
On Complexity gaps for Resolution-based proof systems

Stefan Dantchev
�

and Søren Riis
��

Dept. of Mathematics and Computer Science, University of Leicester
dantchev@mcs.le.ac.uk�

Dept. of Computer Science, Queen Mary, University of London
smriis@dcs.qmw.ac.uk

26th November 2002

Abstract

We study the proof complexity of
�������

, the class of Second-
Order Existential (SO) logical sentences which fail in all fi-
nite models. The Complexity-Gap theorem for Tree-like Res-
olution says that the shortest Tree-like Resolution refutation
of any such sentence
 is either fully exponential, �
� ����� , or
polynomial, ��� � � � , where � is the size of the finite model.
Moreover, there is a very simple model-theoretics criteria
which separates the two cases: the exponential lower bound
holds if and only if
 holds in some infinite model.

In the present paper we prove several generalisations and
extensions of the Complexity-Gap theorem.

1. The gap for stronger systems, Res ������� , is between

polynomial and ���! #"�$%"'&)(+*!,, �.-!- for every � , /102�304� .

Res � ����� is an extension of Tree-like Resolution, in which lit-
erals are replaced by terms (i.e. conjunctions of literals) of
size at most � . The lower bound is tight.

2. For a natural subclass of
�������

, 57698:� ���;�<� � , there
is a gap between polynomial Tree-like Resolution proofs
and sub-exponential, � � �=�?>@� , general (DAG-like) Resolution
proofs, whilst the separating criteria is the same as before.576A8:� ���;�<� � is the set of all sentences in

�������
, relativised

with respect to a unary predicate.
3. There is (as expected) no gap for any propositional proof

system (including Tree-like Resolution) if we enrich the lan-
guage of SO logic by a built-in order.

1 Introduction

In [10] a new kind of results for propositional logic was in-
troduced. Expressed somewhat informally, it was shown that
any sequence B � of tautologies which expresses the validity
of a fixed combinatorial principle either is “easy” i.e. has

polynomial size tree-resolution proofs or is “difficult” i.e re-
quires full exponential size tree-resolution proofs. It was
shown that the class of tautologies which are hard (for tree-
resolution) is identical to the class of tautologies which are
based on combinatorial principles which are violated for in-
finite sets.

According to this result the proof complexity of a combi-
natorial principle never have intermediate growth rates like
for example � &)(+*DC �E���+F �HGI� FKJ
FMLMLML . In this paper we extend
this result to a number of related resolution-based systems.

A central question in the theory of proof complexity con-
cerns to the amount of resources (usually proof length) which
is needed to prove a certain sequence of tautologies. Usually,
the sequence of tautologies consists of Tautologies which are
similar except for their size. The paper is organised as fol-
lows:

Firstly we consider 576ON;����� which is similar but stronger
than resolution. In 5769N
����� clauses i.e. disjunctions, are re-
placed by disjunctions of conjunctions of 0P� literals. The
rules are strengthened so one can resolve not just a single
variable (like in resolution), but also conjunctions of up to k
variables. An easy extension of [10] gives a complexity jump
from polynomial to ���! Q��$7�R��S?���+� for these problems (when
proofs are represented as trees). This lower bound is also im-
plicit in [8] by Krajicek. We improve this, and show that the
jump is from polynomial to ���! ���$7�R�7TVU�WX�����+S?���+� .

Secondly, we consider the resolution proof system in a set-
ting of DAG-like proofs rather than tree-like structure. In a
DAG-like proof a once derived disjunction can be used any
number of times later in the proof. This cannot happen in the
tree like cases. Thus a given tautology might have a DAG-like
proof which is substantially shorter than the shortest tree-like
proofs [2], [3].

The class of combinatorial problems which are hard for

1

DAG-like resolution differs from the class of combinatorial
problems which are hard for tree like resolution. "Minimal
element" is a principle separates the two systems [2], [3].

In this paper we show the class of combinatorial prob-
lems which are hard for DAG resolution is identical to the
class which is hard for tree resolution provided the combina-
torial principles are being relativised. It is already known
that minimal element, which has polynomial size DAG-like
proofs, require exponential size proofs when this problem is
relativised [4].

Finally we show that there is no complexity gap if we en-
rich the language of SO logic by a built-in order. Even though
this result is expected it has a number of less obvious conse-
quences. It allows us to answer an open question from [5]
by showing that there is no complexity gap for tree resolu-
tion above � � &)(+* �E��� . We expect that there is a complexity
gap above � � , but are not sure if the gap jumps the whole
way up to � �������M���?� . If we consider the "cost" of a proof to
be the length of the longest branch (rather than the number
of symbols/steps in the proof) it also follows that there is no
branch-complexity gap above � � . There is a rather obvious
gap in branch length complexity from constant to � . We ex-
pect there to be a gap in branch length complexity above � ,
but are not sure if the gap jumps the whole way up to � � .
2 Preliminaries

2.1
�	��

�����

In this section we recall some of the basic concepts related to
resolution proofs.

A literal is a propositional variable or the negation of a
propositional variable. A � -conjunction ���M8�� is a conjunc-
tion of at most � literals. A � DNF is a disjunction of � -
conjunctions.

The k-Resolution proof system is a refutation system de-
signed to provide certificates (i.e. proofs) that a system of �
DNF’s is unsatisfiable. This is done by means of the follow-
ing four derivation rules. The � -introduction rule is� ����� ������� 8�� � � ��� �����"! 8��� �#� � � � �������%$&�"! 8�� F
provided that '�(��) (� '
03� . The cut (or resolution) rule is� ���+* �,��� 8�� � �-� � �����/. 8��� �#) � � L
The two weakening rules are �

� � � �,��� 8�� F

provided that '�(':03� , and
� � � �������0$&�"! 8��� � � ������� 8 � L

Here
�

’s are 1 -DNFs, and 8 ’s are literals.
The given clauses are often referred to as axioms, and the

task is to derive the empty clause (the contradiction) from the
axioms. In tree-resolution the proof is organised as a binary
tree with the axioms in the leaves and the empty clause in the
root. In DAG-resolution (or just resolution) the proof is given
as a linear sequence

� � F � � FMLMLML9F �32 of clauses, where each
clause either is an axiom or can be obtained by means of the
resolution rule (applied to two already derived clauses). In
a resolution proof, clauses can be reused more the once. A
tree-resolution proof do not allow this.

2.2 Translating formulas from predicate logic into
propositional logic

Let 4 denote a first order language. To keep things slightly
simplified we assume 4 contains only relations (constants
and function symbols can be defined using relations anyway).
We use the standard definition from model theory where a
model of 4 is a set 576�8�9 on which each : -ary relation 5 is
interpreted as a subset ;5=<>5 , . The size of the model is
given by the cardinality of 5?6�809 . If for example 5 �A@ FCB � is
a binary relation, a model of size � is a digraph on � ver-
tex. In general a model is a hyper-graph with a finite set of
edge types. The size � of the model (hyper-graph) might be
infinite. Given � points (vertex). For each potential hyper-
edge we introduce a boolean variable. Assume for exam-
ple we consider a relational language which contains two
binary relations (say, 5 �A@ FCB � and D �A@ FCB �) and one ternary
relation (say

� �A@ FCB�FFE �). This language is the language for
hyper-graphs with two types (colours) for each ordinary edge
as well one type for each 3-ary hyper-edge. In this exam-
ple we introduce boolean variables :HGI� F NJGI� and

� GI� , whereK F0L�F �NMPO�/ F � FMLMLML?F �RQ . Let S-T�U � �V4 � denote the collection of
boolean variables introduced this way. Notice that any con-
crete model of 4 (i.e. any concrete hyper-graph) corresponds
to a specific assignment of the boolean variables.

There is a straightforward way of translating a purely re-
lational CNF formula into a propositional CNF (one for each�). The formula

� �A@ FCBXFFE �R� � 5 �A@ FCB � � . D � B�FFE �+� translate
into � �GAW �FW , � GI� , � � �GAW �XW , �A:�GI� � . N � , � . Pure existential formulas
can also be translated into a propositional CNF by replacing
the existential quantifier with a disjunction. Thus for example	 B 5 �A@ FCB � becomes � �G * �� :JGY� .

2

A tautology � in the variables S-T�U � �V4 � express a fact
about hyper-graphs of size � . We will mainly consider prop-
erties of hyper graphs, which are independent of the labelling
of the hyper-graph. A combinatorial principle of hyper-
graphs is a property, which hold for all hyper-graphs (of a
specific type). Now since any such property is preserved un-
der re-labelling of the vertex, it is natural to focus on prop-
erties, which are defined explicitly so they remain invariant
under re-labelling of the vertex. In other words it is natural
to focus on properties which are (explicitly) invariant under
the natural action of the symmetric group D � . In this pa-
per we consider resolution based propositional systems. We
say that a collection

� � F � � FMLMLMLAF � 2 of disjunctions (clauses)
is invariant under the action of D � if for each

� � with
L M

O�/ F � FMLMLML F � Q and each � M D � we have � � � �O� G � , for
some � M O�/ F � FMLMLML?F � Q . We say a CNF is invariant under
the action of D � if its collection of disjunctions (clauses) is
invariant under D � .

For � < O�/ F � FMLMLMLOF �RQ we say the disjunction
�

is invari-
ant under D�� , if � � � � G �

for each permutation � M D�� (i.e.�
is invariant under permutations which only moves points in

�). We need the following lemma:

Lemma 2.1 Assume
�

is invariant under D � as well as in-
variant under D�� . Assume ���
	��G�
 . Then

�
is invariant

under D � $�� .

Proof: To see this it suffice to show � � F�� � � G �
for

� M��
and

� M�	 . Pick � M�����	 . Then since � � � � G4� � �A��� � �A��� � �A�
we have � � � � � G � � �A��� � �A��� � �A� � GI� � �M��� � �A� � GI� � �A� � G�

since
�

is invariant under � � �A� M D � as well as � � �A� M D�� .�
Consider a disjunction

�
. Assume

�
is invariant under � .

In that case we say
�

has support contained in ��� . We define
the support size of

�
as ��� ' �	' where � is a set of maximal

size such that
�

is D � invariant.

Lemma 2.2 Let 4 be a fixed relational language. Assume
� � is a sequence of CNFs in the variables S-T�U � �V4 � . Assume
there is a polynomial � such that the number of distinct dis-
junctions in � � is bounded by � �R��� . Then there exists a con-
stant � such that for any � and any clause

� M�� � ,
�

has
support size bounded by � .
Proof: Let

�
be any clause from the CNF. We want to show

that
�

must have constant size support (i.e. support size
bound by a number independent of �). The strategy to proof
this is to show that if

�
has non-constant support size, then

O�� � � �! "� M D � Q contains to many distinct clauses. With-
out loss of generality assume

�
has support O�/ F � FMLMLML F$# Q for

some
#

minimal with this property. We consider two distinct
cases:
case 1:

% ��S?� . Consider two distinct sets � G
O � � F � � FMLMLMLOF ��& Q and 	 G>O � � F�� � FMLMLML9F�� & Q each containing#

elements. Let
� � EG � / F � � ����� F � � � LMLML � # F ��& � � and let� � EG � / F�� � ����� F�� � � LMLML � # F�� & � � . We claim

� �'�G � � . To
see this assume

� � G � � . Now
� � is �(� invariant and

� � is
	 � invariant. Now since

#�% ��S?� clearly � � ��	 � �G)
 . Ac-
cording the lemma 2.1

� � (=
� �) is invariant under �*�) 	!�

and thus
� � has support contained in �+�,	 . Thus support

size of
� � is

# 0 ' �) 	+' %-# which is a contradiction. The
number of elements in O�� � � �� .� M D � Q is thus at least as
large as the number of distinct

#
-element subsets of � .

case 2:
#0/ ��S?� . We want to show that the set O�� � � �

� M D � Q is too large. The idea is to map the disjunction
�

into a clause
�21

with support in O�/ F � FMLMLML?F ��S?�3� /HQ . This
is done by taking the union of all disjunctions � � � � where
� M D�4 �65 � W �75 �98�� W;:;:;: W �=< . This map naturally extend to a map,
mapping the collection O�� � � �> ?� M D � Q of clauses onto the
collection O�� � �21 �@ �� M D � Q . The map is usually not one-
to-one, but since it is onto the number of distinct elements in
O�� � � �(A� MPD � Q is at least as big as the number of distinct
elements in O�� � �21 �B �� M D � Q . This latter number equals the
number of distinct ��S?�*� / element subsets of O�/ F � FMLMLML?F �RQ .�
Proposition 2.3 For each relational language 4 and for
each polynomial � there is a constant � GC��D
W E such that
for any � the number of distinct D � -invariant CNF’s of size0-� �R��� is at most � .
Proof: According the lemma 2.2 each CNF is generated by
a finite number of clauses with support in O�/ F � FMLMLMLOF$# Q for
some constant

#
which can be chosen independent of � . The

number of distinct clauses with support in O�/ F � FMLMLML?F$# Q is
bound by a constant �FD W E .

�

Proposition 2.4 Let � be a D � invariant CNF in the vari-
ables S-T�U � �V4 � and assume each clause has support size0 #G% �,�H� (were � the maximal arity of a relation in 4).
Then there is a universal existential relational which trans-
late into � .

Proof:(outline) Replace each big conjunction with an uni-
versal quantifier, and each big disjunction by an existential
quantifier.

�

3

Let us illustrate the proposition with an example. Let
� � � GAW � �A:JGY� � . : �XG � � � � * , : � , . Each clause has support
size 0 � . Since � is on CNF form as is invariant under D �
according to the proposition the sentence appears as trans-
lation of a relational sentence. The sentence is obviously:� @ � B � 5 �A@ FCB � � . 5 � B�F @ �+� � � @ 	 B 5 �A@ FCB � .

Up to now one might have got the impression that the
power of expression was rather pure. After all we have
showed that for any given type of hyper-graph, there are only
a constant number of distinct properties which can be ex-
pressed by CNFs bounded in size by a fixed polynomial. The
situation is in some sense quite different. Any tautology be-
longs to co-NP so only co-NP properties have a chance to
be translated into tautologies. Now any co-NP property of
hyper-graphs (of a given fixed type), can be expressed as a
D�� 	 (i.e. a universal second order sentence)

���5�� � �5 F �	 � .
This sentence holds for all hyper-graphs of size � and type
given by

�	
if and only if � � �5 F �	 � holds for all hyper-graphs

of type given by
�5 F �	 . Thus any co-NP tautology of hyper-

graphs of a given type holds if and only if a certain CNF
tautology hold for hyper-graphs of a richer type.

A strict D�� � sentence is a universal second order sentence
of the form

� �5 � G 	 �B � � � �E B GI� � �BXF �E:F �5 � where each B GI� is an
atomic formula or the negation of an atomic formula. A strict
D�� 	 sentence is an existential second order sentence of the
form 	 �5 ��G � �B � � 	 �E B�GI�'� �B F �E:F �5 � where each BRGI� is an atomic
formula or the negation of an atomic formula.

We have shown:

Theorem 2.5 There is a one-to-one correspondence between
strict D
� � -sentences and polynomial size D � -invariant
DNFs.

There is a one-to-one correspondence between strict D�� 	 -
sentences and polynomial size D � -invariant CNFs.

Notice that a sequence of polynomial size D � -invariant
DNF (CNFs) need not be uniform, by the correspondence ap-
pears for each fixed � when � is sufficiently large.

2.3 Relativising combinatorial principles

Let � be a combinatorial principle for hyper-graphs (of a
certain type). Informally, the statement � states that some
property holds for all graphs on the universe of vertex. Infor-
mally, the relativised sentence U �AT � �7� say that the principle �
holds for any subset � of vertex. Since relativised principle
not only state the validity of the principle for models of size� but implies that the principles holds for all models of size0 � the relativised principle is in general harder to prove than
its non-relativised counter part.

Formally, we relativise a sentence B M 4 as follows by
adding a new unary relation symbol to the language 4 and
by modifying B by systematically replacing each universal
quantifier

� @ L L L L with
� @ . � �A@ � � L L L

and by replacing each
existential quantifier 	 @ L L L with 	 @�� �A@ �J� L L L L . A second order
sentence
 � 5 �
 � 5 � LMLML
 6 5 6 � , where each
 � is a second
order quantifier, and where � is a first order sentence, rela-
tivise to

� ��
 � 5 �
 � 5 � LMLML
 6+5 6 ��� .
Notice that a strict SO

�
(SO) sentence relativise to a strict

SO
�

(SO) sentence.
Notice also that a purely universal sentence of the form

� @ � � @ � LMLML � @ , 5 �A@ � F @ � FMLMLML @ , �
relativises into the set of clauses

. � GA� � . � G ! � LMLML . � G C � : GA�CW G !XW;:;:;: G C
for all possible combinations of

K � F K � FMLMLML K , .
For every Skolem relation NHGA�CW G !FW;:;:;: G C W G�� (where

K��
is the wit-

ness) we have the clause

. � G � � . � G ! � LMLML . � G C � . N�G � W G ! W;:;:;: G C W G � � � G �
i.e. if all the arguments are in � , so is the witness.

2.4 Proving lower bounds for Resolution and Tree-
like Res

�0���
We will first describe the search problem, associated to an
inconsistent set of clauses, as defined in [7]: Given a truth
assignment, find a clause, falsified under the assignment.

We can use a refutation of the given clause to solve the
search problem as follows. We first turn around all the edges
of the graph of the proof. The contradiction now becomes
the only root (source) of the new graph, and the axioms and
the initial formulae become the leaves (sinks). We perform a
search in the new graph, starting from the root, which is fal-
sified by any assignment, and always going to a vertex which
is falsified under the given assignment. Such a vertex always
exists as the inference rules are sound. We end up at a leaf,
which is one of the initial clauses.

Thus, if we want to prove existence of a particular kind
of clauses in any proof, we can use an adversary argument in
solving the search problem. The argument is particularly nice
for Resolution as developed by Pudlak in [9]. There are two
players, named Prover and Adversary. An unsatisfiable set
of clauses is given. Adversary claims wrongly that there is a
satisfying assignment. Prover holds a Resolution refutation,
and uses it to solve the search problem. A position in the

4

game is a partial assignment of the propositional variables.
The positions can be viewed as conjunctions of literals. All
the possible positions in the game are exactly negations of all
the clauses in the Prover’s refutation. The game start from
the empty position (which corresponds to � , the negation of
the empty clause). Prover has two kind of moves:

1. She queries a variable, whose value is unknown in the
current position. Adversary answers, and the position
then is extended with the answer.

2. She forgets a value of a variable, which is known. The
current position is then reduced, i.e., the variable value
becomes unknown.

The game is over, when the current partial assignment fal-
sifies one of the clauses. Prover then wins, having shown a
contradiction.

We will be interested in deterministic Adversary’s strate-
gies which allows to prove the existence of certain kind of
clauses in a Resolution refutation.

In order to prove lower bounds on Resolution proofs, we
will use the known technique, “bottleneck counting”. It has
been introduced by Haken in his seminal paper [6] (for the
modern treatment see [1]). We first define the concept of
big clause. We then design random restrictions, so that they
“kill” (i.e. evaluate to �) any big clause with high probability
(whp). By the union bound, If there are few big clause, there
is a restriction which kills them all. We now consider the
restricted set of clauses, and using Prover-Adversary game,
show that there has to be at least one big clause in the re-
stricted proof, which is a contradiction and completes the ar-
gument.

The case of Tree-like proofs, either Resolution or Res �%1
� ,
is much simpler as a tree-like proof of a given set of clause is
equivalent to a decision tree, solving the search problem. We
can use pretty straightforward adversary argument against a
decision tree, in order to show that it has to have many nodes.

3 Complexity gap for Res* �����

Theorem 3.1 A SO 	 sentence
 is given which fails in all
finite models, but holds in some infinite model. Let us denote
by � � the translation of
 into propositional logic, assuming
a finite model of size � . Then for any � , � 0I� 0 � , any5 � � ��� refutation of � � is of size ���! #"�$3" &)(+*
,, �.-!- .

Proof We will describe the modifications of the original
proof, Section 4 of [10]. Recall that the proof goes as fol-

lows. Prover holds the Tree-like Resolution refutation which
is equivalent to a decision tree solving the search problem for
� � . Adversary’s task to force a big subtree in the Prover’s
tree. In doing so, he uses an infinite model 5 in which

holds. At any stage in the game some elements of the uni-
verse are interpreted in 5 , and it is clear that no contradic-
tion can be achieved by Prover, unless she forces Adversary
to interpret all the � elements. When a variable is queried by
Prover, Adversary answer as follows.

1. If the truth value can be derived from the current inter-
pretation, i.e. the partial assignment, he replies with the
value. The current interpretation is not extended as this
was a forced question.

2. If the value cannot be derived from the current interpre-
tation, it follows that both � and � answers are consis-
tent with some extension of it. Thus Adversary is free
to choose an answer, and it both possible cases there is
a consistent extension of the current interpretation by at
most : new elements, where : is a constant, the maximal
arity of relation symbols in � � .

This shows that Prover’s decision tree has to contain a com-
plete binary subtree of height ��S : which proves a � �65	� lower
bound.

Let us now consider the case of 5769N � � ��� instead of Tree-
like Resolution. A Prover’s query is a � -disjunction instead of
a single variable. Adversary first simplifies the query, using
the current interpretation. That is, if a literal evaluates to �
it vanishes; if all the literals vanish, the query itself is forced,
and the answer is � . If a literal evaluates to � so does the
entire disjunction; the query is forced, and the answer is � .

The non-trivial case is when the query is not forced, i.e.
after having been simplified, it can still be answered both �
and � . For the positive answer it is enough to force a single
literal to � F and therefore to interpret at most : new elements.
For the negative answer Adversary should force all the liter-
als to � , and therefore he has to interpret all the mentioned
elements which are at most � : .

We will show that a subtree rooted at a given node can
be lower-bounded by a function D in the number of free el-
ements at the node. If the number of free elements at the
current node is

�
, the � successor has at least

� � : such el-
ements whilst the � successor has at most

� � � : . Thus we
have

D � � � / D � � � :���
 D � � � � :���
 / L
We will prove that D � � � / @ 2 5	�, �3/ where @ , is the biggest

5

positive real root of the equation

@ , �N@ ,�� � � /�G � L
The induction step is trivial. By the induction hypothesis we
get

D � � � / " @ 2 5	� � �, � / -
 " @ 2 5	� �<,, �3/ -
 /
G @

2 5	�
C � / L

Let us now observe that there are positive constants
�

and
�

such that for every � / / , @ , is in the interval" /
 � &��<,, F /
 � &��<,, - . Indeed, let us denote � �V@ � G>@ , �
@ ,�� � � / . We have � " /
H� &��<,, - G " /
 � &���,, - ,�� � � &���,, � /
where � is a constant. Since T���� ,
	�� " /
 � &���,, - ,�� � � � � G/ we can conclude that for every constant
�� �

there is��� so that for every � / ��� , � " /
 � />��
 � &���,, - % �
and

� " /
 � /
�
 � &��<,, - � �
.

It is now clear how to get the desired lower bound.
At the root of every decision tree we have all the � ele-
ments free, so that the decision tree has to be of size at

least " /
 � &��<,, - �65	� � / which is � 6������ � C� C and therefore���! " $ " &)(+*
,, � -:- . What remains to be checked is the basis

case, � % � : . In this case the size of the tree is at least ��S :
(as this is the minimal number of queries required to force
interpretation of all the elements), whilst the lower bound ex-
pression is 0 6�� &���, G ��� . Clearly ��S :�� � � for big enough� as � 0 � and : , � ,

� % / are constants independent from� L This completes the proof.
�

It is important to note that the lower bound, we have
proven, is tight. The SO 	 sentence, which shows this, is Min-
imal Element Principle (5�! � �), saying that a finite (par-
tially) ordered � -element set has a minimal element. Its nega-
tion is

	?� �K� � @ . � � @ F @ �+�
�� � @ FCBXFFE � �3�A@ FCB � ���3� BXFFE � �#"��%�A@ FFE � � � (1)� � @ 	 B �3� BXF @ � �+� L
It is not hard to see that there is a 5769N%$ � ��� refutation of

5&!2� � of size ���
 #"�$3"�&)(+*!,, �.-:- for any � , � 0 �10 �
�3/ .
Note also that the 5769N'$:� ���3/9� proof of 5&!2� � is essentially
the same as the (DAG-like) Resolution proof of the princi-
ple, so that our result is consistent with the known fact that
5&!2� � is hard for Tree-like Resolution, but easy for Resolu-
tion.

4 Complexity gap for (*),+ �.-�/1032 �
Let us first introduce some conventions. Recall that � � is
built upon two kinds of variables, : ’s and N ’s. : -variables
correspond to the relation symbols in the original sentence
 . Suppose there are 4 such variables, : � F : � FMLMLML :65 , hav-
ing arities 7 � F 7 � FMLMLML 7 5 , and let us denote 7 G � T � G87
G .
Given the : -variable : G�X� W � !CW;:;:;: �:9<; , we say it mentions the el-
ements

L � F0L � FMLMLML�L>= ; . N -variables correspond to the Skolem
relations we use to encode
 as a set of clauses. Sup-
pose there are 8 such variables N � F N � FMLMLML N � . Given the N -
variable N G�F� W � !XW;:;:;: �@?A;�W � � , we say it mentions only its argumentsL � F0L � FMLMLML�LCB ; , but not the witness,

L �
. We also define its arity

to be D G , not D G
 / . Let us denote D GE� T � G D G as well as� GF� T � O�7 F D&Q .
We will first prove that we need big clauses to refute
 .

Lemma 4.1 Any Resolution refutation of � � contains a
clause which mentions at least � � 5 B S " �?8 � 5 B - � � elements.

Proof We will describe a deterministic Adversary’s strategy
which enforces a big clause. As usual Adversary holds an in-
finite model 5 in which
 holds. We say that an element is
busy in the current position (i.e. clause) iff it is mentioned by
the clause. We say an element is hidden iff it is not busy, but
is the witness of a Skolem relation, having all its arguments
busy. An element, which is neither busy nor hidden, is said to
be free. At each stage in the Prover-Adversary game Adver-
sary maintains two disjoint sets 	 and G . 	 is the set of all
the busy elements, and G is the set of the hidden elements.

The Adversary’s strategy is now clear. At any stage in the
game all the elements from 	IHJG have interpretations in
5 . Initially 	 GKG G Ø. There are two kinds of Prover’s
moves:

1. She queries a new propositional variable. The easier
case is when the variable can be evaluated under the
current interpretation. Adversary replies with the value,
and does not change 	 and G . If the variable cannot
be evaluated, Adversary needs to enlarge 	 with all the
new elements mentioned by the variable. Note that there
is a constant number of such elements, namely at most�
. G then has to be enlarged as well with the witnesses

of all the new tuples in 	 .

2. She forgets a propositional variable. Some elements
from 	 may then become non-busy. Adversary removes
these from 	 . Some of them may become hidden, i.e.

6

they are witnesses of a Skolem relation with all its ar-
guments from 	 , and go to G . The rest become free.
Some elements from G , namely the witnesses of the tu-
ples which contained at least one of the just forgotten
elements, become free as well.

In any case no contradiction can be achieved as far as ' 	�'

' G?'!0 � . On the other hand there are 8 Skolem relation, each
with arity at most D , so at any time ' G?' 0 8 ' 	+' B . Thus at
any stage in the game, before a contradiction is achieved, we
have

' 	�'�
 8 ';	�' B 0 � L
Since ' 	+' G � � 5 B S "��?8 � 5 B - satisfies the inequality, and ' 	+'
increases by at most

�
after any stage, there should be a point

where ' 	+' � � � 5 B S " �?8 � 5 B - � � as claimed.
�

Let us now consider 576A8:� � � � . We will first describe a dis-
tribution of random restrictions which kills any big clause in
any Resolution refutation of 576A8:� � � � with high probability
(whp). The idea is to randomly divide the universe � G � ���
into two approximately equal parts. One of them, 5 , will
represent the predicate, we relativise by, 5 � ; all the variables
within it will remain unset. The rest,

�
, will be the “chaotic”

part; all the variables within
�

and most of the variables be-
tween

�
and 5 will be set entirely at random.

More precisely, the random restrictions are as follows.

1. We first set all the variables :
�
� to either � or � indepen-

dently at random with equal probabilities, /9S?� . Let us
denote the set of variables with :

�
� G � by 5 , and the

set of variables with :
�
� G � by

�
,
� G ��� 5 .

2. We now set all the variables : G�X��W � !XW;:;:;: � 9�; , K � �
, which

mention at least one element of
�

, i.e. O L � F0L � FMLMLML�L.= ; Q �� �G Ø, to either � or � independently at random with
equal probabilities, /9S?� .

3. We set all the variables N G�X� W ��!FW;:;:;: �@? ; W � � , which mention at
least one element of

�
, i.e. O L � F0L � FMLMLML�L B ; Q*� � �G Ø,

to either � or � independently at random with equal
probabilities, /9S?� .

4. We finally set to � all the variables N G�X� W � !FW;:;:;: �@? ; W � � which
mention only elements from 5 , but the witness is in

�
,

i.e. O L � F0L � FMLMLML�LCB ; Q <35 and
L � M � .

It is very important to note that the variables and clauses,
which survive the random restriction, define exactly
 on 5 ,
i.e. ��� �	� .

There are few minor problems. The third case of the above
description may violate an axiom as well as the first case may
make 5 very small. We can however see that these bad events
happen with exponentially small probability.

Lemma 4.2 The probability that the random restrictions are
inconsistent with the axioms or ' 5 ' 0 ��S�
 is at most8R� B S?� �
 /9S?6 �75 �
� .
Proof Indeed, an axiom is violated iff in the third case there is
a D,G -tuple

L � F0L � FMLMLML�L B ; such that for every
L �

, N G�X��W � !XW;:;:;: �@? ;�W � � G
� , i.e. there is no witness for the tuple. The probability for
this is /9S?� � and there are at most 8 � B such tuples, so that
the union-bound gives 8R� B S?� � . By the Chernoff bound the
probability that ' 5 '
0 ��S�
 is at most 6 � �65 �
� . �

The next step is to show that the random restrictions kill
any clause with exponential probability in the number of the
elements mentioned.

Lemma 4.3 Given a clause, which mentions at least � el-
ements, the probability it does not evaluate to � under the
random restrictions is at most � J S�
;� , 5 9 .
Proof Let us denote the clause by � , and perform the follow-
ing experiment. We pick up a literal 8 � from � . The proba-
bility that at least one of the elements, mentioned by 8 � , is in
the chaotic set

�
is at least /9S?� . Given such an element, the

probability that 8 � evaluates to � under the random restric-
tions is /9S?� . Thus the probability 8 � does not evaluate to � is
at most

J S�
 . We now take all the elements, mentioned by 8 �
and mark them.

We pick another literal 8 � from � which mentions at least
one unmarked element, and proceed as we have done with 8 � .
We then pick yet another literal 8 � and so on.

The clause � mentions at least � elements, whilst after
having considered a literal we mark at most

�
elements, so

that we can repeat the above procedure at least ��S � times.
These trials have been independent by the construction of the
random restrictions. Therefore the probability that � does
not evaluate to � is at most � J S�
;� , 5 9 as claimed.

�
We can now prove the main result of the section.

Theorem 4.4 A SO 	 sentence
 is given which fails in all
finite models, but holds in some infinite model. Let us denote57698:�
 � the relativisation of
 with respect to a unary pred-
icate. Let 576A8:� � � � be the translation of the latter into set
of clauses, assuming a finite model of size � . Then there is
a constant
 , depending only on
 , such that any Resolution
refutation of 57698!� � � � is of size ���! ��$ �R� � �+� .

7

Proof Let us denote � G � ��� 9� ���F�E� ��� 9 � �
, and say a clause is

big, iff it mentions at least � elements. We will prove that
any Resolution refutation of 576A8:� � � � contains exponentially
many in � big clauses, which would give the desired lower
bound.

Assume, for the sake of contradiction, there is a refutation�
which contains at most �
;S J � , 5 � big clauses. We hit

�
by

random restrictions. By the lemma 4.2 and the lemma 4.3 +
union-bound, the probability that the restrictions are “bad” is
at most

8R� B� �
 /6 �65 �
�

� J

��

� ��� 9 5 � � ���F�E� ��� 9 � � 9 L
As this quantity is smaller than / for big enough � (recall that8 , 7 , D and

�
depend on
 , but not on �), there is a set of good

restrictions, “good” meaning that they kill all the big clauses,
and moreover what survives is � 5 for some 4 � ��S�
 . But
now by the lemma 4.1 there has to be at least one big clause
in the restricted refutation which is a contradiction.

�
Note that we do not claim that the bound proven,���! " $ " � � 5 = -!- is tight. As a matter of fact, we believe

the right lower bound is ���! ��$ �R���+� , but we also believe this
might be very hard to prove, say as hard as proving the Com-
plexity Gap theorem for (DAG-like) Resolution.

5 Built-in order “kills” the gap

We will first show that there is no Complexity gap for Tree-
like Resolution if we enrich the SO 	 -language with a built-in
order predicate.

Theorem 5.1 There is no tree-resolution complexity gap for
the logical sentences in the language D�� 	 + built-in order.

Proof Let us first describe the argument very informally. As-
sume a finite model of size � . There are know tautologies
which requires size � � ���?� to refute. The most natural of them
is Minimal Element Principle (MEP) which has already been
mentioned (note that the partial order, defined by MEP, is en-
tirely independent from the built-in total order predicate).

As we have built-in order, we can interpret the elements of
the universe as the first � natural numbers. We can define in
the SO 	 language a broad class of functions, such as T U�W @ ,
@
= 5 B

(7 and D integers) and so on. We will show that it is easy,
i.e. polynomially size doable, to verify that a given element �
of the universe is � �R��� , where � is a function from the class.
Then we will restrict Minimal Element Principle to the first

� elements (in the built-in order) to get a sentence in the SO 	
language + built-in order predicate whose optimal refutation
is of size �?� �	� �=��� � , provided � � ����G $ � T U�W ��� .

What remains is to show how to define and verify � �R���
in polynomial in � size. As an example, we will give the
definitions of
 L and TVU�W ���E� .

In what follows, all the relation symbols are quantified ex-
istentially and the free variables are quantified universally.
Moreover, the definitions are nested in the order they appear,
starting with the above definition of a total order, being out-
ermost one. We denote by 4 the built-in order predicate, i.e.
4 �A@ FCB � stands for @ %?B .

We first define the successor function as the relation
D �A@ FCB � standing for

B
is the successor of @ .

D �A@ FCB � � � 41�A@ FCB � � � � E . �V4 �A@ FFE � ��41� E:FCB � �+�+�
We can define any constants, by the relations

� � �A@ � , mean-
ing @ G �

.

� � �V@ � � � � B . D � BXF @ � �
� � �A@ � � � 	 B � � � � � � B � � D � B�F @ � �+�

We are now ready to define addition and multiplication recur-
sively by the following relations, � � @ FCBXFFE � and 5 �V@ FCBXFFE �
standing for @
 B G E

and @�
 B G E
, respectively.

�H�V@ FCB�FFE � � �+� � � �A@ � � � � � B � � � � � E �+�
� 	 � F � �0D � � FFE � �

� �+�%D � � F @ � � � � � FCB�F �:� �
� �0D � � FCB � ��� �A@ F � F �:�K�+� �

5 �A@ FCBXFFE � � �+� � � � �A@ � � � � � B �+� � � � � E �+�
� 	 � F � �+�%D � � F @ � � � � BXF � FFE �#��5 � � FCBXF �!� �

� �%D � � FCB � � � �V@ F � FFE �#��5 �A@ F � F �:�K�+�+�
We can now define

B G��
 @�� by
B G��
 @�� if and only if

either
B � 0?@ % � B
 /9� � or

B � 0?@ , but � B
 /9� � � � .

5 � �V@ FCB � � � 5 � BXFCBXF @ �
� 	 � � 5 � BXFCB�F � � � 41� � F @ �
� � 	 E:F$# �0D � BXFFE � ��5 � E:FFE:F$# � � 4 �A@ F$# � �

� � E:F$# �0D � BXFFE �#" . 5 � E:FFE�F$# �K�+�K�+�
We also define

B G���� ��� as

8

� � �A@ FCB � � 	 � F � F$# � 5 � � F @ F �!� � � � � F$# F � �
� � � � � � � � � � � �:� � � � � �!� �+� F

and finally
B G � T U�W-@ � , using the recursion

��T U�W-@�� G � � @ G //
 �VT U�W ��� ��� � @ � /
4 � �A@ FCB � � � � � �A@ � � � � � B �

� � 	 � F � �%D � � FCB � � � � �V@ F � � � 4 � � � F �:� � �+� L
We shall not formally prove that it is straightforward to

verify all the functions defined above within the decision tree
computational model. The sketch of the proof is, however,
pretty clear: as all the definitions are inductive and there are
no mutual recursive relations, we check the functions in the
order they are defined, starting from the basis cases. Thus
all the queries are forced in the sense that if the assignment
does not satisfy the definition of the given relation then the
“wrong” answer leads to an immediate contradiction. Thus
the size of the initial part of the tree, verifying the definitions
of these functions, is polynomial in � as claimed.

�
Of course, the result holds for many other propositional

proof systems as Tree-like Resolution is a very weak system,
and can be polynomially-simulated by them. As an important
consequence we get the following

Theorem 5.2 There is no Tree-like Resolution Complexity
gap above ��� ��� &)(+* �?� .
Proof Let us first observe that there are D�� 	 statements with
optimal proofs of size � � �=� 9 � for every 7 / / . It is enough
to take 5&!2� � 9 where @ ,

B
and

E
in 1 are 7 -tuples instead

of single elements of the universe. To get the intermediate
complexities, we could restrict the last element of any such7 -tuple to be less than or equal to � � ��� where � is some func-
tion and � is the size of the universe (model). The optimal
tree resolution proof of the obtained in this way statement

would be � � � � 9�� � �?�E��� � . However we have not any prede-
fined functions in our language. The definition of � therefore
should be a part of the sentence and the proof should “ver-
ify” the definition of the function � . We shall use the same
argument as we have done in the previous proof. However
we have not total order either, so we have to define it within
the SO 	 language, and to verify it by a decision tree.

�

The total order can be defined as

	 4 � � @ . 41�A@ F @ �
� � @ FCB �+� @#G B � � 41�A@ FCB � � 41� BXF @ � �
� � @ FCB�FFE �+�V41�V@ FCB � ��41� BXFFE �+�#" 4 �V@ FFE � �+� F

and we can complete the argument by proving the following
lemma.

Lemma 5.3 The relation 4 can be optimally verified by a
decision tree of size ��� �=� &)(+* ��� .
Proof The sentence translates into the following set of
clauses:

. 8 G G K
8 GI� � 8 �FG K F0L

. 8 GI� � . 8 � , � 8 G , K F0L'F � L
It is clear that every permutation � of O�/ F � FMLMLML �RQ defines a
satisfying assignment by setting 8AGI� to � if and only if � � K � %
� � L � and vice versa. This observation immediately implies a
lower bound of ���;G � � ��� &)(+* ��� .

A decision tree which verifies 4 can be constructed by in-
crementally ordering the elements of the universe. Suppose
we already have a decision tree which orders the first

L
el-

ements, i.e. each leaf corresponds either to a contradiction
or to a permutation of O;/ F � FMLMLMLCL Q as explained above. We
can now expand the latter leaves by finding the place of theL
 / -th element. In doing so, we use binary search which
uses �3��T U�W�� L
 /9� � free-choice queries. Once the place of
the

L
 / -th element has been found, all the queries involving
it and some of the previous

L
elements are forced, i.e. one

of the answers leads to an immediate contradiction. Thus the
forced queries contribute a polynomial factor to the size of
the subtree consisting of the free-choice queries only. The
depth of this subtree is 	 � � ���
 � � � TVU�W � L
 /9�+� G � �R�7T U�W ��� ,
and therefore its size and the size of the entire decision tree
is � � ��� &)(+* ��� . �
References

[1] P. Beame and T. Pitassi. Simplified and improved reso-
lution lower bounds. In Proceedings of the 37th annual
IEEE symposium on Foundation Of Computer Science,
pages 274–282, 1996.

[2] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson.
Near-optimal separation of general and tree-like reso-
lution. Combinatorica. to appear.

9

[3] M. Bonet and N. Galesi. A study of proof search algo-
rithms for resolution and polynomial calculus. In Pro-
ceedings of the 40th IEEE Symposium on Foundations
of Computer Science. IEEE, 1999.

[4] S. Dantchev. Relativisation makes tautologies harder
for resolution. submitted, October 2002.

[5] S. Dantchev and S. Riis. Tree resolution proofs of the
weak pigeon-hole principle. In In proceedings of the
16th annual IEEE Conference on Comutational Com-
plexity. IEEE, June 2001.

[6] A. Haken. The intractability of resolution. Theoretical
Computer Science, 39:297–308, 1985.

[7] J. Krajíĉek. Bounded Arithmetic, Propositional Logic,
and Complexity Theory. Cambridge University Press,
1995.

[8] J. Krajicek. Combinatorics of first order structures and
propositional proof systems. July 2001.

[9] P. Pudlák. Proofs as games. American Mathematical
Monthly, pages 541–550, June-July 2000.

[10] S. Riis. A complexity gap for tree-resolution. Compu-
tational Complexity, 10:179–209, 2001.

10

