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1 Introduction

Over the last several years, substantial progress has been made in the study of the complex-
ity of propositional proof systems. A particularly noteworthy development in this effort
has been the significant cross-fertilization between research on circuit complexity and re-
search on propositional proof complexity. One area of application of circuit-complexity
techniques in proof complexity has been in the study of constant-depth Frege systems,
proof systems in the conventional axiom schema/inference rule format each of whose con-
stituent propositional formulas has constant depth.

Ajtai [2] introduced circuit-complexity techniques to the study of constant-depth Frege
systems and provided the first bound showing that the propositional pigeonhole principle
did not have efficient constant-depth proofs. His arguments were simplified in [9] and the
complexity lower bound improved to exponential in [7, 15, 13].

Given these results, a natural question to ask is: What is the power of the proof system
if it is augmented by axiom schemas for some family of tautologies that does not have
efficient proofs? Tautologies for several combinatorial principles have been studied. Ajtai
[3] showed that if the pigeonhole principle is added as an axiom schema then the Counts
tautologies still do not have efficient proofs, where the Count, tautologies express the fact
that there is no perfect partition of a set M into blocks of size p, if |[M| # 0 ( mod p).
Again, this bound was improved to exponential in [8, 16] and can be extended to arbitrary
values of p. These arguments used the usual circuit-complexity techniques augmented by
specialized combinatorial techniques to handle the new axiom schemas.

A natural next question (asked originally in [14]) was to examine the relative strength
of the Count, principles for different values of p. Ajtai [1] first showed that, when p and
q are distinct primes, proofs of Count, are not efficient even when given Count, as axiom
schemas. To handle the Count, axioms Ajtai used a reworking of several ideas from the
theory of representations of the symmetric group.

A different approach for handling the Count, axioms was taken by two other groups
of researchers independently. This approach was a natural extension of the methods in



[8, 16]. Riis [16] laid out a framework involving showing that certain ‘exceptional forests’
of decision trees do not exist. This problem was left unsolved in [16]. Working along
similar lines, Beame, Impagliazzo, Kraji¢ek, Pitassi, and Pudlék [6] introduced the notion
of a Nullstellensatz proof system and reduced the existence question for objects similar
to Riis’ exceptional forests to the degree required for certain proofs in this system. They
also showed lower bounds on this degree using Ramsey theory, and thus extended Ajtai’s
results to a somewhat wider class of p, ¢ combinations. Riis [17] applied similar Ramsey
theory arguments directly to the forests themselves.

One important contribution of [6] was to show that exponential lower bounds for
Count, given Count, would follow from improved degree bounds for the Nullstellen-
satz proofs. These improved degree bounds were shown by Buss, Impagliazzo, Krajicek,
Pudlék, Razborov, and Sgall [10] who introduced a nice inductive method for producing
such bounds.

The present paper uses similar techniques to give a further refinement of our under-
standing of the strength of these combinatorial principles. Thus far, we have referred to
‘the’ pigeonhole principle. However, there are a number of variations of the pigeonhole
principle depending on the sizes of the domain and range of the map and on whether
or not the map is required to be ‘onto’ (which is a weaker version). The lower bounds
mentioned above have applied to either version equally and have assumed that the domain
is one element larger than the range. We show that the onto version of the pigeonhole
principle from n+pl€187] points to n points, onto-PHP!' P Letogn] , Tequires exponential size
constant-depth proofs even given Count, as axiom schemas. The key feature of our argu-
ment is a new degree lower bound for Nullstellensatz proofs of onto—PHPZ"’pk. (Our results
strengthen the results in [18, 19] and are based on a substantially different presentation.)

Since onto—PHPﬁﬂ’LElognJ does follow efficiently from axiom schemas for the general
PHP™*!| and additional axiom schemas for Count, do yield efficient proofs of onto-PHP" 1,
it follows that PHP?"! requires exponential proofs given axiom schemas for onto-PHP™ ',
Also, since additional axiom schemas for C'ounty, for appropriate ¢ # p do give short

proofs of onto-PHP!*? L€ log"J, the exponential separations between Count, and Count,
principles are also corollaries of our results. The idea of examining the relationship be-
tween onto-PHP? TP lien) and Count, was originally used implicitly by Riis as the basis
of the approach in [16] towards proving a separation between Count, and Count,.

There has been a substantial improvement in the precision and presentation of the
methods for proving lower bounds on constant-depth Frege systems with additional axiom
schemas and the papers above do not give entirely self-contained explanations of the best
of current techniques. In this paper we attempt to give as complete a presentation as
possible.

We now outline the structure of the argument, giving references for the key techniques.
We use the notion of a k-evaluation due to Krajicek, Pudldk, and Woods [13], incorporating



the matching decision trees of Pitassi, Beame, Impagliazzo [15], and built for any small
Frege proof using a switching lemma proved with the methods of Beame [4]. Then, as in the
argument of Riis [16] and Beame and Pitassi [8], we show that having a k-evaluation implies
the existence of a certain forest of matching decision trees. Following this we show, using
a reduction analogous to that of Beame, Impagliazzo, Kraji¢ek, Pitassi, and Pudldk [6],
that the existence of such a forest implies a small degree Nullstellensatz refutation of an
associated family of polynomials. Finally, the proof that such a small degree refutation
does not exist is analogous to that of Buss, Impagliazzo, Krajicek, Pudlak, Razborov, and
Sgall [10]. This last is the main new technical contribution and the reader who is familiar
with the other aspects of this paper may wish to skip directly to section 8. In section 9
we combine the arguments from the previous sections to show our main results.

2 Frege Proofs and Counting Principles

A Frege system is a sound and implicationally complete propositional proof system with a
finite number of axiom schemas and inference rules. The size of a proof in a Frege system
is the total number of subformulas appearing in the proof. We consider formulas over
the basis V (binary) and — with propositional variables and the constants 0 (false) and 1
(true) as atoms. We use F'A G as a shorthand for =(=FV —G) and V}_; F; as a shorthand
for an arbitrarily parenthesized tree of binary V’s with Fi,..., F} at the leaves.

The depth of a formula F' is the maximum number of runs of V connectives on any path
from an atom of F' to the main connective of F'. A depth d Frege system is a restriction
of a Frege system to proofs all of whose formulas have depth at most d.

(One can define Frege systems over any basis of binary connectives and the sizes of
proofs in these systems are polynomially related to each other. For constant depth d
Frege systems this is also true, given the depth measure above, provided that one excludes
connectives @ and <. We concentrate on connectives — and V for ease of presentation.)

Pigeonhole Principles Let D and R be disjoint sets and consider propositional vari-
ables P;;, i € D, j € R. There are 3 natural variations of the Pigeonhole Principle:

“There is no total injective relation on D x R”

PHPR = (\/ = \/ By) vV '\ (PyAPy)).

icD jER JERi£I'ED
“There is no total 1-1 function from D to R:”

fun-PHPY = PHPR v \/ \/ (P A Py).
1€D j#j'€ER



These two are polynomially equivalent as may be seen by imposing an order on R and
setting:
!/
Pjj=Py A\ =Py
J'<j
However, the following variant, as we will see, is strictly weaker than PHPg:

“There is no 1-1 onto function from D to R:”

onto-PHPR, = fun-PHPR V (\/ = '\/ —P;).
jER Q€D

When |D| > |R| all the variations are tautologies and for the purposes of this paper
we will assume that |D| > |R|. Clearly, each pigeonhole principle variation only depends

on the sizes of D and R so we will usually refer to pHP”

IR| etc.

Counting Principles Let M be any set and p be a positive integer. Let M®) denote
the set of all p-element subsets of M. The mod p counting principle over M is defined on
the set of propositional variables Y,, e € M®).

“There is no perfect p-partition of M.”

C’ount:f,\/[ = ( \/ /\ -Ye) V \/ (Yo NYy)
vEM ycec M () e,JEM®), elf

where we write e L fife # fand en f # 0. If M| # 0( mod p) then Counti,‘/[ is a
tautology. Again, the tautology really only depends on |M]|, so we can refer to Count;.
We will use Count,, to refer to the family of tautologies Count)’ with m # 0 ( mod p).

3 Restrictions and Matching Decision Trees

The main argument in this paper is a lower bound for the lengths of bounded-depth Frege
proofs of onto-PHP, given Count formulas as axiom schemas. Therefore the propositional
variables with which will primarily be concerned are those that appear in the onto-PHP
formula. We introduce some notation for discussing formulas involving these variables.

Let Mpxr be the set of all partial matchings on D x R. A maitching term A is
/\(i,j)Ew P;; for some matching m € Mpyxg. A matching disjunction F is \/; A; where A;
are matching terms.

We say that 4 and j are the endpoints of P;;. If Y is a term or a set of variables, then

v(Y) denotes the set of endpoints of variables in Y. We use dom(Y) = »(Y) N D and
range(Y) =v(Y) N R.



For |R| = n and |D| = n + m, define M&%_ , to be the set of all partial matchings on
D x R, p which match all but £ nodes of R.

Every p in /\/lED>< g determines a unique partial assignment or restriction, ,

1 if(i,j) €p

r(Pij) = { 0 if there is an €’ € p such that |v(e')N{i,j} =1
* otherwise

where * indicates that P;; is not assigned a value. If r is the restriction obtained from p,

we will refer to both the restriction and the partial matching by p. For a Boolean formula

F' in the variables over D x R and a partial matching p, F' restricted by p will be the

formula in the variables unset by p that remains after assigning values to the set by p; we
denote this by F'I,. Given a set S C DUR, let S|, denote S\ v(p).

Our key interest in the set of restrictions given by the partial matchings p € .MZD>< R
is that for any such p, onto-PHPS | ,= onto—PHPgrr:.

We say that two partial matchings ¢ and 7 are compatible if ¢ U 7 is also a partial
matching. When viewed as restrictions, we use the notation o7 to denote the restriction
defined by the partial matching o U 7.

DEFINITION 3.1: A matching decision tree over D x R is a rooted directed tree T whose
internal nodes are labelled by elements of D U R, and whose leaves may be labelled by
elements of some label set L so that:

1. (a) If the root of T is labelled by i € D then for each j € R there is one out-edge from
the root labelled (i, j).

(b) If the root of T is labelled by j € R then for each 7 € D there is one out-edge from
the root labelled (i, j).

(c) There are no other out-edges from the root of T'.

2. TY9) is a matching decision tree over D' x R’ where D' = D\ {i}, R' = R\ {j},
and T(7) is the tree whose root is the node connected to the root of T’ by the edge
labelled (i, 7).

Define Br(T') to be the set of branches (root-leaf paths) in 7" and Br,(T') to be the set
of those branches in 7" with leaf label a € L. The set of edge labels along any branch of T’
forms a partial matching. We identify a branch with its matching so we view Br(7T') and
Bry(T) as sets of partial matchings. We say that T' = a if and only if Br(T") = Brq(T).

Lemma 1: Let 7 be a matching and 7" be a matching decision tree over D x R such that
|| + height(T") < min(|D|, |R|). Then



(i) there is a 0 € Br(T') compatible with =.

(ii) the tree T !, obtained by contracting all edges of T" whose label is in 7w and deleting
all edges of T' (and their associated subtrees) whose labels are not compatible with
7 is a matching decision tree over D [, XR [ .

Proof We prove part (ii) first by induction on the height of T: The base case when T is
a single labelled vertex is trivial.

If the label of the root of T' is touches 7 in edge (i,5) then T },= T{J) | where
7 =7'U{i,j). We apply the inductive hypothesis to 77 and «’ over (D\ {i}) x (R\ {5}
to obtain the desired result.

If the label 4 € D of the root of T' is not touched by 7 then the tree T [, consists of
the root of T' with an outedge labelled by (i, j) for each j € R | and this reaches subtree
T{3) 1. Apply the inductive hypothesis to each such T over (D \ {i}) U (R \ {j}) to
obtain the desired result.

The case when the root label of T is j € R and is not touched by = is similar. Part (i)
follows by observing that any branch in 7' that is contracted to a branch in 7T [, suffices.
O

DEFINITION 3.2: For any matching decision tree 7" with label set L = {0,1}, let T be the
same tree as T except that the leaf labels 0 and 1 are reversed, i.e. Bri(T°) = Bro(T") and
Bro(7°) = Br1(T). Matching decision tree T' represents boolean formula or function f iff:

Vr € Br(T), f .= the leaf label of 7 in T.

Given matching decision tree 7', the matching disjunction given by 7' is

Disj(T) = \/ N\ Py

meBri(T) (i,j)em

Note that T' represents Disj(T') and that if 7" has height < k then Disj(T') has terms of
size < k. Observe that Disj(T¢) is not equivalent to the negation of Disj(T') but that if
T represents f then the tree T° does represent —f.

4 k-Evaluations

DEFINITION 4.1: Let T be a set of formulas closed under subformulas. A k-evaluation, T,
of I is an association of a matching decision tree T 4 of height < k with each formula
A €T such that

(1) To and T} are single nodes labelled 0 and 1, respectively, and Tp,; is the unique tree
of height 1 querying ¢ that represents P;;,



(2) Ton = TS,

(3) If the major connective of A is V then write A = \/;c; A; where the major connective
of each A; is not V. It must be the case that Ty represents \/;c; Disj(T4; ).

Let T be a k-evaluation of a set of formulas containing formula A. We say that A
k-evaluates to true (false) under T if and only if T4 =1 (respectively T4 = 0).

Let the size of an axiom/rule in a Frege system F be the maximum number of distinct
subformulas in it.

Lemma 2: Let P be a proof in Frege system F whose rules have size at most s, augmented
by Count, axiom schemas. Suppose that sk < |R| < |D| and let T be a k-evaluation of
the set of subformulas of P. If every C'ount, axiom in P k-evaluates to true under T then
all formulas in P k-evaluate to true under T.

Proof By induction on the number of Frege axioms and inferences in P.
Consider a Frege axiom/inference in P:

Al(Bl/pla Tt 7Bm/pm)a .. aAE(Bl/pla o 7Bm/pm)
AO(Bl/p17 Ut 7Bm/pm)

where the inference rule R is:

Al(pla T 7pm)7--- 7A€(p17"' 7PTTL)
Ao(p1,-++,Pm)

and assume that each A;(Bi/p1,---,Bm/pm) for 1 < i < /£ k-evaluates to true under T.
We now show that this also holds for Ay(B1/p1,. .., Bm/pPm):

Let A be the set of distinct subformulas of R and let I" be A(B1/p1,- -, Bm/Pm)- By
assumption |I'| < s, say ' = {Ao,..., Ay,..., A;} for j <s.

Let mp € Br(T4,). Since sk < n we can apply the Lemma 1 to inductively find
m; € Br(Ty,) compatible with mg---m;—1 for 1 <4 < j. Therefore all the 7; are mutually
compatible. Let 7 = momy -+ 7; € M.

Observe that for any A; € T', Disj(T4,) I is the constant 0 or 1 and define V : T' —
{0,1} by V(A) = Disj(Ta,) I r- By the definition of k-evaluations, V' is a consistent truth
evaluation and by assumption

V(A)=---=V(4y) =1
Since the rule R is sound it follows that V' (Ay) =1, i.e.

Disj(Ta,) o= 1.

7



Since 7 extends branch my of T, the leaf label of 7y must be 1 as required. O

On the other hand we show that the tree associated with the goal formula of the proof
cannot k-evaluate to true.

Lemma 3: If £k +1 < |R| < |D| and T is a k-evaluation of a set of formulas closed
under subformulas and containing onto—PHPlg then onto—PHP}Lg does not k-evaluate to
true under T.

Proof In fact we show that every leaf of Tonto PHP® has label 0. By definition of a
- R
k-evaluation it is necessary and sufficient to show that Bri(T4) = 0 for each disjunct A in
PHPY.
Case 1: A = (PU A Pi’j) = _'(_'Igij \Y% _‘IDi’j) =-B
Let m € Br(T4). It is also in Br(Tp). Since Tp represents Disj(T-p,;) V Disj(T-p,,),
it suffices to show that 7 is compatible with some element in Bry(7-p,;) or in Bry (74 pi,j).

By definition T p,; has height 1 with root label s and all its leaves are labelled 1 except
the one below the out-edge with label (i, 5).

Since k +1 < n, T.p,; I is well-defined and consists of contractions of all branches
compatible with 7. If m does not contain (i, j) then some branch of T_p,; other than (i, j)
remains and this has leaf label 1.

If 7 does contain (i, 7) then it does not contain (i’, j) and we apply the same argument
to T, Pi’j .

Case 2: A =-V,cr Bij

Similar to the previous case. Here, we show that = € Br(74) is compatible with some
element of Br(Tp,;) for some j € R.

If 7 contains (i, j) for some j € R then every branch in Tp,; compatible with 7 will be
in Bry(Tp,).

If 7 does not contain (7, j) for any j € R then let j/ € R be unmatched by 7 (such a j’
must exist). Since m matches neither ¢ nor j' and k¥ + 1 < |R| < |D|, 7 is compatible with
the (i,5") branch of Tp,;, which is what we need.

Case 3: The other onto-PHPZE disjuncts are handled exactly as in Case 1. O

5 Building a k-evaluation

Given an Frege proof P of limited size and depth we wish to find a restriction p such that
after p is applied we have a suitable k-evaluation for all the subformulas in P. This is too
hard to do in a single step. Instead, we inductively build restrictions and k-evaluations



for all depth ¢ subformulas in P for s = 0,...,d. The following lemma permits us to build
upon previous k-evaluations.

Lemma 4: If T" is a set of formulas closed under subformulas and T is a k-evaluation of
I over D x R and p is a restriction on S with |p| + ¥ < |R| then the map T” given by

Tp _ {TF rp lf BI‘l(TF) 75 @
F T() if BI1 (TF) = (Z)

is a k-evaluation of ' I, over (D x R) [,.

Proof Note that for any matching decision tree 7' and formula F, if T' represents F' over
DUR then T [, represents F' I, over (DUR) [,. Also note that for any matching decision
tree T,

Disj(T') 1,= Disj(T 1,).

From this the Lemma follows easily by induction. (The extra condition when Bri(TF) =0
is to make sure that Tp,, [,= Ty when P;; [,=0.) O

The construction of decision trees for the higher level formulas of the proof uses the
probabilistic method. The following so-called ‘Switching Lemma’ is the basis for that
construction. We prove it as Lemma 7 below.

Lemma 5: Let F' be an r-disjunction over D x R with |[R| = n and |D| = n+m. If
s >0 and 10m < £ < (n/r)"/2/10 then, for p chosen uniformly at random from M, .,
the probability that there does not exist a decision tree T' over (D x R) |, of height less
than s representing F I, is less than (1.5¢2\/r/n).

Lemma 6: Let |R| = n, |D| = n 4+ m. Let ng = n, nj11 = (n;/9logy S)/* for i > 0 and
suppose that ng > max{10m,log, S}. For any Frege proof P of size at most S and depth
at most d in the pigeonhole variables on D x R there exists a restriction p € M7},  such
that there is a logs S-evaluation T of the set of subformulas of P [, over (D x R) [),.

Proof Let k = log, S. We construct a sequence of restrictions py, ..., pq = p and maps
TO,...,T% = T such that for each i = 0,...,d, |R1,, | = n; and T is a k-evaluation of
the set of formulas in P; [,,, where P; is the set of subformulas of depth at most  in P.
We only specify trees for unnegated formulas at each depth since negations do not add to
depth and if we have a tree T then we easily have a tree T-r = T} of the same height.

BASE CASE: ¢ = 0. Let py be the empty restriction. The only nodes of depth 0 are
inputs and their negations. For each literal F;;, let Tl(lij be a tree of height 1 that queries
i and has its only leaf label 1 on the node reached by edge labelled (i,j). Let Tb0 be a
single node labeled b for b = 0, 1.



INDUCTION STEP: Now suppose that after p; is applied we have a k-evaluation T? of
P; I ;- We wish to find a 7 such that p;11 = p;7 and extend T* to a k-evaluation Tt of

Pz'+1 rpi+1'

Now for any choice of 7 € M?g;l Ry, and any A € P;, using Lemma 4 we can define

T4 = (T%)%. Observe that for such A € P;, Disj(T4") = Disj(T% |.) which is a
k-disjunction.

It remains to choose 7 and define T4 for A € P;y1 \ P; of the form A = V; Aj where
A € Piy1 \ Pi. and each A; € P;. We consider 7 chosen at random from Mngrxl R, By

Lemma 5, the probability that 7 does not admit a choice for Tffl is

< 1.5n7, 11/(log, S)/n;)loe2s =g log2 S — 1/g

Since [P;+1 \ Pi| < S the probability that some choice of 7 works for all formulas in
Piy1 \ P; is strictly less than 1. We choose this =, fix p;11 = p;m and set Tj,“ according

to that « for all A € P;y; \ Pi. The conditions for T**! are clearly satisfied. O

We assume that there is a total order on the elements of D U R with all elements of D
preceding those of R. Let K C D U R and define

Mpxr(K)={r | K Co(r) and Ve € mv(e) N K # (0},

i.e., all minimal partial matchings over D x R which involve all of the elements of K.

We define the complete matching tree for K C DUR over D X R as a matching decision
tree over D x R with no leaf labels. It is the unique tree T such that Br(7T') = Mpyr(K)
and the query at each node v is the smallest element of K that is not an endpoint of the
matching associated with the path from the root to v.

Given a disjunction F' over D, assume that F' has a total order on its terms and an
order on the variables within each term. A restriction p is applied to F' in order, so that
F'[, is the disjunction whose terms consist of those terms of F' that are not falsified by p,
each shortened by removing any variables that are satisfied by p, and taken in the order
of occurrence of the original terms on which they are based.

The canonical decision tree for F' over DX R, Tpy g(F') is defined inductively as follows:

1. If F is the constant function 0 or 1 (contains no terms or has an empty first term,
respectively) then Tpx r(F') consists of a single leaf node labelled by the appropriate
constant value.

2. If the first term C; of F is not empty then let F' be the remainder of F so that
F=C,VF' Let K =v(Cy). We start with the complete matching tree for K. The
paths of this tree correspond exactly to elements of Mpyxg(K). Let v, be the leaf
node corresponding to the path labelled by 0 € Mpyr(K). To obtain Tpxgr(F),
for each o we replace the leaf node, v,, by the subtree T(py gy, (F [5). (Note that

10



for the unique element o € M pyr(K) which satisfies C the leaf label of v, will be
1. For all other choices of o, T(pxryt, (F 15) = T(pxryt, (F' [2)-)

Tpxr(F) clearly represents F' over D x R. We’ll show that for appropriately chosen
restriction p the height of Tpxr(F [,), |Toxr(F [,)|, is small with high probability.
This lemma is a switching lemma in the spirit of [12] because it will allow us to obtain a
disjunction that approximates the negation of F' by representing F' by a matching decision
tree T' and then taking Disj(T°).

Lemma 7: Let F be an r-disjunction over D x R with |R| =n and |D|=n+m. If s > 0
and 10m < £ < (n/r)'/2/10 then

H{p € M%xR : |T(D><R)rp(F fp)| > s}

< (1.562\/r[n)®.
IMbl

Proof We only need to consider s > 0. Let S € /\/lED>< g be the set of restrictions p such
that [T(pxry,(F I,)| > s. As in [4] we obtain a bound on |S|/|IM%. r| by defining a 1-1
map from S to a small set.

Let stars(r,s) to be the set of all sequences § = (f1,...,0) such that for each j,
Bj € {*x,—}"\ {—}" and such that the total number of *’s in all the 3; is s. We will define
a 1-1 map

s - U MZD:ZR x stars(r,j) x [1,£ + m]®
5/2<j<s

The map Let FF = C;VCyV.... Suppose that p € S and let 7 be the partial matching
labelling the lexicographically first path in T{px gyt (F'I,) that has length > s. Trim the
last few edges of 7 along the path from the root so that || = s. We use the formula F
and 7 to determine the image of p. Let C,, be the first term of F' that is not set to 0 by
p- Then C,, [, will be the first term in F' [,. Since |7| > 0, such a term must exist and
is not the empty term. Let K = v(C,, [,) and let o1 be the unique partial matching in
Mpxry,(K) that satisfies Cy, [,. Let m be the portion of 7 that touches K. We have
two cases based on whether or not 7 = .

1: If my # m then by the construction of 7, 11 € M(py gy, (K). Note also that Cy, [ps, =
1 but since m; # 7, 1 # 01, and thus Cy, [pr, = 0.

2: If m1; = 7 then it is possible that v(7) does not contain all of K. In this case we
shorten o7 so that it is the unique element of Mpxry, (K') that does not falsify
Cy, 1, where K' = v(m )N K.

11



Note that in either case || < 2|oq].

We define (3; to be a vector of length r based on the fixed ordering of the variables in
term f,,. The j-th component of 3; is * if and only if the j-th variable in C,, is in v(071).
Note that since Cy, I, is not the empty term then there is at least one * in 3;. From C,,
and (; we can reconstruct o.

Now, by the definition of T pyry,(F I,), 7\ 71 labels a path in the canonical tree
T(DxR)tpr, (F 1 pry)- If mp # 7, we repeat the above argument, with 7 \ 71 in place of ,
pm1 in place of p and find a term C), which is the first term of F' not set to 0 by pm.
Based on this we generate mo, 09, 9, as before. We repeat this process until the round &
in which mmy...m = .

For each 7, m; matches all elements of v(c;), so the o1,..., 0 are mutually compatible
and thus oq...0p = 01 U--- U 0k. The image of p under the 1-1 map we define is a triple,
(poi...0k, (B1, .-, Br),6) where § is defined below. Let ¢ = 0;...0% and j = |o|. Clearly
po = poy...0f € MZD_iR and (f1, ..., Bx) € stars(r,j).

We now define the information 6. This will encode the relationships between all the
o; and ;. The set v(m;) contains v(o;) possibly together with some nodes unset by po,
each of which must be connected by m; to some element of v(c;). We list the edges of m;
using the total order induced on v(o;) by the order on the elements of D U R. For each
vertex of dom(o;) in order, we list the name of the other node to which it is matched in
pi;- This endpoint can be one of |o;| + £ — j < £ possibilities (all of which are known) so
a number between 1 and £ is sufficient to encode this using the order induced on these
vertices. After this, for each vertex of range(o;) in order, that is not matched so far, we
can similarly give a number between 1 and £ — j + m < £+ m to indicate its mate in D.
The information § is then simply the vector of these numbers, one per edge of 7 and is
thus contained in [1,£ + m]®. Thus the image of the map is as required.

Inverting the map It remains to show that the map we have just defined is indeed
1-1. To do this we show how to recover p from its image. The reconstruction is iterative.
In the general stage of the reconstruction we will have recovered 1, ..., T;i—1, 01, .., 051,
and will have constructed pm...m;_10;...0%x. Recall that for ¢« < k, Cy, [pny...7;_10,= 1 and
Cj lpry.mi_10;= 0 for all j < ;. This clearly also holds when we append o;y1...0% to
the restriction. When ¢ = k, something similar occurs except the only guarantee is that
Chu; Tpmi.my_10,7 0. Thus we can recover v; as the index of the first term of F' that is
not set to 0 by pPr1...M;—104...0k-

Now, based on C,, and ; we can determine o;. Since we know oy,...,0; we can
examine the entries in the vector § associated with each of the vertices in v(o;). At this
point, although o1, ..., 0 are still undetermined, 7; can still be determined since m; does
not touch any of the vertices these restrictions touch.

We can now change p7...m;—10j...0% t0 pm1...T;—1T;0j+1...0% using the knowledge of m;
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and o;. Finally, given all the values of the m; we can reconstruct p.

The numbers Now we compute the value |S|/|M%, z|. We can describe an element
of MKDX g by choosing £ elements of R and then, for each of the n — £ remaining vertices
in turn, choosing an element of D with which it is to be matched. Thus |M%, g| =

() (n + m)n=0 = 7"(0(”7!”)(71_0 and

‘MDXR _ nO(n +m)™=-O ¢ — j)!
Mgl (n — §)=9)(n + m)r—t+i)g)
(€ + m) D)
=00
< (M)]

- n—4

There is an easy bound of |stars(r,s)| < 25 1r° but we can also prove:
CLAmM:  |stars(r, s)| < (r/In2)%.
For convenience in the proof we shall include the empty string in stars(r,0) which

would otherwise be empty. We shall show by induction on s that |stars(r,s)| < v° for
(14 1/4)" = 2; the statement of the lemma follows by using 1 4+ = < e* for z # 0.

The base case s = 0 follows trivially. Now suppose that s > 0. It is easy to see from
the definition that for any 8 € stars(r,s), if f; has i < s *’s then § = (1,0') where
B € stars(r,s —1). (For i = s we have used our augmentation of stars(r,0).) There are
(%) choices of §; so

min(r,s)
|stars(r,s)] = Z ( >|sta'rs (r,s — )|

=1
T
T
=1
i T
= 7 () 1/7)*
=1

= Pl +1/y)" -1]

S

=7

IN

by the inductive hypothesis and the definition of 7. Thus the claim is proved.
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Now applying our bounds we obtain

g |IMEI . s
% < ﬁ'BMM(w)I'(“m)
DxR s/2<j 177 DXR
J
S (n—4£)In2

Since 1/1n2 < 1.4427 and 10m < £ < /n/r/10, we have ({+m) < 1.1£ and n < 1.02(n—¥).
Thus the series is at most

(1.1£)° Z (1.77£% In)’.

izs/2

This is a geometric series with ratio < .02. Therefore it is at most
1.03(1.1£)° (1.7r£% /n)*/?

< (L56%y/r/n)".

6 Generic systems and Exceptional Forests

Suppose that we have a k-evaluation T of the subformulas in a Frege proof P of onto—PHPg
with Count, axiom schemas. By Lemmas 2 and 3, there is some instance F' of a C'ount,
axiom in P that does not evaluate to true under T. Therefore there is some 7 € Bro(TF).

By Lemma 4, the map, T’, given by
T — {TA lx if Bri(Ta) #0
A T otherwise

is also a k-evaluation of the formulas in F over (D X R) [, and T}, is "false”.

Let F, for e € M®  |M| # 0 ( mod p) be the formulas that substitute for Y, in F' and
let T, = Tl'ne. Using the T, we will see that if they ‘locally’ appear to define something
that is a p-partition of M then T} = 1. Then we show that it is impossible for the T, to
describe something that locally does appear to be a partition of M into blocks of size p.
This latter is achieved by a reduction to a problem over polynomials.

Lemma 8: Suppose that some 7 € Bro(Tr) exists and 3k < |R| < |D|.

(a) If e,e/ € M® with e L ¢ there are no compatible branches ¢, € Bri(T;) and
O¢ € Bry (Te/).
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(b) For any restriction 7 such that |7| + k < |R|, 7 is compatible with some element of
UeeM(p) Bry (Te)'

Proof For part (a), suppose that there are compatible branches o, € Bri(7,) and o €
Bri(T,). Let 0 = 0. Uoe and apply it to all formulas in the k-evaluation T'. We see
that it will make 1"y, /5, [o= 0. Thus TL(ﬁFevﬁFe,) te=1s0T) [,= Ty =1 which is a
contradiction.

For part (b), apply 7 to all formulas in the k-evaluation T'. If 7 is incompatible with

11 el ts of Bri(T,). then TV =0 T =1 and th
all elements of J,cps0) Bri(Te) en V.o Fo I S0 Voo Fe I and thus

T} | = Tf = 1 which is a contradiction. O

Now for each v € M let B, = U,c. Bri(T.). Lemma 8 implies that any B, consists of
mutually incompatible elements and it contains an element compatible with any fixed 7
with |7| < |R| — k. In the terminology of [18] this is a (|R| — k)-basis of height < k.

DEFINITION 6.1: A (p, M)-generic system of height h over DX R is a collection of matching
decision trees over D x R: T, v € M, with leaf labels that are p-subsets of M such that:
(1) each T, has height at most h;

(2) each branch in T, with leaf label e has v € e;

(3) for all e € M), for all v,w € e, Bre(T},) = Bre(Ty).

Lemma 9: If F is an instance of a Count)) axiom schema and there is some m € Bro(Tr)
then if n' = |R| < |D|, ph < N, N < /(n' —k)/k/10, and (1.5N2\/k/(n —k))* <
1/|M|, there is restriction p € M?’DX Rr)t, Such that there is a (p, M)-generic system over
(D x R) [, of height at most ph.

Proof For each v € M, let B, be as above and define

Go=\ N Py

0€By (1,§)ET

By Lemma 7, for a p chosen uniformly at random from Méva R)a? the probability that
Gy [, fails to have a canonical matching decision tree of height at most A is less than
1/|M]|. Therefore the probability that a p fails to do this for all v € M is less than one.
Choose some p that achieves this for all v € M and let T, be the tree associated with

Gy lp.

By Lemma 8, if 7 is a branch of 7} then p7 is compatible with some o € B,, i.e. some
o € Bri(T,) for some e with v € e, and thus the leaf label of 7 must be 1. Therefore, since
T, is a canonical decision tree for G, [,, 0 must be contained in p7. Since the elements
of B, are mutually incompatible, the choice of ¢ must be unique. Therefore, each leaf of
T is associated with a unique e € M) with v € e. Relabel the leaves of the T2 by their
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associated e € M®). Lemma 8 implies that for any v,v' € M, if 7 and 7’ are compatible
branches in T and 7.5 then their leaf labels e, e’ are compatible.

In order to create the trees Tj, for each branch o of T,; with leaf label e, extend o in
T, by appending trees T [, for each w € e in turn and labelling all leaves of the resulting
branches by e. This at most multiplies the height of the trees by p. Observe that for
e ={v1,...,vp} the branches with leaf label e in T, are all elements of the form

{m1-omp | i € Bre(Ty,) fori=1,...,p}

and are thus independent of the choice of j. O

The above construction of a generic system is essentially from [6]. Alternatively, one
could create the trees 7, by constructing the canonical decision trees for the G, without
applying any restriction. Using an argument like the one showing that any Boolean formula
that has CNF clause size ¢ and DNF term size d has Boolean decision tree of height < cd,
one can show that the canonical decision tree constructed for G, has height at most
k(k + 1). This latter approach is very much like the one in [17].

The key property that we use about any (p, M)-generic system of height h over D x R
is that it is a forest 7 of matching decision trees over D x R of height < h such that
each branch appears 0 ( mod p) times in 7 and such that the total number of trees is
# 0 ( mod p). In the terminology of [16] this is a p-ezceptional forest of (D, R)-labelled
trees.

7 Nullstellensatz Proofs

DEFINITION 7.1: Given multivariate polynomials

Qi(Z),...,Qm(%) € Rlz1,...,zy]

there is no solution to

Qi(Z) = 0

Qm(f) =0

over {0,1} if 3P (Z),...,Pn(Z) € Rlzi,...,zy] such that > ;% Pi(Z) - Qi(Z) = v #
0 (mod p) in R[z1,...,2,]/(x? — z1,---,22 — z,). We say that Pi,..., P, are a Null-
stellensatz r-refutation of {Q1,...,Qm}. (We drop the » when r = 1. If p is a prime then
the exact value of r is irrelevant. Also, if p is prime then a Nullstellensatz refutation is
guaranteed to exist by Hilbert’s Nullstellensatz whenever there is no {0, 1} solution.) The

degree of the r-refutation is the maximum degree of the P;
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DEFINITION 7.2: Let onto-PHPE be the following system of polynomial equations in vari-
ables z; ; withi € D, j € R:

1) QP(z) = (Xjer®ij) —1 =0 one for each i € D, and

1 e

(2) QR(") (>iep ij) —1 =0 one for each j € R, and

(3) Qijx(%) = x4 - xi ) = 0 one for each i € D, j,k € R, j # k, and
(4)

4) Qijx(L) = zip -z, = 0 one for each ¢ # j, 4,5 € D, j € R.

|D

| R|‘ to emphasize that the sizes of D and R are all that matter.

Again we use onto-PHP
DEFINITION 7.3: We relate monomials and sets of edges in D x R as follows: Given a set
of edges m € D x R, define X, = Hm)e7r z;,; and given a monomial X = 7, - xf}f,jk
with e1,...,ex > 1, define mx = {(31,71),---, (ik, Jk) }-

Lemma 10: If |[M| = r ( mod p) and a (p, M)-generic system of height A over D x R
exists then there is a Nullstellensatz r-refutation of onto-PHPE of degree at most h — 1
over Z,.

The basic idea is to consider the polynomial whose monomials are the products of the
variables associated with each branch of the trees in the generic system. That is, with
each tree T, we get a polynomial

Pr,= Y X

w€Br(Ty)

We first show that each Pr, is 1+ L, where L, a linear combination of the () polynomials
of degree at most h — 1.

Lemma 11: Let T be a matching decision tree over D x R. Then Pr =} cyr) [leer Te

is of the form 1+ L where L is a linear combination of the onto-PHPE polynomials with
coefficient polynomials of degree < h — 1.

Proof Proof by induction on the number of internal vertices of 7.

Base Case: If T has no internal vertices then it has one branch of height 0, Pr(Z) =1
and all coeflicient polynomials are 0 which gives degree -1.

Induction Step: Suppose that T has at least one internal vertex and has height h.
Then it has one such vertex v all of whose children are leaves. Let T' be the matching
decision tree obtained by removing all the children of v. Let 7 be the matching given
along the path from the root to v.

17



If the query at v is ¢ € D, then

PT(.T_f) = PTI (.’i") + X7|— - Z Xﬂ— . «'I»'z',j
jER\range(n)
= PTI (f) + X7r . (1 — Z .’Iti,j)
jER\range(r)
= Pp(@)+Xe- (1= mij)+ Xe- Y. i
JER kerange(m)
= PT’(E)_XW'QiD‘FXW' Z Lik-
kerange()

X has degree at most A — 1, the last term is a degree h — 2 combination of the ();; %, and
applying the induction hypothesis to Pr+ yields the desired result.

The case when the query is 7 € R is analogous. 0O

Proof of Lemma 10 Consider ), ;s Pr, in Z,. On the one hand it is

> (Ly+1)=r+ ) L.

veEM vEM

On the other hand, every branch in the generic system appears some multiple of p times.
Therefore over Z,,
> Pp,=0.

veM

We derive r + >, cas Ly = 0 and obtain the Nullstellensatz refutation by reversing
signs. O

8 A Nullstellensatz degree lower bound for onto-PHPY 7 Z

In this section we prove the following theorem which is of independent interest.

Theorem 12: Let r #Z 0( mod p). If N > ((p + 2)¢ — p%)/2 then any Nullstellensatz
r-refutation of onto—PH’P%“’ " over Z, must have degree at least 2t — 1.

DEFINITION 8.1: A d-design for D X R is a mapping D from the partial matchings of size
<don D x R into Z, such that

(a) D(0) =1 for the empty matching 0,
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(b) For each partial matching 7 with || < d and ¢ € D \ dom(r)

Y D(rU(i,j)) =D(r) mod p
j€R\range(m)

(c) For each partial matching 7= with || < d and j € R\ range(r)

> D(rU(i,j)) =D(r) mod p
i€ D\dom(m)

Lemma 13: Let r # 0( mod p). If there is a d-design for D x R then any r-refutation of
onto-PHPE over 7, requires degree at least d.

Proof We extend the d-design D to be a function from the set of polynomials to Z,. For
any monomial X in variables z; ; with ¢ € D and j € R define

D(X) = {D(ﬂx) if 7x is a matching with |rx| < d
0 otherwise

and extend D linearly over Z, to a map D : Zp[Z] — Z, by setting D(P, + P») = D(FP) +
D(P,) for Pi, Py € Z,[#] and D(aP) = aD(P) for a € Z,, and P € Z,[Z].

Clearly D(1) = D(0) = 1 by part (a) of the design definition. We consider the polyno-
mials in the definition of onto-PHPE and show that for any P € Z,[%] of degree < d,

D(P-QP)=D(P-Qf) =D(P- Qi) = D(P- Qijr) = D(P- (7; — i) = 0. ()

We see that (x) is sufficient by observing that it implies if 0 # r = 3, P;Q; is an r-refutation
of onto-PHPE over Z, of degree < d then 0 # r = D(r) = D(5;P,Q;) = %, D(P,Qi) =0
which is a contradiction.

To prove (), by the linearity of D it clearly suffices to prove it when P is simply a
monomial X of degree < d. Furthermore, if ux is not a partial matching then D(X) =0
so, by the linearity of D, we can assume that px is a partial matching.

Since Q; jx and Q;j,; are monomials and both uq, ;, and pq;; , are not partial matchings
we immediately have D(X - Q; jx) = D(X - Qijx) = 0 for any monomial X.

Also, since pix.,> = px.g; ;, the linearity of D implies that D(X - (27, — z;;)) = 0.
2 i ’

For QP (%) = Y jerTij — 1 = 0 we have two cases depending on whether or not
1 € dom(7x). If i ¢ dom(7wx) then

DX Q&) = DX-(Y_ aziy —1))

jJER

= Y D(X-z;) —D(X)
JER
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= Y DX -zy) - DX)
jER\range(nx)

= > D(px U (i,j)) —D(px)
jER\range(mx)
= 0

over Z, by part (b) of the definition of a d-design since |7x| < d. If i € dom(7x) then let
(1,7%) € mx. In this case

DX QP (&) = DX- (Y ziy —1))

JER
= ZD(X-IM) - D(X)
JER
= D(X - z;j+) —D(X)

= D(ux Ui,j") — Dlux)
=0

since px.z; ; is not a matching for j # j* and px U (i,5*) = px.

The result for Qf(a'c') follows similarly using part (c) of the definition of a d-design.
O

Lemma 14: If there is a d-design D for D x R over Z, then there is a 2d + 1-design D’
for D' x R’ over Z, where |D'| = (p + 1)|D| + |R| and |R'| = |D| + (p + 1)|R|. (Observe
that |D'| — |R'| = p(|D| — [R]).)

Before we prove Lemma, 14, we show how it implies Theorem 12.

Proof of Theorem 12 For £ > 0 let N, = ((p +2)¢ — p%)/2. We show by induction that
there is a 2¢ — 1-design for [1, N; + p‘] x [1, N;] over Z,. The theorem then will follow by
Lemma 13.

For £ = 0, letting D(@) = 1 is sufficient to satisfy the conditions for a 0-design.

Suppose we have a 2¢ — 1-design D for [1, Ny +p?] x [1, Ny]. Observe that Ny i +pft! =
(p 4+ 1)(Ng + p%) + Ny and Nyyt = (Ny + p%) + (p + 1)N*. Applying Lemma 14 we get a
2(2¢ —1) +1 = 24! — 1-design D’ for [1, Npy1 +p*] x [1, Npyy] over Z,, as required. O
Proof of Lemma 14 Let D be a d-design for D x R over Z,,. Let D' = {i1,...,ip}
and R' = {j1,...,Jjr|}. Divide D' into |R| individual points i,...,% g and |D| blocks
Dy, ... Dp| each of size p + 1 and divide R’ into |D| individual points j1,...,j p| and |R|
blocks, Ry, ..., RgH each of size p + 1. Following [10], we also fix a cyclic ordering on the
elements within each block, e.g. as a permutation o : D' U R’ — D'U R’ which maps each
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of the individual points to itself and whose other orbits are the blocks of size p + 1. We
say that (i, 7) is parallel to (i',j") iff there is some r such that i’ = ¢" (i) and j' = 0" (j).
Observe that this forms an equivalence relation on edges.

In matchings on D' x R/, we say that an edge is a cross edge if it is in D, X Ry for some
a and b and is a rung if it is in b X Ry or D, X a for some g or b, i.e. it joins some individual
point to its corresponding block. Given m# C D' x R/, let Im(w) = {({a,b) | t1NDy x Ry # 0},
i.e. I'm(m) is the projection of the cross edges in m onto D x R.

DEFINITION 8.2: For each choice, V', of a set of |D|+ |R| representative elements, u; € D;
fori=1,...,|D| and v; € R; for j = 1,...,|R| and matching = on D' x R/, we say that
7 respects V if

(A) the only edges of = are rungs or cross edges,

(B) each rung in 7 matches a representative element given by V, i.e. is of the form (u;, j;)
for i < |D| or (i;,v;) for j < |R|,

(C) for any a and b, each cross edge of 7 in D, x Ry is parallel to (ug,v) but not equal
to it.

For each V as above, we can define a map D" from the set of partial matchings of size
<don D' x R to Z,.

DY (1) = { D(Im(r)) if 7 respects V and I'm(w) is a matching of size < d
0 otherwise )
Finally, we define D'(7) = 3"y, DY ().
Cram: D'is a 2d + 1-design for D’ x R’ over Z,,.

Clearly D'(§) = >y DV (0) = (p + 1)IPIHIBl = 1 over Z,, since there are exactly (p +
1)IPIHIE] different choices of V' and for each of these DY () = 1. Thus condition (a) for a
design is satisfied.

We now show that condition (b) for a 2d+ 1-design is satisfied. The proof for condition
(c) is analogous. Let || < 2d be a matching on D’ x R" and i’ € D'\ dom(~).

We can assume without loss of generality that I'm(w) is a matching of size < d since
otherwise D'(7) = 0 and D'(zw U (i, j')) = 0 for all j' € R'.

Now

Y Drul,l) = > Y DY(ru,j")

j'€R'\range(m) j'€R'\range(w) V

= Y > DY (ru (', 5").

V' j'€R'\range(m)

We have several cases:
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Case 1: if¢' =i; for 1 < j < |R| then Im(nwU (7, j')) = Im(7) and, if 7 U (7', j') respects
V, it must be the case that j' = v;. Thus

Y Dug)) = Y Y DY(mu,i)

j'€R'\range(r) V' j'€R'\range(r)

= > DV(r U (ij,v;))
=

— Y 0V(n)
1%
— D(n)

as required.

CASE 2: i € D, for some a. We split this case into several subcases based on the
structure of m. Let Vy be the set of those V such that u, # i'. For each subcase we first
observe that we only need to consider those V' € V; such that 7 respects V. If 7 does not
respect V then 7 U (i, 5') does not respect V, so DV (7) = DV (7w U (i',4')) = 0. If V has
ug = i’ then j' = a is the only value such that V respects w U (i, ') and for this value,
Im(w U (#,5")) = Im(n). Thus for each V ¢ V;,

> DV@ud, i) =D ().

j'€R'\range()

SUBCASE (a): 7 has a cross edge (i*,5*) with i* € D, and j* € R}, for some b.
If 7 respects V' € Vy then there is exactly one j' such that I'm(w U (i'j')) is a matching
and 7 U (i',j") respects V. This is the unique j' € R;, such that such that (i, ;') is

parallel to (i*,5*), i.e. i’ = ¢"(¢*) and j' = o"(j*) for some r. For this value of j',
Im(w U (#,5")) = Im(x), so for each V € Vy,

> DU, i) =D ().

j'€R'\range(m)

SUBCASE (b):  has no cross edges touching D, and |Im(7)| < d.

In this case, given V € Vy such that « respects V, for each b € R\ range(Im(~)) there
is one choice of j' € D'\ range(7) such that Im (7 U (i, j')) is a matching and = U (i, j')
respects V. This j' is the unique member of Ry such that (i’, j') is parallel to (u4,vp) and
for this value, Im(w U (i',j')) = Im(xw) U (a,b). Thus

Y. DY(ru(j)) = > D(Im(m) U (a, b))

j'€R'\range(m) be R\range(Im(r))
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— DV(m)

using the fact that D satisfies condition (b) for a d-design over D x R.

SUBCASE (¢): 7 has no cross edges or rung edges touching D, and |[Im(7)| = d.

In this case, |[Im(7 U (i',5'))| > d for any j’ so DV (Im(rU(i',5'))) = 0 for all V. We show
that the sum of DY (x) for all V € V; is also 0. We can group such V that 7 respects
into equivalence classes based on their choices other than u,. Observe that the choice of
uq # i’ does not affect the value of DV (7) since 7 has no cross edges touching D,. Within
each equivalence class there are exactly p choices of u, # #', so for each such class C,
Svec DV () is a multiple of p and thus equal to 0 in Z,. Therefore, the sum of DV (r)
for all V'€ Vi is 0, and thus Y ycy, 3 jrc pr\range(r) DV(n U (i, j")) = Yvev, DY (7).

SUBCASE (d): = has a rung edge but no cross edges touching D, and |Im(~)| = d.

As in the previous case, |Im(mw U (', 5'))| > d for any j' such that 7 U (¢, j') is a matching
so DV (Im(wU(i’,j'))) = 0 for all V. Again we show that the sum of DV (7) for all V € Vy
is also 0. In this case, 7 has at least d cross edges and at most 2d total edges, one of which
is a rung edge that does not touch the same block as any cross edge. Thus there is some
cross edge of m, (i*,j*) € D, x Ry for some e and f, such that no other edges of 7 touch D,
or Ry. We group all V' € V;r that 7 respects into equivalence classes based on their choices
of points other than u. and v;. Since m has no other edges touching D, or Ry, the value
of DV () is the same for all V in each equivalence class. Within each equivalence class
there are exactly p choices of V since 7 respects each V' and there are exactly p choices of
ue and vy such that (u.,vy) is parallel to (z*,5*) but u, # *. Therefore for each class C’,
Svect DV () = 0 over Z,,. Tt follows that the sum of DV () for all such V is 0, and thus

EVEVH Zj’ER’\range(ﬂ') DV(W U (ilajl>) = ZVEVZ-, DV(W)'
Summarizing Case 2, we have > y 3= i1c pr\range(r) DV (r Ui, j)) =3, DV(n), ie.
S DU =D
j'€R'\range(m)

as required. O

When p is prime, using a construction from [16], we can see that the degree of a
Nullstellensatz refutation is not too much larger than the above lower bound. To see this
we first need the following:

Proposition 15: If p is prime and m — p¢ < pfa < m then (;"[) = a ( mod p).
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Proof For each r, 1 <r < pf, let m(r) be the unique integer between m — pt+1 and m
that is congruent to 7 modulo p®. Observe that

(@) =] m(r) ( mod p).

r=1 r

£
Since m(p?) = pa, by assumption, mz(fj )=g¢ ( mod p).
1

For 1 < r < pt, write r = p*r' where ged(p,7’) = 1 and k < £. Since m(r) =
r ( mod p?), there is some m' such that m(r) = p*m/ +r = p*(p*~¢ + +'). Therefore
mT(T = Zw. Since p*~¢ + 7' = ' ( mod p), we derive that @ = 1 ( mod p) from
which the proposition follows. O

Lemma 16: If p is prime and p¢ < N, there is a Nullstellensatz refutation of onto—PHP%ﬂ’ ’
of degree p’ — 1.

Proof Let D =[1,N +p] and R = [1, N]. Consider the polynomial

> Y x Y Y X

ACD, |A|=pt 7, dom(m)=A BCR, |B|=pt n, range(r)=B

Since each X with || = pt appears exactly once in each sum, the value of the polynomial
is 0. On the other hand, notice that 3, jom(r)=4 X is the polynomial Pr for a matching
decision tree of height h that queries each element of A along each path. Therefore by
Lemma 11, 3° /. qom(r)=4 X» = 14+ L4 where L4 is a linear combination of the onto-PHPR
polynomials of degree < p¢ — 1 over Z,. Similarly, > g Xr =1+ Lp where Lp

m, range(m)=
is a combination of degree < p¢ — 1.
Therefore

- Y Y x%- Y Y ox%

ACD, |A|=pt 7, dom(mw)=A BCR, |B|=pt 7, range(m)=B

’
- (1))
p p
where L is a combination of the onto—’PH’Pg polynomials of degree at most p* — 1. Since
3 = ()
P D
onto-PHPZE of degree at most p* —1. O

) =1 ( mod p) by Proposition 15, we obtain a Nullstellensatz refutation of

24



9 Putting it all Together

Theorem 17: For £ < elogyn with 1/ = 3 - 4971(3 + logy(p + 2)), any depth d proof

of onto—PHPZH’Z in a Frege system augmented by C'ount, axiom schemas requires size at

least nﬂ/ (44+1p)

Proof Suppose that £ satisfies the conditions of[ the statement and that P is a depth d
Frege proof with Count, axioms of onto-PHPI'?" of size S < n2t/(4p)
Let k = log, S, and N = /4" /\/F.

Since £ < elogy n,

10(p +2)VEk < 10(p + 2)°2%%,/logyn

< 10n<GHoe(0+2) | flogn
< 10p1/ (344 logy
< /@),

for n sufficiently large relative to d. Therefore 10(p + 2)¢ < N.

Define ng,...ng as in the statement of Lemma 6. Then ng = n1/4d/(9k)‘5d where
64 =% ,47" < 1/3 and thus ng > n/*/(9k)1/3 > N. It follows that ng > k = log, S
and ng > 10p°.

Therefore by Lemma 6, there is a restriction p € M7y p and a k-evaluation T of the
set of subformulas of P [, over (D x R) [,= D' x R' where |D'| = |R'| + p* = nq + p".

By Lemmas 2 and 3, there must be some instance F' of a Count{,” axiom schema in
P, and 7 € Bro(Tr). We now let h = 44+11og, S. Observe that by assumption about
S, h < ZZ/p and that

(LEN?\/k/(na — B))* < (BN?VE(9k)!/® [nt/@4D)h

(n1/4d+171/(2-4d))h

A <178 < 1/|M]|
and apply Lemma 9 to obtain a (p, M)-generic system of height ph < 2¢ over D" x R"
where |D"| = |R"| + p* = N + p%. Applying Lemma 10, we obtain a Nullstellensatz |M|-

4
refutation of ont;o-’P’HP%ﬂ’ of degree less than 2¢ — 1 which contradicts Theorem 12.
O

Riis [16], by considering all possible domain and range subsets of size p’, as in Lemma 16,
has shown that one can prove onto-’P’HPZ"’pl from Count, using a constant-depth proof

25



of size nOP") 5o the above bound is relatively tight.

4d
Corollary 18: Any depth d Frege proof of PHP"'! requires size nQM ) even if
axiom schemas for onto-PHP™*! are permitted.

Proof Apply Theorem 17 with p = 2, £ = (logyn)/(30 - 4%) — 1, and n' = n 4+ 1 — p’.
(It is not hard to check that the conditions hold.) This implies that any depth d Frege

n'+pt . . . . Q(nl/(30-4d))
proof of onto-PHP,, using axiom schemas for County requires size n . Now
2n+1

it is easy to see that onto-PHP™™! is an immediate consequence of Count) so the
same lower bound applies to the size of the proofs with onto—PHP;zZ+1 schemas instead of

. ’ l . . .
Counts axiom schemas. Finally, observe that onto—PHPz,ﬂ) is an immediate consequence

of PHP",', | ie. of PHP*'. D

Corollary 19: [10] If p and ¢ are positive integers such that ¢ contains a prime factor

)

d
not dividing p then any depth d Frege proof of C'ount, requires size on™%) aven if axiom

schemas for C'ount, are permitted.
More generally:

Corollary 20: If p and ¢, ..., g; are positive integers such that each ¢; contains a prime
Q(1/4%)
2n

factor not dividing p then any depth d Frege proof of V;-“Zl Countg, requires size
even if axiom schemas for Count, are permitted.

Proof If ¢; contains a prime factor not dividing p then there is an easy proof of
onto-PHPZ“’l from Count, by counting the number of edges touching the domain and
range, respectively, and observing that these must be different modulo ¢;. The implemen-
tation of this as a proof of size (2n 4 pf)°(%) is quite straightforward. The €(-) in the
lower bound depends on the sizes of p and the ¢; but does not depend on n or d. The
overall argument is easily handled by cases. O

Following standard connections between bounded-depth Frege systems and bounded
arithmetic (see [14]) the results above also have implications for the relativized system of
bounded arithmetic Sy(R), defined by Buss [11], in which R is an uninterpreted function
symbol. In general, lower bounds for Sy(R) follow from 9Uogn)*™ gize lower bounds.
If we let PHP*T1(R) (respectively onto-PHP*?'(R), County(R), etc.) denote the first-
order version of the pigeonhole principle (etc.) for the relation R then the following are
immediate corollaries of the above results.

Corollary 21: (1) Let 4(n) be an integer function of n such that £(n) = w(loglogn)
and #(n) = o(logn). There is no proof of PHPI“’Z(*)(R) in S3(R) + County(R).
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(2) There is no proof of PHP:™!(R) in S3(R) + onto-PHP:T!(R).

(3) [10] If ¢ contains a prime factor not dividing p then there is no proof of County(R)
in Sy(R) + County(R).

10 Remarks

It is interesting to compare the degree lower bound for the Nullstellensatz refutations
of onto—’PHP%H " with the degree lower bound for PHPY ' using the quite different
construction in [5]. If we take p = 2 and N = (4¢ — 2¢)/2, then the degree lower bound
from Theorem 12 is d = 2¢ — 1 which satisfies N = d(d+1)/2, i.e. the same degree as in [5]
despite the more stringent conditions required in Theorem 12. (For p > 2 Theorem 12
does not give as large a degree bound.) It would be interesting to improve the lower bound
and close the gap between pf — 1 and 2¢ — 1 or to reduce the size of N required to achieve
it.
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