
A Dimension Theorem for Permutation Modules

Sφren Riis
Queen Mary, University of London

Technical report (June 2005)

Abstract

It is shown that linear subspaces that are closed under the action of
the symmetric group under quite general assumptions only have a limited
set of possible vector space dimensions, and that these can be given by
certain polynomial expressions.

More specifically, we show that for k, r ∈ N there exists a finite set
Γ ⊆ Q[x] of polynomials over Q such that: for each n ≥ k + 1, for
each field F (of any characteristic), for each FSn-module V that can
be generated by r vectors that each are invariant under the action of
S{k+1,k+2,...,n}, and for each FSn-submodule U ⊆ V - there exists p ∈ Γ
such that p(n) = dim(U). This is proven by two different methods.

1 Introduction

1.1 Background and motivation

In this short section I will attempt to give a very brief outline of the origin
and motivation underlying the main theorem of this paper. It should, however,
be emphasised that the results in this paper stand alone and can be viewed as
results in pure algebra.

In Automated Theorem Proving, as well as in verification and many other
areas of Computer Science, the specific problem in focus can often be reduced
to a so called satisfiability problem. This satisfiability problem can, with only
minor changes in notation, be written as a system of polynomial equations. For
most practical problems, the polynomials (in the polynomial equations) can be
chosen of low degree (e.g degree ≤ 3), while the number of variables is typically
much larger.

In algebraic proof systems like, for example, the so-called Nullstellensatz
Proof Systems or polynomial calculus we are given such a set Λ of low degree
polynomials. They represent the assumptions (or axioms). The task is to derive
other polynomials in the ideal I(Λ) generated by these polynomials. Each such
derived polynomial can be viewed as a “theorem”. The ideal I(Λ) consists of
all “theorems” that logically follow from the axioms Λ. In this setting the 1
polynomial represents “false”, and if 1 ∈ I(Λ), “false” is a “theorem”, and the
original set of assumptions has been shown to be inconsistent.

1



Let T (Λ) ⊆ I(Λ) denote a set of “theorems” that can be derived from Λ
using a certain limited amount of resources. Taking linear combinations of
vectors usually requires very few additional resources. Thus the vectorspace
T̃ (Λ) := span{T (Λ)} ⊆ I(Λ) of vectors spanned by T (Λ) essentially forms the
set of “theorems” that can be derived from Λ using those limited resources.
Since the resources are limited, and since we might even have decided only to
focus on “theorems” of low complexity (i.e. degree ≤ d for some “small” number

d ∈ N) in general T̃ (Λ) is a proper subset of the ideal I(Λ) of all “theorems”.
In many applications the set Λ has certain symmetries. One such symmetry

is that the set Λ might be invariant (as a set) under the action of the symmetric
group Sn. In most of the applications, this symmetry appears because the
“axioms” express a property (e.g. a graph theoretic property) that does not
depend on the concrete representation of the problem (e.g. which labelling is
chosen for vertex set of the graph). For many proof systems this symmetry is

then inherited by the set T̃ (Λ) of “theorems”.
The research underlying this paper grew out of the ”discovery” (that can be

deduced from work by Ajtai [1]), that the structure of the set T̃ (Λ) of “theorems”
is of a very special and discrete nature. If the underlying field F (over which

the polynomials in Λ are defined) has characteristic zero, the structure of T̃ (Λ)

is easy to describe. Since T̃ (Λ) is a linear subspace closed under the action
of the symmetric group, it can be shown - using standard results from the
representation theory of the symmetric group - that T̃ (Λ) is isomorphic to a

direct sum of Specht modules. The vector space dimension of T̃ (Λ) can be
calculated using Hook’s formula and Young’s rule (see [7] for other results in
this direction).

Our main concern is to what happens over fields of finite characteristic.
What can be said about the vectorspace dimension of T̃ (Λ)? Which vectorspace
dimensions can appear?

In this paper it is shown that only certain vectorspace dimensions can appear
and that these can be expressed by polynomials (with rational coefficients). This
result has a number of interesting consequences and applications in algebraic
proof complexity.

It should, however, once more be emphasised that the main results in the
paper are purely algebraic. In the rest of this paper I do not assume that
the reader has any interest in, or knowledge of, algebraic proof complexity. I
simply consider T̃ (Λ) the set of “theorems” as a FSn-submodule U of a suitable
FSn-module V .

1.2 Outline in general terms

Let V be a vectorspace over a field F and let Sn denote the symmetric group
permuting n elements. We consider the cases where Sn acts on V (i.e. for
π ∈ Sn, and for each v ∈ V we define a vector π(v) ∈ V subject to the rules:
(π1π2)(v) = π1(π2(v)) and 1(v) = v). We can view V as a FSn-module. We
say that a FSn-submodule U ⊆ V is generated by the vectors v1, v2, . . . vr ∈
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U if U is contained in each FSn-submodule that contains v1, v2, . . . , vr. For
A ⊆ {1, 2, . . . n}, we let SA ⊆ Sn denote the subgroup of permutations π ∈ Sn
with π(i) = i for each i ∈ {1, 2, . . . n} \ A. A vector v ∈ V is SA-invariant
if each π ∈ SA ⊆ Sn leaves v invariant (i.e. π(v) = v). For k, r ∈ N we let
MF,k,r denote the class of all FSn-modules that can be generated by r (or fewer)
generators, that all are invariant under the action of S{k+1,k+2,... n}. We will
show:

Theorem (general version): For each k, r ∈ N there exists a finite set Γk,r ⊂
Q[x] of polynomials such that: for each field F , for each n ≥ k, for each
FSn-module V ∈ MF,k,r each FSn-submodule U ⊆ V has a vector space
dimension given by dim(U) = p(n) for some p ∈ Γk,r.

I will prove the theorem using two different methods. The first proof relies on
a number of central theorems from the representation theory of the symmetric
groups. The second proof is more direct, and is based on a notion akin to that
of a Grobner basis, combined with basic ideas from matroid theory, as well as a
general combinatorial principle related to logic and finite model theory. Strictly
speaking it is possible to present the second proof - in a more machinelike fashion
- without making any explecit reference to Groebner basis, matroids, logic or
finite models. However, I decided to include these links in order to make the
presentation less dry.

1.3 Outline in basic terms

Let me explain the ideas underlying the statement of the theorem in less general
terms.

The simplest illustration of the theorem appears if we consider V := VF,n
the vector space spanned by the vectors e1, e2, . . . en over some field F . The
symmetric group Sn acts naturally on VF,n via the definition π(ej) := eπ(j)

which is then extended linearily so π(Σjλjej) := Σjλjπ(ej). We say that a linear
subspace U ⊆ VF,n is closed under the action of Sn if π(U) ⊆ U for each π ∈ Sn.
It is not hard to see that for each n there are two non-trivial linear subspaces
U ⊆ VF,n which are closed under the action of Sn: the one-dimensional subspace
generated by the vector e1 + e2 + . . .+ en, and the (n−1)-dimensional subspace
consisting of all vectors v = Σjλjej, λj ∈ F, j = 1, 2, . . . , n where Σjλj = 0.
If we include the trivial subspaces, we see that any Sn closed subspace of VF,n
has vectorspace dimension belonging to the set: {0, 1, n− 1, n}.

Let V kF,n denote the k-fold tensor product of VF,n. Thus V 2
F,n can be viewed

as the vector space spanned by the vectors ei,j where i, j ∈ 1, 2, . . . , n. We notice
that the vectorspace V kF,n has dimension nk, and that the symmetric group Sn
acts naturally on V kF,n via the action π(ei1,i2,... ik) := eπ(i1),π(i2),... π(ik). We say

that a linear subspace U ⊆ V kF,n is closed under the action of Sn if π(U) ⊆ U for
each π ∈ Sn. It can be shown using standard methods from the representation
theory of the symmetric group (as explained in more details in [6]) that for the
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field Q (or for the fields R,C or any other field of char= 0), any Sn closed
subspace of V 2

Q,n has a vectorspace dimension that belongs to the set:
ΓQ,2 := {0, 1, 2, n− 1, n, n+ 1, 2n− 2, 2n− 1, 2n, 3n− 3,

3n− 2, 3n− 1, n
2−3n
2 , n

2−3n+2
2 , n

2−3n+4
2 , n

2−3n+6
2 ,

n2−n−2
2 , n

2−n
2 , n

2−n+2
2 , n

2−n+4
2 , n

2+n−4
2 , n

2+n−2
2 ,

n2+n
2 , n

2+n+2
2 , n

2+3n−6
2 , n

2+3n−4
2 , n

2+3n−2
2 , n

2+3n
2 ,

n2 − 3n+ 1, n2 − 3n+ 2, n2 − 3n+ 3, n2 − 2n, n2 − 2n+ 1, n2 − 2n+ 2,
n2 − n− 1, n2 − n, n2 − n+ 1, n2 − 2, n2 − 1, n2}.
For each n ≥ 9 this set ΓQ,2 consists of exactly 40 distinct values. The set

ΓQ,2 = ΓR,2 = ΓC,2 = ΓF0,2 is independent of the underlying field F0 as long
as it has characteristic 0. A priori it is not clear why the number of possible
vectorspace dimensions can be bounded by a number that is independent of
n. Also, there is no a priori reason why each element in the set of possible
vectorspace dimensions is given by a polynomial in n.

The fact that there is a finite set ΓQ,k of polynomials (not just for k = 2,
but for any k ) in the case of fields of characteristic 0 was noticed in [7].

The fact that for each fixed Field F (even fields of finite characteristic) there
exists a finite set ΓF,k of functions (not just for k = 2, but for any k ∈ N) follows
relatively directly from the work by [1], as well from the later improvements
by [5]. We show that the functions can actually be chosen as polynomials.
Futhermore, we show that the finite set Γ of polynomials can be chosen before

the field is given:

Theorem (Version 2): For any k ∈ N there exists a finite set Γk of functions
f , such that for any n ∈ N , for any field F (any characteristic), and for
any linear subspace U ⊆ V kF,n that is Sn-closed, the vectorspace dimension
dim(U) of U, is given by f(n) for some f ∈ Γk. Furthermore, the functions
f in Γk can be chosen to be polynomials with rational coeficients.

This version of the theorem is a special case of the general version of the theorem.
To see this, notice that V kF,n is a FSn-module generated by the finite set of
vectors ei1,i2,... ik for which i1, i2, . . . , ik ∈ {1, 2, . . . k}. Moreover, each of those
generators is invariant under S{k+1,k+2,...,n}, and thus V kF,n is generated by a
finite set of S{k+1,k+2,... n}-invariants.

Even though the general version of the theorem is in some sense much more
general than the second version of the theorem, we will show that the general
version of the theorem can be derived from version 2 of the theorem.

2 First proof of the Theorem

We are now ready to prove the theorem. The first proof is of a rather technical
nature. In this section we prefer to rephrase the theorem using terminology from
the representation theory of the symmetric group. All concepts and definitions
can be found in [4].
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Theorem (version 3): For any k ∈ N there exists a finite set Γ of functions
f , such that for each n ∈ N , for each partitioning α of k, for each field F
and for each FSn-submodule U ⊆ M (n−k,α) the vector space dimension
dim(U) of U is given by f(n) for some f ∈ Γ. Furthermore, the functions
f in Γ can be chosen to be polynomials with rational coefficients.

Proof: First we show that the theorem is valid if the fields F are chosen to
have characteristic zero. Fix any field F of characteristic zero. The module
M (n−k,α) is a direct sum of the irreducible Specht modules S(n−|β|,β) where β
is a partition of |β| ≤ k. The vector space dimension of each S(n−|β|,β) can
be calculated using the Hook-formula, and it is straightforward to check that
pβ(n) := dim(S(n−|β|,β)) is a polynomial in n (for any fixed β). The multiplicity
of each irreducible submodule is given by Young’s rule, which states that the
multiplicity cα,β := [M (n−k,α) : S(n−|β|,β)] of S(n−|β|,β) in M (n−k,α) is given
by the number of semi-standard (n − |β|, β)-tableaux of type (n − k, α). This
number is clearly independent of n when n ≥ 2k. According to standard results
in the theory of modules (e.g. Jordan-Holder’s Theorem), any submodule U is
isomorphic to a direct sum of irreducible modules, i.e. is a direct sum of modules
isomorphic to Specht modules. Thus for any n ≥ 2k, and for any U ⊆M (n−k,α)

the vector space dimension dim(U) can be expressed as Σβ [U : S(n−|β|,β)]pβ(n).
Thus the theorem is valid if we let Γ consist of the collection of polynomials of
the form p(n) := Σβvβpβ(n) where for each of the finitely many partitionings β
of k, we have vα ∈ 0, 1, . . . cαβ . Notice that the number of polynomials in Γ is
bounded from above by the number Πβ(1 + cαβ) <∞.

Now we consider the more interesting case where the fields are allowed to
have finite characteristic. We show the first part of the theorem (that there exists
a finite set Γ of functions) for M (n−|α|,α). We show this using induction on the
partitioning (n− |α|, α) with regards to the usual dominance ordering between
partitionings. Notice that a partitioning (n − |β1|, β1) dominates (n− |β2|, β2)
for one value of n ≥ 2max(|β1|, |β2|) if and only if this happens for all values of
n ≥ 2max(|β1|, |β2|).

When |γ| = 0, the theorem is clearly satisfied by letting Γ0 consist of the
polynomials 0 and 1. Assume that we are given γ, and we know that the theorem
is valid for all partitionings γ′ with (n − |γ′|, γ′) dominating (n − |γ|, γ). Let
U ⊆ M (n−|γ|,γ) be an arbitrary submodule. According to James submodule

theorem either S(n−|γ|,γ) ⊆ U or U ⊆ S(n−|γ|,γ)⊥. We consider each of these
two cases separately.

Case 1: Assume S(n−|γ|,γ) ⊆ U . A central theorem in James’ theory
states that each Specht module can be characterised as the kernel of a FpSn-
homomorphism Ψ : M (n−|γ|,γ) → Yn where the FpSn module Yn is of the form

Σγ′M (n−|γ′|,γ′) where (n−|γ′|, γ) dominates (n−|γ|, γ). Notice that the number
of summands is independent of n ≥ 2|γ|. Now, since Yn is a finite direct sum
of modules which each satisfies the first part of the theorem, Yn itself must sat-
isfy the first part of the theorem. This follows by straightforward application of
standard results in the theory of modules (e.g. Jordan-Holder’s Theorem). Thus
there exists a finite set Γ′ of functions such that for any submodule U ′ ⊆ Yn the
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vector space dimension of U ′ is given by f(n) for some function f ∈ Γ′. Now
U/ker(Ψ) ≡ Ψ(U) =: U ′ ⊆ Yn, and thus the vector space dimension dim(U) is
given by dim(Ψ(U))−dim(ker(Ψ)) = dim(U ′)−dim(S(n−|γ|,γ)). Let Γ1 consist
of all functions h(n) = f(n)− dim(S(n−|γ|,γ)) where f ∈ Γ′, and where γ is one
of the finitely many partitions with (n− |γ|, γ) dominating (n− |α|, α).

Case 2: Assume U ⊆ S(n−|γ|,γ)⊥.
Method 1: In this case we can use the fact that the assumption implies that

U⊥ ⊇ S(n−|γ|,γ) and that we can then apply Case 1 and show that dim(U⊥)
is given by h(n) for some h ∈ Γ1. But then dim(U) = dim(M (n−|γ|,γ)) − h(n)
and the induction works if we let Γ2 consist of Γ1, together with all functions
r(n) := dim(M (n−|γ|,γ)) − h(n) with h ∈ Γ1.

Method 2: We can also handle case 2 without reference to case 1. To do
this we use the work of James according to which there exists a module Yn of
the form Σγ′M (n−|γ′|,γ′) where (n − |γ′|, γ) dominates (n − |γ|, γ) and a FpSn

-homomorphism Ψ : Yn →M (n−|γ|,γ) such that Ψ(Yn) = S(n−|γ|,γ)⊥. Let U ′ :=
Ψ−1(U) ⊆ Yn. As in ‘case 1’, there is a finite set Γ′ of functions such that for
any n ≥ 2|γ| and for any submodule U ′ ⊆ Yn, the vector space dimension of U ′

is given by f(n) for some function f ∈ Γ′. Now, since U = Ψ(U ′) ≡ U ′/ker(Ψ),
we have dim(U) = dim(U ′) − dim(ker(Ψ)) . Let Γ2 consist of all functions
h(n) := f(n) − g(n) where f, g ∈ Γ′.

Whether we used method 1 or 2 we can see that there is a finite set Γ (namely
Γ1 ∪ Γ2) of functions such that the first part of the theorem is valid.

We want to show that the functions in Γ can be chosen to be polynomials
with rational coefficients. First, notice that a corollary to the first part of the
theorem (which we have already proved) is that the decomposition numbers
dαβ n := [S(n−|α|,α) : D(n−|β|,β)] are bounded by a constant d (for example
d := |Γ|) which is independent of n. Now, for each α for which (n − |α|, α)
is p-regular and we have the identity S(n−|α|,α) = D(n−|α|,α) + Σβ [S

(n−|α|,α) :
D(n−|β|,β)]D(n−|β|,β), where the β′s in the sum runs over all partitionings for
which (n−|β|β) is p-regular, and which dominates (n−|α|, α). Notice that the
property of being p-regular is independent of n for n ≥ 2|α|. From this we get

Dim(D(n−|α|,α)) = Dim(S(n−|α|,α)) − Σβdαβ nDim(D(n−|β|,β)).
Further, Dim(S(n−|α|,α)) is independent of the ground field, and as already

noticed (using the Hook formula) it is given by a polynomial with rational
coefficients. We show the second part of the theorem using the same induction
as for the first part. Thus, for each (n− |β|, β) dominating (n− |α|, α), we can
assume that there exists a finite set Γβ of polynomials (overQ) such that for each
n, we have Dim(D(n−|β|,β)) = p(n), for some p ∈ Γβ . Thus for each fixed n ≥
2|α|, there exist polynomials pβ ∈ Γβ and constants cβ ∈ {0, 1, . . . d} such that
Dim(D(n−|α|,α)) = Dim(S(n−|α|,α))−Σβcβpβ . The second part of the theorem
now follows easily from the fact that the dimension of a submodule equals the
sum of the dimensions of its decomposition factors (taken with multiplicity),
that all irreducible modules are isomorphic to some D(n−|β|,β), and that the
height of M (n−|α|,α) according to the first part of the theorem is bounded by a
constant which is independent of n. ♣
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3 Second proof of the Theorem

3.1 General outline of the proof

For this proof we first introduce the notion of a generating basis. This is a notion
that is somewhat similar to the well known notion of a Groebner basis. As in
the definition of a Groebner basis, we need to fix (i.e. define) a term ordering.
Recall that in the context of a Groebner basis, the notion of divisibility (of
leading terms) plays a crucial role. In our setting we consider FSn-modules,
and these have no obvious multiplicative structure. Thus it is clear, that the
notion of a Groebner basis does not apply directly to our situation. The idea
behind our concept of a generating basis is to define a ”divisibility relation” on
the set of leading terms. This ”divisiblity relation” is defined in terms of the
group action Sn that acts on V . Roughly stated, a term t1 ”divides” another
term t2 if t1 preceedes t2 in the term order and there is a permutation π ∈ Sn
such that π(t1) = t2. For this notion to succeed, the term ordering is defined in
such a manner that the for u, v ∈ V with leading terms t1 and t2, and with t1
”dividing” t2, there exists a permutation π ∈ Sn such that π(u) has the leading
term t2.

This property allows us to show that any FSn-submodule U ⊆ V has a
generating basis = (to guide the explanation at this stage we introduce a few
basic concept from matroid theory). Recall that our ultimate goal is to calculate
the vector space dimension of FSn-submodules U ⊆ V . The next step in our
analysis is to show that this dimension is uniquely determined by the set of
leading terms of a generating basis = for U . Furthermore, and this is the main
point of the construction, the set of leading terms of vectors in = is very special,
and has a description that, in some sense, does not depend on n. The number
of non-equivalent generating basis can then be bounded by a constant. This
number is independent of n, as well as the underlying Field F . Essentially, this
provides another proof that the set of functions in Γk in version 1 of the theorem
can be chosen to be finite.

The final step of the proof is to use basic ideas from logic and finite model
theory to show that the dimension can actually be given by polynomial ex-
pressions. We prove a theorem that states that the number of elements of
L(<)-definable substructures of finite models is given by a polynomial expres-
sion. In general, this polynomial expression does not always produce the correct
answer. However, the set of values where it fails, is only finite. This is suffi-
cient for our application. Alternatively, one can notice that for our application
only quantifier-free L(<)-definable substructures need to be considered. And
the polynomial expression is always correct for this class of structures.

From this analysis it follows that the set Γk of possible vector space dimen-
sions can be chosen to consist solely of polynomials with rational coeficients.
This completes the general outline of the proof.
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3.2 Generating basis - the detailed construction

Let Vo.k
F,n denote the vectorspace spanned by the set of basis vectors of the form

ei1,i2,... ik with i1, i2, . . . ik ∈ {1, 2, . . . n} distinct. Thus V o,kF,n is isomorphic to

M (n−k,1k) with elements from the field F . We define a term ordering � on the
set of basis vectors ei1,i2,... ik ∈ V o,kF,n by essentially considering the lexographic
ordering of the set {i1, i2, . . . ik} as first priority and the lexographic ordering
of the tuple (i1, i2, . . . ik) as second priority. In other words given two vectors

ei1,i2,... ik ∈ V o,kF,n and ej1,j2,... jk ∈ V o,kF,n we decide which is the largest with respect
to the ordering � by first considering the sets {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}
and {j1, j2, . . . , jk} ⊂ {1, 2, . . . , n}. The two sets are compared using the lexo-
graphic ordering (the maximal element of {i1, i2, . . . , ik} and {j1, j2, . . . , jk} de-
cides which set is the largest in the ordering. If the sets contain the same largest
element, the set with the second largest element is largest in the term order-
ing. If the second largest elements are identical, the third largest elements are
compared etc.). If the sets are identical i.e. if {i1, i2, . . . , ik} = {j1, j2, . . . , jk}
we decide which of the tuples (i1, i2, . . . ik) and (j1, j2, . . . jk) are largest in the
usual lexographic ordering.

Example: We have e96,97,98 � e98,97,96 � e14,57,99 � e99,14,57 � e96,100,17.

A vector v ∈ V o,kF,n can be written uniquely as v = Σi1,i2,... ikλi1,i2,...,ikei1,i2,... ik
where the index i1, i2, . . . , ik ∈ {1, 2, . . . n} are distinct. The leading term Lt(v)
of the vector v is defined to be λi1,i2,... ikei1,i2,... ,ikwhere ei1,i2,... ik is the largest
basis vector (in the ordering) that have λi1,i2,... ik 6= 0. The normalized leading
termNLt(v) of the vector v defined to be ei1,i2,... ,ikwhere ei1,i2,... ik is the largest
basis vector ordering that have λi1,i2,... ik 6= 0.

Definition: Two k-tuples (i1, i2, . . . , ik) and (j1, j2, . . . , jk) have the same order

type if for all s, t ∈ {1, 2, . . . k} is > it holds exactly when js > jt holds.
We say a k-tuple (i1, i2, . . . ik) dominates a k-tuple (j1, j2, . . . jk) if we
have i1 ≥ j1, . . . , ik ≥ jk and the order type of (i1, i2, . . . , ik) is the same
as the order type of (j1, j2, . . . , jk). We say a term λei1,i2,...,ik is divisible by

µej1,j2,...,jk if (i1, i2, . . . ik) dominates (j1, j2, . . . , jk) (and λ, µ ∈ F \ {0}).

The divisibility relation just defined is refelxive and transitive. We refer to the
relation as a divisibility relation because we want to make the link to Groebner
basis more obvious.

Lemma(1): If v has Lt(v) = λej1,j2,...,jk then for each ei1,i2,...,ik that is divisible
by λej1,j2,...,jk there exists π ∈ Sn and µ ∈ F \ {0} such that µLt(π(v)) =
λei1,i2,... ik .

Proof: First assume i1 > i2 > . . . > ik . Since (i1, i2, . . . ik) dominates
(j1, j2, . . . , jk) we have j1 > j2 > . . . > jk and is ≥ js for s = 1, 2, . . . k. Let
π = (ik, jk)(ik−1, jk−1) . . . (i2, j2)(i1, j1) where (i, i) = 1. I claim that for any
vector v with leading term λej1,j2,...,jk , the vector (ik, jk) . . . (i1, j1)v has leading

8



term λei1,i2,... ik . In other words I claim that any v with Lt(v) = λej1,j2,... jk
have Lt(π(v)) = λei1,i2,... ik . The claim follows using induction. First notice that
(i1, j1)v has leading term λei1,j2,j3,...jk . By the same observation (i2, j2)(i1, j1)v
has leading term λei1,i2,j3,j4,... jk and in general (ik, jk) . . . (i1, j1)v has leading
term λei1,i2,... ik .

The general case is proved in exactly the same fashion. Assume that iη(1) >
iη(2) > . . . > iη(k) for some permutation of {1, 2, . . . k} and proceede as before
with π := (iη(k), jη(k)) . . . (iη(1), jη(1)).♣

Definition: A set I ⊆ U is called independent if for no distinct elements v1, v2 ∈
I is Lt(v1) divisible by Lt(v2).

Proposition: Let = denote the collection of independent sets I ⊆ U . Then the
pair (U,=) is a matroid.

Proof: Recall that a matroid is a pair (U,=) where U is a set, and = a non-
empty set of subsets of U called independent sets, satisfying the two properties:

• If I ∈ = and J ⊆ I, then J ∈ =.

• The exchange axiom: if I1, I2 ∈ = with |I1| < |I2|, then there exists
v ∈ I2 \ I1 with the property that I1 ∪ {v} ∈ =.

Definition: A set B ⊆ U is a generating basis for U iff

1. For each u ∈ U there exists b ∈ B such that Lt(u) is divisible by Lt(b)

2. For no distinct b1, b2 ∈ B is Lt(b1) divisible by Lt(b2).

When condition 1 holds we say that B spans U . When condition 2 is satisfied we
say B consists of independent vectors. Combining lemma(1) with this definition
we get:

Lemma(2) : Let B be a generating basis for U . Then for any vector u ∈ U
there exists b ∈ B, λ ∈ F \ {0} and a permutation π ∈ Sn such that
Lt(v) = Lt(π(b)).

Recall that an independent set B ∈ = of a matroid (U,=) is a called a basis if
it is maximal (i.e. not properly contained in any independent set of =).

Proposition: A set B ⊆ U is a generating basis if and only if B ∈ = is a basis
in the matroid (U,=).

Proof: “if”: Assume B ∈ = is a maximal independent set. Let u ∈ U and
assume there is no b ∈ B such that Lt(u) is divisible by Lt(b). But then the set
B∪{u} ⊆ U is independent and thus B∪{u} ∈ =. This violates the assumption
that B was maximal.

“only if”: Assume B ⊆ U is a generating basis. Assume B is not maximal.
Let B∪b ∈ = be a proper extension. Now since b ∈ U and since B is a generating
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basis, there exists b′ ∈ B such that Lt(b) is divisible by Lt(b′). But this violates
the assumption that B ∪ {b} is an independent set. ♣

We just noticed that a generating basis is a basis in the monoid (U,=). Thus
- according to a basic result in the theory of monoid - the number of elements
in each generating basis is constant. This can also be shown directly: Assume
B1, B2 ⊆ U each is a generating basis. For each b ∈ B2 ⊆ U there exists
b′ ∈ B1 such that Lt(b) is divisible by Lt(b′). Now since B2 is a generating basis
and b′ ∈ U there exists b′′ ∈ B2 such that Lt(b′) is divisible by Lt(b′′). Now
since b, b′′ ∈ B2 and b is divisible by b′′ we must have b = b′′ and thus that
Lt(b) = Lt(b′). This argument shows that:

Proposition: Any two generating basis B1, B2 ⊆ U have vectors with the
same (normalised) leading terms. Especially B1 and B2 contain the same
number of elements.

3.3 Irreducible tuples

In this section we consider the leading terms of vectors in any generating basis.
We show that only terms ei1,i2,...,ik with index set {i1, i2, . . . ik} ⊆ {1, 2, . . . a}∪
{n−b, n−b+1, . . .n} for some constants a, b ∈ N can appear as index in leading
term. It should be emphasised that we do not attept to find the optial values
for a and b. For our purpose it suffices to prove that a and b can be chosen
independently of n.

Definition: Let a1 > a2 > . . . > ak be k elements from {1, 2, . . . , n}. The
tuple (a1, a2, . . . ak) is reducible if there exists 1 ≤ s < t ≤ k such that
as > as+1 + (t− s) > at > at+1 + (t− s+ 1). The tuple (a1, a2, . . . ak) is
irreducible if it is not reducible. The set {i1, i2, . . . , ik} ⊆ {1, 2, . . . n} with
k distinct elements is reducible if the ordered tuple ir1 > ir2 > . . . > irk

is
reducible. The set is irreducible if it is not reducible.

The following lemma links this termonology to the set of possible leading terms
in vectors that belong to a generating basis.

Lemma(3): Let v ∈ V o,kF,n be a vector in a generating basis for some FSn-

submodule U ⊆ V o,kF,n . Let ei1,i2,... ik := NLt(v) denote the (normalized)
leading term of v. Then the set {i1, i2, . . . ik} ⊆ {1, 2, . . . n} is irreducible.

Proof: Assume v ∈ U is a vector with leading term ei1,i2,...,ik with {i1, i2, . . . ik}
reducible. Let τ ∈ Sk be a permutation such that iτ(1) > iτ(2) > . . . > iτ(k)
and let aj := iτ(j) for j = 1, 2, . . . k. Let fa1,a2,... ak

:= ei1,i2,... ik . Notice that
a1 > a2 > . . . > ak and that the tuple (a1, a2, . . . ak) is reducible. Thus there
exists 1 ≤ s < t ≤ k such that as > as+1 + (t − s) > at > at+1 + (t − s + 1).
Consider the element η ∈ FSn given by

η := Πt−s
j=0(at + j, at+1 + j + 1)Πt−s

j=1(1 − (as+j , at + j))
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Now a careful calculation shows that η(v) ∈ U has leading term that divides
(and is strictly smaller than) the term ei1,i2,... ik . Thus v cannot belong to a
generating basis (for U or any other submodule). ♣

Lemma(4): Assume a1 > a2 > . . . > ak, assume n ≥ 6k and assume that
{a1, a2, . . . ak} ⊆ {1, 2, . . . n} is irreducible. Then there exists 0 ≤ s ≤ k
such that {a1, a2, . . . ak} ⊆ {1, 2, . . . 3k − 3s} ∪ {n, n− 1, . . . n− 3s+ 1}.
In general {a1, a2, . . . ak} ⊆ {1, 2, . . . 3k}∪ {n, n− 1, . . . n− 3k+ 1}. Any
vector in a generating basis has normalised leading term ei1,i2,... ik with
all index i1, i2, . . . ik ∈ {1, 2, . . . 3k} ∪ {n, n− 1, . . . n− 3k + 1}.

Proof: The first part is shown using induction on k. The second part follows
by combining the first part with lemma(3) ♣

3.4 Background in logic

In this section we assume that the reader is familiar with basic concepts and
ideas from basic logic and model theory. Good standard references are [2, 3] .
It should, however, be noticed that any reference to logic can be easily avoided.
Also, it should be noticed that we only need quite an easy special case of the
main theorem in this section.

Lemma(5): Let α0, α1, α2, . . . , αl−1, αl ∈ {0, 1, 2, 3 . . .} be l+1 given numbers.
Consider the l+1 equations given by α0 < x1, x1 +α1 < x2, x2 +α2 < x3,
. . . , xj + αj < xj+1, . . ., . . . xl−1 + αl−1 < xl and xl + αl < n + 1. Let
s := Σlj=0αj . Over the structure Mn = {1, 2, . . . n} with n ≥ s+ l− 1 the
number of solutions to the equations is given by the binomial expression(
n− s
l

)
. For a fixed list α0, α1, α2, . . . , αl−1, αl of numbers, the number

of solutions is given by a polynomial in n.

For fixed α ∈ {0, 1, 2, . . .} we let <α denote the relation defined such that x <α y
if and only if x+ α < y. First we will show that the theory of a discrete linear
order with end points (expressed in the first order language L(<0, <1, <2, . . .))
has quantifier elimination.

Let L := L(≤) be the first order language with one binary relation symbol
≤ (besides the relation symbol = for equality). Let (M,<) be a set and < a
total ordering on M . Thus (M,<) is isomorphic to {1, 2, . . . , |M |} with the
usual ordering between integers. Any L(≤)-formula ψ(x1, x2, . . . , xk) with free
variables x1, x2, . . . , xk determines naturally a set Aψ,M := {(a1, a2, . . . , ak) :
(M,<) |= ψ(a1, a2, . . . , ak)}.

Proposition: For each ψ(x1, x2, . . . , xk) first order formula in the language
L(<0, <1, <2, . . .) there exists a quantifier free formula θ(x1, x2, . . . , xk)
in the langage L(<0, <1, <2, . . .) such that for all models M of a dis-
crete linear ordering with endpoints the set Aψ = {(a1, a2, . . . , ak) :
M |= ψ(a1, a2, . . . , ak) equals the set Aθ := {(a1, a2, . . . , ak) : M |=
θ(a1, a2, . . . , ak).
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Combining this proposition with lemma(5) (and using the inclusion-exclusion
principle) we get:

Theorem(FO): Let ψ(x1, x2, . . . xk) be first order formula expressed in the
language L(≤), with free variables x1, x2, . . . , xk. Then there exists a
polynomial p ∈ Q[x], such that the number of tuples (a1, a2, . . . ak) with
a1, a2, . . . ak ∈ {1, 2, . . . n} and Mn |= ψ(a1, a2, . . . .ak) is given by p(n)
for all n ∈ N \E where E is a finite set of exceptions. The set E is empty
if ψ is a quantifier free formula.

Example: Consider the formula ψ(a1, a2) :≡ (a1 > a2) ∧ (∀x1, x2∃y(y 6=
x1 ∧ y 6= x2 ∧ y 6= a1 ∧ y 6= a2). The number A(n) of (a1, a2) ∈

{1, 2, . . . n} × {1, 2, . . . n} that have ψ(a1, a2) is given by A(n) = n(n−1)
2

for n = 5, 6, 7 . . .while A(1) = A(2) = A(3) = A(4) = 0. The function

A(n) with n = 5, 6, 7 . . . is given by the polynomial p(n) = n(n−1)
2 . How-

ever, the polynomial p does not count the number of solutions correct on
the finite set E = {1, 2, 3, 4}. So, as “predicted” by the theorem, A(n) is
given by a polynomial together with a finite set E of exceptional values of
A(n).

Fix a natural number k ∈ N and add: constants c1, c2, . . . , c3k and d0, d1, . . . , d3k−1

to the languageL(≤). We denote this new language L(≤, c1, . . . c3k, d0, . . . , d3k−1)
by L′.

Let Θ denote a set of axioms that insures that c1, c2, . . . , c3k are the 3k
smallest elements, and ensures that d0, d1, . . . , d3k−1 are the 3k largest elements.
Include axioms that ensure that c1 < c2 < . . . < c3k < d3k−1 < . . . < d1 < d0.
Thus if M = {1, 2, . . . , n} the axioms force cj = j and force dj = n− j.

Lemma(5): Let ψ(x1, . . . xk) be a quantifier free L′-formula. There exists
a polynomial p(x) ∈ Q[x] such that the set Aψ,n := {(a1, a2, . . . , ak) :
({1, 2, . . . n}, <) |= Θ ∧ ψ(a1, a2, . . . , ak)} has cardinality p(n) for all n >
6k.

We are now ready to combine these results and provide another proof of theo-
rem(1). To this end we need to combine lemma(4) with:

Lemma(6): Let U ⊆ V o,kF,n be any FSn-submodule. Then the set NLt(U)
of normalised leading terms ei1,i2,...,ik is definable by a quantifier free L′-
formula ψ(x1, . . . xk). More specifically, there exists a quantifier free
L′-formula ψ(x1, . . . xk) such that ei1,i2,...,ik ∈ NLt(U) if and only if
ψ(i1, i2, . . . , ik).

Combining all of these we get:

Theorem (version 4): Let k ∈ N . There exists a finite set Γk ⊆ Q[x] of
polynomials such that: for each field F and for each n ∈ N (with n ≥ k)

and each Sn-invariant linear subspace U ⊆ V o,kF,n there exists p ∈ Γk such
that dim(U) = p(n).
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Combining this notice that the set Γk ⊆ Q[x] consisting of the class of poly-
nomials that appear as p(n) := |Aψ,n| for one of the finitely many inequivalent
L′-formula ψ(x1, x2, . . . xk) suffice as set in the theorem (version 4). In the
theorem (version 4, or any other version), we did not make any assumptions
about n (except that n ≥ k) while in lemma 6 we assumed that n ≥ 6k. We can
mend this by, for example, adding the finite set {pc}0≤c≤dim(V o,k

F,n
)of constant

polynomials with pc(x) := c for c = 0, 1, . . . 6k(6k − 1) . . . (5k + 1).

4 Equivalence of the different versions of the

Theorem

So far we have presented four versions of the theorem. In this section we will
show that they are all equivalent in the sense that they can be (easily) derived
from each other. The content of the four versions are however distinct and
the general version of the theorem has a much broader scope than the other
versions. From version 4 we easily get the following version:

Theorem (version 5): Let k, r ∈ N . There exists a finite set Γk,r ⊆ Q[x] of
polynomials such that: for each field F , and for each n ∈ N (with n ≥ k)

and each Sn-invariant linear subspace U ⊆ V o,kF,n ⊕ . . . ⊕ V o,kF,n (r copies)
there exists p ∈ Γk,r such that dim(U) = p(n).

Version 4 implies version 5: We prove this using induction on r ∈ N . For
r = 1 version 4 or 5 are clearly equivalent. For r > 1 let Γk,r := Γk ⊕ . . .⊕ Γk
(r copies). Let U ⊆ V o,kF,n ⊕ . . . ⊕ V o,kF,n be any FSn-submodule. Let ψ : V o,kF,n ⊕

. . .⊕ V o,kF,n → V o,kF,n be the projection on the first summand. Now the induction

assumption applies to ψ(U) ⊆ V o,kF,n as well as Ker(ψ)∩U ⊂ 0⊕V o,kF,n⊕ . . .⊕V
o,k
F,n

and thus there exists p1 ∈ Γk and p2 ∈ Γk ⊕ Γk ⊕ . . . ⊕ Γk ≡ Γk,r−1 such that
p1(n) = dim(ψ(U)) and p2(n) = dim(Ker(ψ) ∩ U). Now dim(U) = dim(ψ) +
dim((Ker(ψ) ∩ U)) = p1(n) + p2(n) and so since p := p1 + p2 ∈ Γk,r we have
dim(U) = p(n).

Version 5 implies the general version: Let Γk,r ⊂ Q[x] in the general
version of the theorem consist of Γk,r 	 Γk,r . In the general version of the
theorem we define for k, r ∈ N , the class MF,k,r of all FSn-modules that can
be generated by r (or fewer) generators, that are all invariant under the action
of S{k+1,k+2,... n}. Let V ∈ MF,k,r be any FSn-module and assume that it

is generated by generators g(1), g(2), . . . , g(r) ∈ V that each is S{k+1,k+2,...,n}

invariant. Next, consider M := V o,kF,n ⊕ . . . ⊕ V o,kF,n (r copies). Let {e
(v)
i1,i2,...,ik

:
v = 1, 2, . . . r and i1, i2, . . . , ik ∈ {1, 2, . . . n} with |{i1, i2, . . . , ik}| = k} be the
natural basis for M , and assume that Sn acts on M in the usual way. We

define a FSn-homomorphism ψ : M → V by letting ψ(e
(v)
1,2,3,...,k) = g(v) for

v = 1, 2, . . . , r. This map is a well defined FSn-homomorphism because each
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of g(1), g(2), . . . , g(r) ∈ V is S{k+1,k+2,...,n}-invariant. Notice that ψ is surjective

(since g(1), g(2), . . . , g(r) generates V ).
Let U ⊆ V be any FSn-submodule. Then the FSn-submodule ψ−1(U) ⊆M

has dimension dim(ψ−1(U)) = p(n) for some p ∈ Γk,r and dim(Ker(ψ)) = q(n)
for some q ∈ Γk,r. But then dim(U) = dim(ψ−1(U)) − dim(Ker(ψ)) = p(n) −
q(n). All that is left is to notice that the polynomial p− q ∈ Γk,r 	 Γk,r.

Version 3 implies version 4: Clear since M (n−k,1k) over the field F is iso-
morphic to V o,kF,n . Version 2 implies version 4: Clear since V o,kF,n is a FSn-

submodule of V kF,n.

General version implies version 2,3,4 and 5: Each of the FSn-modules
V kF,n, M

(n−k,α) with k = |α|, V o,kF,n and V o,kF,n ⊕ . . . ⊕ V o,kF,n is generated by a
finite number c ∈ N of S{k+1,k+2,...,n}-invariant generators (that can be chosen
independent of n). This completes the proof that the five versions of the
theorems are “equivalent”.
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