f(u)> f(u).
Thiscompleteghe proof.0

4 Worst case proofs

We first constructa 20( 108 ™) phooleandecisiontreefor
PHP* which is alower boundfor the worst-caseegular

treeresolutionproofs. We alsoshav thesameupperbound,
i.e. any suchproof cannotbe worsethanthat. It is very
importantto now notethat“worstcase”,in our context, has
a completelydifferent meaningthanthe usualone,usedin
Compleity Theoryor Analysisof Algorithms.

L ower bound

The sketchof the constructions asfollows. Prover ask
all the questionsaboutthe first elementfrom N, namely
P11, P21, - - - Pm1 . If @lltheanswersare“no”, wecanremove
thefirstelemenfrom NV, andthusgetan PH P* ; instance.
Otherwise supposep;; is thefirst questionwith a positive
answer Proverthenasksall the remainingquestionsabout
thefirst elementof N, namelyp;+11, pit+21, - .- pm1. If at
leastoneansweris “yes”, a contradictionis found. If not,
we cansafelyremove the first elementfrom N andthe i-
th elementfrom M, andthenlook for a contradictionon a
PHP™ " instance.

Thebooleandecisiontreeis givenon thefigure 2 below.

% —~—_n
=
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(ﬁl];ﬁ?l}m P b P “ -
2 n T n R
{p11,pn} {p21, Pa Pm1
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udns) [PHEET)

Figure 2. A worst-case decision
PHP™

{11, Pma}

tree for

What remainsis to estimatethe size. The decisiontree
for PHP]"* consistsof m copiesof the decisiontree for
PHP™ ', onedecisiontreefor PH P, plusaquadratic

in m overheadMore precisely

mS(m—-1n—-1)+ ifn>1
S (m,n) = S (m,n —1) +m? ,

5 ifn=1
where S (m,n) denotesthe size of the decisiontree for
PHP™,

We have

S(m,n) >mS(m—1,n—-1)
>m(m—1)S(m—2,n-2)
[3]-1
> ... H (m—i)S(m— [g-l,[gj)

i=0

Thereforefor everym > n > 2, we get

S myn) > 5 (m— [2]) 11 = g001osm)



Upper bound

The mainideais the sameasin the proof of the lower
boundon the optimal refutation. This time however, we
introducethe countersto the elementsof the set N. Ev-
ery counterp; equalsto m minusthe numberof questions
aboutthe j-th elementof N thathave alreadybeenasled.
In otherwords,the countercontainsexactly the numberof
possiblequestionsaboutthe elementto be asledin the fu-
ture. Thereis alsooneglobal counterp, thatis the sumof
all thecounterg;, 1 < j < n.

We cannow prove the mainresultof this section.

Theorem 2 Everyregular treeresolutionproof of PH P
is of size20(nlogm)

Proof Againwe defineanappropriatdunctiononthenodes
of theread-oncealecisiontree. At ary nodethevalueof the
functionwill be anupperboundon the size of the subtree
rootedat thatnode.

Let usdenoteby u the currentnode,andby P, P C N,
thesetof all theverticesfrom N thatarenotyetmatchedo
ary vertexin M. Thefunction f is thedefinedas

f=2@+1) [ @ +1) -1
jEP
On the root of the tree, r, we hae f(r) =
2(mn+1)(m+1)" — 1, sothat f (r) = 20(rlos™) |t
only remainsto prove thatat ary nodethe function value
is an upperboundfor the size of the subtreerootedby the
node.

Theproofis by inductionon theglobalcounterp, .

The basiscaseis thenpy, = 0, sothatall otherp’s are
zerosandthereforef (u) = 1. In thiscaseall variableshave
alreadybeenqueriedasthereareno possiblequestiongeft.
Thereforea contradictionhasalreadybeenfoundand f (u)
is anupperbound.

To prove theinductionsteepwe considerthe following
two cases.

1. The questionat the currentnode,u, is aboutthe i-th
elementfrom N, and¢ ¢ P. This meansthat ele-
menthasalreadybeenmatchedo someelementin M,
so thatthe currentquestionis forced. Therefore the
“yes” subtreeconsistsof a single vertex, labelledby
the contradictionfound. Let us denoteby v the “no”
successoof u. Theinductionhypothesisappliesat v,
aspo decreaseby onethere,sothesizeof ary subtree
rootedatwu is at most

2+ f() =2+2p [[ p; +1) -1
jepP

<2+ 1) [[i+1) -1
jeP
=f(u).

2. The questionat the currentnode, u, is aboutthe i-th
elemenfrom N, andi € P. Theinductionhypothesis
then appliesto both “yes” and“no” successorsf u.
Denotingthemby v andw respectiely, we have that
thesizeof ary subtreerootedatw is at most

l+f@+fw=1+2p [[ @i+1)-1+
JjeP\{i}
2o [ (i+1) -1
JjeEP\{i}
=2p [[ ;i +1) -1
JEP
<20+ 1) [ o +1) -1

jepP
=[f(w).

This completegheproof.d

5 Link to Complexity Gap theorem

In this section,we discusspossiblerefinementsand ex-
tensionf Riis’ complexity gaptheorenfor treeresolution.
They aremotivatedby our resultspresentedn the previous
two sections.

We first needto statethe complexity gaptheoremitself.
We give herea slightly differentversionthanthe onefrom
theoriginal paper14]

We are given a first order sentencey of predicate
logic that fails in all finite models. Thereis a proce-
dure which translateshe sequencef sentencesd,, :="
¥ hasno modelsof sizen” into anunsatisfiableetCy, ,, of
clauses.Thesequenc&’y ,, is uniformly generatedin the
senseof [15])and its sizeis boundby a polynomialin n.
The complity gaptheoremstateghateitherl or 2 holds:

1. Thesequenc€'y, ,, have polynomialsizein n treeres-
olution refutations.

2. Thereexists A > 0 suchthateachtreeresolutionrefu-
tationof Cyy , mustcontainatleast2*™ clauses.

Furthermore? holdsif andonly if ¢ hasaninfinite model.

So, the gapis betweenpolynomialandexponentialsize
proofsandshaws that no superpolynomial(e.g. 2¢(0s” »)
for somep > 1) andsub-eponential(e.g. 2¢(*") for some
0 < ¢ < 1) optimal proofscanappear

We will concentrateon the sentencesalling in the sec-
ondcasej.e. requiringexponentiakizetreeresolutiorrefu-
tations. Let us denotethe classof all suchsentencedy
Ezxp.

Let usfirst considetthefollowing encodingof PH P71
asafirst ordersentencégivenalsoin [14])

(Vo,y (x=y) vV (f(2) # [ (y) A Bevz [ (2) # ¢).



The compleity gap theoremgives only a 29" |ower
bound,whereasve have shown thatits real compleity is
2¢(rlogn)  Going further, let us encodePH P, where
p,q € Z4 andp > ¢, asafirstordersentence

v, 7 (@=7)V(F(@)#F (7).
Here @ =  (%1,22,...2,) and F (@) =
(i (@), f2(Z),...f, (F)). Our result shavs that
the exact compleity is 2¢(»*1°87) for any arbitrary tree
regular resolutionproof.

Ontheotherhand,let us considerthe minimumelement
principle, sayingthatif R is atotal order, it hasa minimal
element.Its negationcanbe encodeds

V.z,y (z #y) = (R(z,y) ® R(y,7))) A
(Vz,y,2 (R(z,y) AR(y,2)) > R(z,2)) A

(Vz3y R (y,x)) .

Here R (z,y) standsfor z < y. It caneasilybe proven
thatthe optimaltreeresolutionproofsof it areof size2?(™),
whereaghe worst-caseproofsare of size20(n*). Clearly,
if we replacethe singletonsby p-tuples,the corresponding

optimal and worst-caseproofs are 2/"*) and 2/("**) re-
spectvely.

Let usnow denoteby Size (t (n)) theclassof first order
sentencesf propositionalogic thathave their optimaltree
resolutionproofs of sizet (n), andby Opt - the classfor
which any arbitrary tree regular resolutionproof is poly-
nomialyrelatedto the optimalone.

To summarisepurtwo examplesshav

1. The classes Size (2°™)), p €
Size (20(n"logm)) g € Z, arenonempty

Z, and

2. The classesOpt ) Size (2°(**18™), ¢ € Z, and
Size (2°")) \ Opt, p € Z,. arenonempty

At thesametime, thefollowing threeinterestingopenques-
tionsarise

1. 1s it the case that FExp
UpeZ Size (2°"))JU gez, Size (20(* 103”))7
That Is to ask Whether the exponential side of
Complity-Gap Theorem can be further refined,
so that eachcompleity subclassinside it is either
Size (2°0")) or Size (2°(**108™)) for somepositive
integerplq.

2. Isit the casethat Opt C U, Size (27"18™))?
Thatis to askwhetherall tr|V|aIIy automatisablgrob-
lemsbelongto this particularfamily of optimal-proof-
sizeclassesAlternatively (andequivalently, assuming

apositive answelto the previousquestion)we canask
whetherOpt N Size (2("")) =  for every positive
integerp.

3. Is it the casethatif s € Size (2°*")) for some
p € Z,, theworst-caseeompleity of the s is atleast

20(n*") >
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