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Abstract— It is shown that there exist information networks (A4,+) and sendr + y € A through the middle channel, the
where messages can be sent (utilising Network Coding) more messages: andy can easily be recovered at ‘output’ nodes

easily in one direction than in the opposite direction. Thisis ; _ _
valid even though each channel is assumed to have the sameat the bottom of the network (sincg (¢ +y) —= and

capacity in both directions. €= (35 +y) — ). _ )

It is shown that irreversible information networks only have It is often convenient to think about each message as a
solutions that use non-linear Network Coding. | argue that his flow of elements fromA. Viewed this way we can consider
result is more surprising than might appear at first sight andthat messagea andb as sequences.a_s,a_1, ag, a1, as . .. and
it follows using ideas resembeling the path integral in Quatum b_o,b_1,bo, b1, bo The solutionz + b then consists of
Mechanics. L T e T e

! the sequence..,a_o + b,Q, a_1+ bfl, ag + b(), a1+ bl, as +
ba, ... being sent through the middle channel.
I. MAGIC IN INFORMATION NETWORKS The information network in figure 1 is an

o ] . _ example of a multiple-unicast information network
Network Coding is a new area of multi-user informatiof, general a multiple-unicast information network

theory that has expanded dramatically within the last fey _ (V, E; 81,15 89,25 ..., s, tn) is an acyclic graph
years. Network Coding is based on a simple mathemati¢gk, source nodes, s2, ..., s, of in-degree0 and target
model of network flow and communication first explicitlynodest1 to,...,t, of out-degred).

stated in its simplicity in [2]. Recently, ideas related tetN Informally, the idea is (repeatedly) to send messages
work Coding have been proposed in a number of distinct areas ;n, ... .m, € A from the source nodes to the target

of Computer Science and engineering (e.g. broadcastingniaées_ More specifically message; has to be sent from
wireless networks [25], [24], [23], data security [4], distited g4\;rce nodes; to target node; (nodet; requiresm;). The
network storage [6], [1] and wireless sensor networks [16pyessages are chosen from an alphabehat throughout the
Network Coding has also a broad interface with varioysyner is assumed to be finite, containg at least two letters.
Mathematical disciplines (error correcting codes [19]], [5 Formally, associate to each source negla variabler; and
[11], circuit complexity [17], information theory [12], gébra associate to the corresponding target nodehe requirement
[15], [14] and graph theory). _ r : x;. Furthermore associate to each edge (v,w) in N
The basic idea underlying Network Coding has been ey » having in-degreé (e) € N a k(e)-ary function symbol
plained in many papers e.g. [15], [2], [17], [7]. The idea cap |n the casev is a source node &-ary function symbol is
be illustrated by considering the "butterfly" network in figu z5sociated tdv, w)
1.

For an edge: = (v, w) each of thek(e) incoming edges is
associated to one of thge) arguments off.. Finally, to each

X y
target nodef; of in-degreek(t;) € N is associated &(t,)-
X+y ary function symbolf;,. Each of thek(t;) incoming edges is
x — = associated to one of thg(t;) arguments off; .
A flow p for the multiple-unicast network coding problem
Y N (over the alphabet) is an assignment that to each function
symbolf. (or f;,) assigns amayp : A*(©) — A (f : AFE) —
A A). The map assigned tf. by the assignmet is denotedf?;
and the map assigned , by the assignmeng is denoted
ry r-x

figure 1 f[;.

The task is to send the messagéom the upper left corner  Notice that a flowp uniquely determines (inductively) to
to the lower right corner and to send the messggfom each edge: = (v, w) (as well as to each target nodg a
the upper right corner to the lower left corner. We say tHenction 22 : A® — A (or Efj : A" — A) that expresses the
lower left (lower right) node requires (requiresy) and write flow through the edge (target nodet;) as a function of the

this requirement as : y (r : x). The messages,y € A messagesn,my,...,m, € A.

are selected from some finite alphabkt Assume that each The flow through the edgee = (v, w)
information channel can carry at most one message at a tirise.  (obviously) defined by  the  equation
If the messages andy are sent simultaneously there is &% (x1, z2,...,%x) : fg(hﬂulyv),hfuzyv), .. .,hfuk’v))
bottleneck in the middle information channel. On the othevhere (ul,v),(ug,v),...,(uk,vg are all incoming

hand if we, for example, organis¢ as a commutative groupedges to v. The flow through each edgds;,u) €



E is given by ]_lpsl_u)(xl,xg,.-.,fn) = xzj. eachforward solution has some channel (edge) that carries an
Finally, the flow arrivfhg at nodet; is given by information flow that depends on all ‘input’ messages (ile |

R (w1, @2, an) = fg(i_zfuw), hfuzyv), c hfuw)) z +y + z depends on the messageg andz). On the other

where(uq,t;), (uz2,t;), ..., (ux, t;) are all incoming edges to hand innone of the ‘backward’ solutions is there a channel

t;. (edge) that has an information flow that depends on more than
A flow p is a solutionto N (over the alphabetd) if two input messages.

BZ (z1,22,...,2,) = z; for each target node;. A multiple- In this paper | state and prove two curious theorems con-

unicast information networkV is solvableover the alphabet cerning multiple-unicast information networks. Accorglito
A if there exists a flowp that is a solution toN (over the one of the theorems there exists a multiple-unicast inftiona

alphabetA). network N which is solvable (over an alphabet of sizg but
Expressed less formally, a flow is a solution if messag#é1ere the dual information network not is solvable (over
mi,mo,...,m, are sent from the source nodes to thein alphabet of size). Expressed in ordinary everyday terms:

corresponding target nodes. A flow specifies how the messages ) i i i i
are transmitted, mixed, and transformed through the nétwo here exists an information network configuration such that
A flow is a solution if for each choice of "input", the message@ set ofk users 68_ USETS In my c_onstructlon) n gen_(_aral can
are sent correctly to their destinations. send messages without congestion (or delay) to théirends

In general instantenous information networks might not l{éézt;rlend_s): O? thihOthfr har;d the fnenci; cann%t rleply back
multiple unicast and have different type of requirement rghe 0 the recipients without creating congestion (or delay).

one message, for example, might have more than one deStl‘I“he other theorem states that for linear maps such a situatio

_nation. It i_s straightforward to modify the aboye deﬁ”im .cannot appear. Maybe this might appear to be what we would
include this case. However we do not need this generalnsatl%xpect, but I will try to convince the reader that this regsilt

but interested readers might, for example, consult [8] forrﬁore surprising that it might appear at first!

more gﬂ(enerzl qlzfiniltjo_n.f For a mUItiple'l;R;Ea,St ir;)for_maéio To see this it has to be appreciated that for many information
Eetwor N t e" (ija ('jr_] ormanonfne(;[worm '3 0 tam_e networks there seems to be (at least from the superficidl) leve
y reversing all edge directions of edgesinand reversing 54y any relationship between their linear solutions, treir

_the role_ of source and target nodes. N_otlce_that thF_“ dydear solutions to the dual (reverse) problems. We alresady
information networkN'* (of a multiple-unicast information an example of this in figure 2 where each forward solution
network) is a multiple-unicast information network. looks very different from each backward solution.

Infigure 2 (a) a multiple-unicast information netwalkis o some classes of information networks the messages have
given. The information flow problenV is solvable (over any (4 fiow through completely different regions of the network
alphabet), and a natural solution (that works for any alphatbepending on whether “forward” or “backward” solutions

A that is organised as an abelian group) is indicated. In figuiga considered. To illustrate this consider, for examphie, t
2 (b) the dual information flow problemV< is considered. network in figure 3.
b

This problem also has a solution as indicated. a
X y z r X 1z
) a
/ N
X lx+y z y+x ath
X4y l xty+z ‘ X4z T 74
y a+b
y+x
l X+y+z TXJ'Z X
Y| V=9 z¢ X ‘\x
z z
As usual assume that each channel can carry at most one
@ messagen from some finite sed of potential messages. The
(b) fig 2 task of the network in figure 3, is to send messaggsas
Notice that the ‘forward’ solution in the information net-well as messages, , zo, ..., x, from the upper source node
work N in figure 2 (a) is quite different from the ‘backward’to the target nodes at the bottom of the network. Each target
solution in figure 2 (b). Actually any forward solution diffe node requires one of the messagglsand z1, zo, ..., 2, (@

from any backward solution. It can, for example, be showh thaode labelled- : y is required to reconstruct message



Consider also the reverse problem (the dual problem) whérke definition of R-linarity (when R is a *-algebra) is very
the direction on all edges has been reversed. The informatgeneral. The definition include many natural examples from
network in figure 3 might (or might not) have a solution ovelinear algebra and ring theory.

a given fixed alphabet. This depends, of course, on the exac{neorem 1
layout of the regiorf). What is certain is that channél is

) : - Let NV be a multiple-unicast information network. Let
forced to transmit message(or a permutationr(a)) into the

N7 be the dual multiple-unicast information network

region2. Thus in any solution, the messajgeannot have any where all edge directions are reversed, and the role
influence on any flow inside regic. of targets and sources reversed. Létdenote the
In other words: underlying alphabet, and assume that it is organized
Messageb does not enter or have any influence on as a commutative grou@ = (4, +).
events in regiorf2 in any downward solution Let R be a *-algebra acting od. Then the number

This is in sharp contrast to the situation in the dual problem of distinct R-linear solutions toN (over A) is

where messages have to be sent from the bottom to the top |dentL|icaI to the number of distindt-linear solutions

of the network. In this case messalgenust enter the region to N* (over A).

Q through channeB. And messagé must be sent through The theorem has a number of consequences. To state these
the area() such that edged is able to send a function thatl introduce the following notions.

depends on both andb (e.g.a + b) In other words: Assume that the alphabet is organised as a figld=

Messageb enters regioni2 and affects events inside (4, +; >) (in which casg A| hasp" elements for some prime

the region as well as the message through edga humberp andk € N). In this case we say a flow iscalar

each upward solution linear (or just linear) if each function f.(z1, 22, ...,2k) IS

. . . . inear i.e. of the formfe(zl,zg,...,zk) =21+ Xozo+. ..+
This and other examples make it easier to appreciate the tjagik With Ay, Aa, ... \x € F. Notice thatF naturally acts on

thz?rthlmear So'TtlonS Cin alwazsdbe reverfsedh. dit i A (since eachr € F defines a map : A — A defined by
e example can be pushed even further and It is n79(ta) = ra). The setRy := F) of these actions is closed under
hard to generalise the construction, and construct infdoma

ks wh : ¢ composition, and contains the identity map (since F'). And
networks w (.er:aﬂal arg(T S.@i’y?’ T ’yrd(.) mgssages nEverthe identity operation: : Rr — Rpr makesRr a *-algebra
enters a regiorf2 in solutions in one |rect|oq, ut w €r€(since Ry is commutative). Thus Theorem 1 applies:
all messagey, ys, - ..y, have to enter the regiofd for all

solutions of the dual flow problem. This observation might Corollary 2 [13]

suggest that we can get an irreversible information network AssumeA is organised_ as a field_«“ = (AH_D ).
by simply making sure that a regi@his getting ‘over heated’ Then N rzlas a scalar linear solution over if and
with information flows in one direction (by forcing many flows only if N has a scalar linear solution over

into the region), while the flows into the regiéhare keeptat  Unknown to me this result was first (as pointed out by R.
a reasonable level in the dual problem. But as it turns outsoioetter) proved in [13] (Theorem 5) where the authors based
other region (outsid&) is then bound to get ‘over heated’. Satheir proof on Forney’s Duality Theorem [10].
even though the reverse (dual) problem might be solvable inAnother important case appears whéris a finite dimen-
region {2 somehow miraculous (whatever we do) congestiagional vector spac® = (A, +, F') over a (finite) fieldF. In
will always appear somewhere else!! this case a flow isnatrix linear (or justlinear) if each function
This fact follows from quite a general theorem (Theorem 1j.(z1, 22, . . ., zx) is linear i.e. of the forny.(z1, 22, . . ., 2x) =
that states that under quite general conditidhand the dual Aiz; + Aozo + ... + Mgz Where A\q, \a, ..., A\, are linear
problem N? in fact have the same number of solutions.  maps mappindg/ to V (or equivalentd x d matrices with
To state Theorem 1 assume thhas a commutative group entries fromF', whered = dim(V')). Notice that each linear
structure (i.e.G = (4,+)). Let R be a space of functionsmap in Ry = Lp(V,V) mapsV to V' and thus naturally
mappingA to A. We say thatR actson A. Throughout the acts on A. The setRy of linear maps fromV to V is
paper | assume is closed under compostion and contains theosed under composition and contains the identity magésin

identity map1 defined byl (z) = « for all z € A. 1 € Lr(V,V)). Matrix transposition defines a *-operation that
A flow is R-linear if each functionf.(z1, 22, . .., 2;) is of  satisfies axioms (i)-(iv). ThusRy can be organised as a *-
the form f.(z1, 22, ..., 2k) = Ai(21) + Xa(22) +... + \(2) @lgebra and Theorem 1 applies:
whereA;, Ag, ..., \p € R, Theorem 3
The spaceR is a *-algebra if there exists a map R — R Assume A is organised as a vector spade =
which satisfies the identities: (A,+, F). Then the number of matrix linear solu-
tions to NV over A is identical to the number of matrix
(i) (a+Db)* = a* +b* linear solutions taV¢ over A.
(i)  (ab)* = b*a* This shows that not only doed’ has a (matrix) linear
s solution if and only if N has a (matrix) linear solution, but
(il (a®)* =a in fact the two problems have exactly the same numbers of

(iv) 1*=1 distinct solutions.



In general the alphabet might also be organised as a finite To defineN unambiguously, | fix an ordering of all cross-
commutative ringR (with unity). Since R naturally acts on ings. Any fixed ordering will work, but | choose the lexo-
A, is closed under multiplication (i.e. the actions are abseraphic ordering of th8-element subsets ¢fi, 2,3,4,5,6,7}.
under composition), sinc& contains the identity map (sinceThe variables are enumerated starting with the variables-as
1 € R) and sinceR is commutative (is a *-algebra) Theorenciated the smallest sets first. The reader can check thaisin th
1 applies: assignment the variablg corresponds to the s¢t, 2,3}, the

Corollary 4 variable z;¢ corresponds to the sg®, 3,4}, the variablezyg

AssumeA is organised as a commutative riiy= 10 the set{3,4,5}, the variablezs, to the set{4,5,6} and
(A4,+,x) with one element. Then the number ofinally variablezs; corresponds to the s¢6,6,7}.

linear solutions toN over A is identical to the | Will show:
number of linear solutions t&v¢ over A. Theorem 5
In this paper | present two proofs of Theorem 3. The The multiple-unicast information network  in fig-
first proof uses ideas | introduced in [18] first to prove two ure 4 has a solution over alphabets of size
Theorems (Theorem 7 and Theorem 9). These theorems are  The “dual” multiple-unicast information network ¢
interesting in their own right. When combined with Lemma 8 is unsolvable over alphabets of size
the Theorems entail Theorem 3. The solution for the problemV allows the 38 source

The second proof (that was added in the revised versigressages to be sent through the network along the arrows
of the paper) in fact proves Theorem 1 that is stronger thémtheir destinations (target nodes) so each of3enessages
Theorem 3. The proof uses an idea that resemBdgaman’s always arrives correctly at their destination.
path integralin quantum physics! In the dual problemN<¢ only 37 out of the total of38

messages can (expressed in non-technical terms) be geedant

any information network is reversible with respect to linea
solutions. However in general (where solutions might be-non Il. GRAPHS AND THEIR GUESSINGNUMBERS

linear) there exist irEevyersZibIe information networks. The first proof of Theorem 3 follows from two theorems

(Theorem 7 and Theorem 9) that are interesting in their own
right. The second of these Theorems (Theorem 9) was first
%& introduced in [18], but for completeness | include and prove
this Theorem in this paper. The guessing number of a directed
graph( is defined by introducing a simple cooperative game
that is played orG.

Let G = (V,E) be a directed graph on vertex sgt =
{1,2,...,n} and lets € {2,3,...}. | define a cooperative
game (GuessingGar®, s)) that is played on the grap@'.

The vertex setV = {1,2,...,n} representsn players.

Each player is assigned randomly (and independently) a die

value from a fixed setd = {1,2,...,s} of s elements.

No player knows the value of their own die. Each player

v € {1,2,...,n} sends the value of their die {1,2,...,s}

to each playew € {1,2,...,n} with (v,w) € E. In other
words, each node receives dice’ values from a sef,, :=
{veV:(vw)e E}.

Each player has to guess the value of their own die. We want
to calculate (assuming the players have agreed in advanae on
guessing strategy) the probabilityp = p(G, s, p) that all the
players (nodes) simultaneously guess their own dice values
Formally, a guessing strategy is a collection of functions
- one functionf; for each vertexj € V = {1,2,...,n}
and with one argument for each incoming edge. If the nodes

exory ez figure 4 1,2,...,nin G are assigned values, as, ...,a, € A node

Consider the information netwotk in figure 4. It contains j guess that their own die value §(a;,, ai,, ..., ai,;). An
38 source nodes angB target nodes. It hagvertical channels optimal guessing strategy is a strategy for which the value
which | will refer to as channel, 2,3,4,5,6 and7. For each of p(G, s, p) is maximal. Since there is only finitely many
3-element subsé’ C {1,2,3,4,5,6,7} | introduce a3-way guessing strategies there always exist one or more optimal
crossing as illustrated in figure 4. For each of #%eof these guessing strategies. The maximal value pgt7, s, p) - the
3-way crossings | introduce a variable denoting the messagevalue being achieved whep is optimal - is denoted by
(or flow of messages) | want to send along 8aevay crossing. p(G, s).

2

[A)

A

:

Z

[A)

SN I
NN

A

A

(R

Iz

SN AN
A T’(\
K/ N

R




At first glance it might seem that the players can nevdhis can be displayed as a row vectow) ,,\; ..., A, )

do better than pure (uncoordinated) random guessing (whémat is multiplied by the coloumn vectofas,as, ..., a,)
players randomly and independenly each making a randémorder to get the value guessed by nodeThe matrix
guess in{1,2,...,s}). In other words, it might seem thatM?* := (Afj)lgingn, with entries beingl x d matrices over
p(G, s, p) is always independent aff (and p) and given by F uniquely determine (when it is multiplied by the vector
(%)”. However, a little reflection shows that(G,s,p) in  d:= (a1,as,...,a,) of the actual dice values of thenodes)
general can be much higher thah)™ for many graphs. Let, the guessed vect@9 css := (a{"***, af"“**, ... ag"es®).

for example,G be the complete grapK,,. In this graph each  The players all guess correctly their own die value exactly
player has access to all dice values except the value of theliena = a9“¢** i.e. wheneverM*ad = &, or equivalently,
own die. If the players, for example, assume (as their ciiec wheneveve(M?—1)d = 0 wherel is then xn identity matrix
guessing strategy) that the sum of all dice values@smodulo (with d x d identity matrices as entries). Now this product can
s, one player guesses correctly his/her own die value if abe written as(M* — I)d = 0 where we viewM? and I as
only if all players guess correctly the value. In other wordsd x nd matrices overF' and viewa as and-dimensional
p(Kn,s,p) = p(Kn,s) = 1 andp is an optimal guessing vector overF.

strategy. Theguessing numbér = k(G, s) of a directed graph ~ From this we get:

G is defined as the unique numblethat satisfies the equation [emma 6

(HIVI=F = p(G, 5). The complete graphk,, on n nodes has Let G be any directed graph, and let be ad-
guessing numben — 1. Notice that the players all correctly dimensional vectorspace over a finite fieltl For
guess the value 01_‘ their own dice with_a factor—! better each linear guessing strategyhe set of dice values
than pure uncoordinated random guessing. @ where each player guesses correctly their own die
In general, a directed gragh has guessing numbé(G, s) value is a linear subspace (of thel-dimensional
if the players have a strategy so they all correctly guess the vectorspace oveF). Its vectorspace dimension (over
value of their own dice with a factor*(¢#) better than pure F) is given bynd — rankM?.
uncoordinated random guessing. The probability that all players are correct is given
The guessing numbéi(G, s) of a directed graph depends by p(G, s, p) = || —rankeM?
in general on the direction of the edges @h Theorem 5 PP N, o
gen: ) 9 The linear guessing numbé(G, | A|, p) is given by
(combined with Theorem 7) can be used to show that there k(G,|F|, p) = nd—rankM”
) ) - d .

exists a graphG' such thatk(G,2) # k(G9,2) where G¢
is the dual graph that appears fraghby reversing all edge
directions. However, | will show that if the players use hne
guessing strategies (in a wide sense) then the corresppncﬂ
guessing numbers are the same dband G°.

The most clear case appearsdifis organised as a field
(i.e. F = (4, 4+, x)). However to get more generality assume
Ais organised as a vector spdée= (4, +, F') (d dimensional
vectorspace over a finite fiel). A linear guessing strategy
is a strategy where each player assumes that their own die
value is given by\,, o(au,) + ... + Augo(ta,) Whered,, ,
for each incoming edgéu;,v) is a linear map\,; : A — A
anda,; € A is the die value assigned to the nodg Let
Lr(V,V) denote the space of linear maps frdmto V.

Notice that each linear guessing strategy is uniquely deter 4
mined by assigning to each (directed) edge&Zian element in p(G;JAD :*p(G S [A)- Furthermo[idc(G, Al p) =
Lr(V,V)i.e. alinearmap : V — V (i.e. ad x d matrix with k(G 1AL, p7) and k(G |A]) = k(G |A4]).
entries inF). Conversely, each assignment that assigns a lind4©of: Depends essentially on the algebraic characterisation
map inLx(V, V) to each edge (i.e. @x d matrix with entries of the linear guessing numbers in Lemma 6, and the fact that
in F) corresponds to a linear guessing strategy. This natufa¢ rank of a matrix is preserved under matrix transposition
one to one correspondance shows that the number of linder
guessing strategies |£x(V,V)|!®l. The dual graptG? has,

Given a linear guessing strategyfor GG, the corresponding
linear guessing strategy fo€? is (with slight abuse of
IQ|tation) denoteg*. From this we get:

Theorem 7

Let G be any directed graph, and let be ad-
dimensional vectorspace over a finite field Let
G be the dual graph off where all edge directions
have been reversed. For each guessing stratdgy
G let p* denote the corresponding guessing strategy
for G4,

The probability that all players are correctdhusing
the linear strategy is identical to the probability all
players are correct it¥? using the linear strategy*
(i.e. p(G, |4, p) = p(G4,|A], p*)). Thus especially

of course| L (V, V)|/El guessing strategies singg| = |E%). [1l. | NFORMATION NETWORK PROBLEMS AS CIRTUIT
Actually, there is a natural one-to-one correspondancgedsst INFORMATION PROBLEMS

the linear guessing strategies@fand G¢ via the labelling of A Circuit is an acyclic graph with input nodés, i, . . . , i,

E that naturally can be viewed as a labelling #8f. More and output nodes;, o,, . . ., 0,,,. Each input node has indegree

specifically, if (v,w) € E has assigned valuec Lr(V,V), 0, and each output node has outdegded&lsually, (in circuit

then (w,v) € E? has assigned the adjoint value (given by complexity) each input i$ or 1, and each node (except the

the transposed matrix of théx d matrix associated to). input nodes) computes a Boolean function if its incomming
As already pointed out, for each fixed strategy each edges, The function valué (or 1) is then passed on, along

node makes a guess giveYf, ,(au,) + ...+ A, ,(uq,). each outgoing edge, to the successor nodes. In the setting of

Ug U



Boolean circuits, nodes are unually referred to(lagolean) Each edge inV’ is a node inN¢. Any two nodes(vy, v2)

gates In general, there is no reason only to restrict thend(vs,vs) (that are edges itN’) belongs to an edge (V¢

computatinal model to the case wherfe = {0,1} and in if and only if (vy = vs3).

generalA can be any set with at least two elements. Notice, thatNs appears fromV by essentially first “blow-
The computational model used in network Coding - the iring up points” (as defined above) and then removing “unnes-

stantanaous information network - is very similar to thewir sary” edges. Notice thatV¢). is identical to(N¢)?.

model. However, there is an difference. In the circuit ea&f®eg |_emma 8

computes one specific function valuebthat is then passed on t The linear solutions to the multiple-unicast problem

all successor nodes. In the instantaneous informationarktw N is in a one-to-one correspondance to the linear

more than one function (in fact one for each outgoing edge) solutions to the Circuit information probleiic. The

is computed at each node. number of distinct linear solutions & and N¢ is
The circuit has the very convinient feature, that each linea the same.

map f : A% — A (into a nodev), can be specified uniquely
by labelling each edge by a linear mapy. : A — A. And
conversely, each labelling of each edgeby a linear map
ge : A — A uniquely determine linear maps: A% — A for ) o . .
each node. Given a Circuit Information ProblenV with source nodes
The next figure shows how any instantainous informatiofi: 52: - - -» S» and target nodesi, ts, ..., .. The graphGy

N network by “blowing up each node” can be viewed as @PPears by identifying nodes and¢; for j =1,2,...,n.
circuit Ng. The following theorem (that was first introduced in [18])

shows an interesting link between multiple-unicast nekwor
problems and guessing games:
Theorem 9
A Circuit information problemN with n input and
n output nodes has a solution over an alphallet
@ if and only if the directed grapldzy has guessing

/\ 5 numberk(G, s) > n if and only if k(G, s) = n.
N % Furthermore, the number of distinct solutionsNais
identical to the number of distinct guessing strategies

p for Gy that achieve guessing number

IV. GUESSING NUMBERS AND THEIR LINK TONETWORK
CODING

figure 5 And the number of distinct linear solutions 19 is
In general each node with indegrée and outdegred; is identicgl to the number Of distinct Iinear guessing
replaced by the graph 4, 4, containingd; x do edges. Nodes strategieg for Gy that achieve guessing number

with in-degreel (or out-degreel) does not need “blowing Proof: Consider the grapliy = (V, E). The setV of nodes
up”. This includes all source nodes and all target nodes. can be divided into two disjoint sets: the setof nodes in
This translation is very convinient (for considering lineaGn that corresponds to the inner nodesNn(i.e. nodes that
flows) for instantanious information networks since each agre not input or output nodes iN), and the set/ of n nodes
signment of a linear functiory : A% — A% in N to a in Gy that corresponds to the input andn output nodes in
nodew uniquely corresponds to an assignment of linear mapé The set/ consists of/Gx| — n nodes. The sub-graph of
ge + A — A to the edges (inKy, 4,) in Np that were Gy restricted tol is an acyclic graph (sincé/ is acyclic).
constructed when blowing up the node Thus as we already noticed for any strategy by the players
Notice if a multiple-unicast information network has (it does not matter which) the nodes Inall guess correctly
corresponding circuifVz (by blowing up its nodes), the dualtheir own die value with probability2)’l. But, this shows
multiple-unicast information networkv¢ has corresponding that the probability all players i guess correctly their
circuit (N?) 5 identical to(Ng). own die value is at most})!!l. Theorem 1 follows because
Some of the edges iNp are not needed and actually wouldhis probability can be achieved if and only if the players/in
make the next lemma invalid! The reason for this is triviadlan(corresponding to the output nodesif are able to work out
boil down to the fact that two edgés, v) and (v, w) when their own die value with probability (given that all players
compared to the single edge, w) has more assigments (e.gin I correctly worked out their own die values).
an assignment ofs to (u,v) andr~! to (v, w) is equivalent  To prove Theorem 9 consider a guessing strategy (i.e. a set
to an asignment of to (u, w)). To resolve this “problem” the of specific functions assigned to the node<iR).
above conversion is modified (and simplified) as follows: If we assign the same functions to the information network
Given an multiple-unicast network. For each source node N (the output nodes, o0, ..., 0, get assigned the specific
of NV add incomming edge of in-degréeFor each target node functions assigned to the noddsin Gy).
of N add an outgoing edge of degréeThis new multiple-  Conversely, any attempted solutionbcan be converted to
unicast network is denotedy’ (the added edges are viewedh guessing strategy by the same assignment. Thus the space of
as source edges and target edges). The Circuit informatioding functions forV is in a natural 1-1 correspondence with
problem N¢ is defined as follows: the space of guessing strategies to the g@gh Furthermore,



a coding function forV solves the information problem fay Similar for message. The two paths to the lowere right
if and only if the conditional probability that the nodes in node have phaseand—1 and thus cancel out, while the single
J guess correctly their own die valuegienthat all "inner" path to the lower left node have phaskeso y only arrive at
nodes (i.e. all the nodes in) guess correctly their own die this node.
values) isl. & In general (towards proving Theorem 1) we assume that
Now Theorem 3 follows by combining Theorem 7, Lemm@ organised as an abelean group wifilés a *-algebra acting
8 and Theorem 9. on A. This covers the case wherk is the additive structure
of afield F = (A, +, x) andR = A denote the set of actions,
V. PROVING THEOREM 1 USING "PATH INTEGRALS" Wherer cR= A is mu|tip|icati0n byr
Now | prove of Theorem 1, based on ideas akin to FeymannTo illustrate the idea with one more example consider again
Integrals! the information network from figure 3 (now represented as a
A very nice introduction to Feymans paths integrals cagircuit) and assume that = {0, 1}.
be found in [9]. Roughly the idea behind the path integral X y z
is that the probability that a Quantum Mechanical system in
statev in a later mesurement is in state can be found by XW/
summing over all possible ways (all possible paths) thessyst
can move from state to statew. A key feature is that the lx Y
contribution of different paths might cancel out if the path
have different phases. It should however be emphasised that
my proof does not presupose any results or knowledge about,, X+y+z
Quantum Physics or the path integral. In fact the proof can - l
if one please - be presented as a simple pice of algebra and
graph theory.
To begin with a simple example that illustrates how ideas
akin to the path integral can be applied in network coding, l
consider the butterfly network in figure 1 (figure 6a). Each
edge is assigned numbersand —1 as illustrated in the next
figure:

X+y+z

z

z z+y

X y X y ) Iz rx

(@) (b)

figure 7

To each node in N is assigned a functiorf, (z,y, z) =
ay® + byy + cyz With ay, by, ¢, € {0,1}.

Notice that each coefficient, is 1 if and only if there is an
odd number of paths from the input node foto v. And each
coefficientd, (c,) is 1 if and only if there is an odd number
of paths from the input node fay (z) to v.

riy r:x r:y rix To each nodev in the dual networkN¢ is assigned a
function f&(z,y, z) = adz+bly+clz with ad, bd, cd € {0,1}.
(@) (b) For this network notice that each coefficiert is 1 if and
figure 6 only if there is an odd number of paths from the source node
in N4 (target node inV) for z to v. And each coefficient?
Two edges assigned value and —1 are out of phase. In (c?) is 1 if and only if there is an odd number of paths from
agreement with Feynman’s treatment the phase of a path is the source node (target node W) for y (z) to v.
product of the phases of edges along the path. If we considehe underlying graptV (and N¢) are both labelled so all
ordinary (classical) routing, the messagecan move to the edges have phadeand this labeling determine all the coding
lower left corner in two distinct ways (see Figure 6b). Ontunctions f, and f¢ as already explained. Since the labelling
path have phase-1 while the other have phase Thus the of N and N¢ are the same, the two solutions indicated in
two paths are out of phase and they cancel out (since tHeure 3 are infact representing tsameunderlying "reality":
add up to0), which implies that messagedoes not arrive at  There is an odd number of paths between a source node
this node. On the other hand messagean, using ordinary and a target node if and only if the source node corresponds
(classical) routing also arrive at the lower right node.sTéan to the same variable required by the target node
only happen in one way and the phase of the pathuhich This property is of course valid faw if and only if its valid
ensure that the messagearrive at this node (with its original for N<.
phase). Suppose we want to find aR-linear solutions taV (as well




as toN?) over an alphabe#. Like already noticed there isa When the R-linear functions in the different nodes

one-to-one correspondance betweerkalinear encodingsand in  No are composed each node transmit a message

labellings of the edges aF (as well asN?) with elements in  f,(z1, 2o, ...,z,) that can be expressed (using path integrals)

R. Letp be an assignment @f with each edge being assigneds (X;X,c p(i; v) fp p)(z;).

an element inR. The element inr € R associated to the o . . . )

edge is thephaseof the edge with regards to the assignment Like n the special case, In generafalinear flow defines

p. Then a pattp, (v1,v2), (v2,v3),. .., (vy—1, v,) With labels aS.OIUtlon if and only @peP(ww fp p = 0k Whered;, =1

Aot ,vss Avgvgs - - - Au,_1, € R haspath integral (or phase if j=kandd;r =01if j #k.

Av, 1, - Avsvs A, 0, @Nd IS denoted p. Notice that [ p By the same argument th-linear p* defines a solution if

is an element inR2. and only if X - p(;, 0,) [, p* = 6 Whered, = 1if j =k
The coding functionf, (z,y, z) = Ay + A2py + Azvz @re  anddj, = 0 if j # k.

determined (using this assignmentsuch that\,, equals the

sum of all paths integrals from input nodeto v, \s, equals  TNiS shows:
the sum of all paths integrals from input nogego v, while
A3, equals the sum of all paths integrals from input nede [emma 10

to v. Let P(u,v) denote the set of paths from to v. For-
mally, we can then writef,,(z,y, 2) = (Zpepi, v J, ) (%) +
(Epep(is,) fp P)(Y) + (Epep(ip,v) fp p)(2).

The assignment is a solution for N if and only if
fol(xvyaz> =T foz(xayvz) =Y andfo3(:c,y,z) =z

Or equivalently the assignmeptis a solution forV if and
only if Spepi; o0 [, p = dji whered, = 1if j = k and
0 =01if j #k.

The assignment* is defined such that* € R is assigned
to the edge(u,v) (in N?) if and only if the assignmenp
assignsr € R to edge(v,u) (in N) the element- € R. In
generalfp* p= (fp p)* wherep* denote the path (in N) in
opposite direction (inv®).

But, then by the same argument as above (and difnce
0 and 1* = 1) p* is a solution for N¢ if and only if
Ep*EP(ij,ok) fp* pr = 5jk Whereéjk =1ifj=k andéjk =0
if j#k.

Thus p is a solution for N if and only if p* is a solution
for N¢.

So far we only considered special networks like in figure 6
and figure 7.

Now let me consider the general case whrenight denote
any multiple-unicast network. The argument is essentidiéy
same | just developed, except that in general the netwérk
might have nodes of in-degree 2 and out-degree> 2. In
this case linear maps cannot be represented just be Iabelin% ) ) ) o
the edges ofV. However by "blowing up" such nodes and onsujer the information network in flgurg 4. A related
removing all superfluous edges, the gralh has the same information network was analysed [17]. | claim:
set of R-linear solutions asV. The R-linear maps inNx are

Let N be an multiple-unicast information flow prob-
lem. There is a natural 1-1 correspondantcee-
tween the class ofk-linear flows for N and la-
bellings of No with elements fromR. This map
maps the set oR-linear solutions ofV onto the set
of R-linear solutions forNc. There is also a natural
1-1 correspondancg’ between the class dt-linear
flows for N and labellings of N4)c = (N¢ )¢ with
elements fromR. This map maps the set @i-linear
solutions for N onto the set ofR-linear solutions
for (Nd)c = (Nc)d.

Furthermoreyp is a R-linear solution forN¢ if and
only if p* is a R-linear solution for(N¢)<.

Theorem 1 follows directly from Lemma 10.

VI. PROOF OFTHEOREMS5

in one-to-one correspondance with labellingof edges in
N¢ with elements inR.
Each R-linear solutionp determines ak-labelling p, and

Lemma 11
The information networkN is solvable over the
alphabet{0, 1}.

eachR-labelling p determine ak-linear solutionp. With slight
abuse of notation, the linear solution and the correspandi
labelling are both denoted by

A labelling determine aRk-linear flow by letting a node
with incomming edgesu, v), (ua, v)

Broof: The 8 vertical channels need to send the messagegs
and z i.e. 8 messages. This is done be introducing the code
(in the sense of error correcting codes) that consists o8the
v).... (ua,v) labelled by 045 (0, 0,0,0,0,0), (1,0,0,0,0,0,0), (0, 1,0,0,0,0,0),
)\ul,va >\’Uz2,’07 ey )\’Uzd,y’U G R tl’ansmlt the messa%l7v(zl) + (0’ 07 1’ 07 0, 07 0>, (07 0, 07 1’ 07 07 0)7 (0’ O7 07 0’ 1’ O7 0),

Auzw(22) o Auyo(za) With z1,29,..., 24 are the messages(o’ 0,0,0,0,1,0) and (0,0,0,0,0,0,1). These8 messages

transmitted fromus, ua, ..., uq. Nofice, that node transmit o yoe only messages send along Theertical channels.
a message that can be expressed &sliaear function of the

messages transmitted from, us, . . . , ug. The solution is indicated in figure 8.
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figure 8
.., 235 the corresponding messageOne-sided activity: This happens iff (s, w) (or f(s,w) + 1)

Consider the reverse (dual) information flow problé¥, in
figure 8 and fix an information flow (it might or might not be
a solution).

For each horizontal crossing a number of different things
can happen (depending on the functigfs, w)). Consider
figure 10. The variablew denotes any of the variables
21,%9,...,235, While s = s(z,y,z) denotes any message
sent through the vertical channel. In genesak a function
depending onc, y and z (see figure 9 and figure 10).

f(s,w)
f(s,w)
w
s s
s

figure 10

A horizontal channel isctiveif the coding functionf (s, w)
can be affected bw.

A horizontal channel isnactive if it not is active (i.e. if
the coding functionf (s, w) can be expressed as a function of
s). If a horizontal channel is active this can happen in two
different ways:

is send accross each of the three horizontal channels. ®miven by one of the expressioss), sw, sw + s, sw + w or
arrival two of these message are without error. Thus eagly + s +w. In each of these cases the horizontal channel can
messagez; can be reconstructed using a simple “majorityforce f (s, w) to take a constant value. ff(s, w) = sw w =0
decision in the target node that requires Thus N has a force f(s,w) = 0. Similarly for f(s,w) = sw + w, w = 0
solution.

123
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force the functionf(s,w) = 0. If f(s,w) =sw+z, w =1
force f(s,w) =0 and if f(s,w) = sw+s+w ,w =1 force
f(s,w) =1
Two-sides activity: This happens iff (s, w) = s + w. In this
case the horizontal channel has a choice. It can either force
f(s,w) = 0 by lettingw = s (i.e. by lettingw(z,y,z) =
s(z,y,z)) or it can forcef(s,w) = 1 by lettingw = s+ 1
(i.e. by lettingw(z,y, 2) = s(z,y, z) + 1).

In both cases it is possible to construct a horizontal messag
w that ‘blocks’ the vertical information flows (since the
horizoltal channel can send a message= w(z,y, z) such
that f(s,w) = f(s(x,y,2),w(z,y,z) is independent of, y
andz).

Based on this observation an horizontal channel (corre-
sponding to a variable;) is said toblockthe vertical channel
it is linked to. And we say that the variabtg can be used to
block the vertical channel.

Lemma 12
There is no solution toN? where five variables
Zj1» Zias Ziss Zia and z;;, can be used to block five
distinct vertical channels.

Proof: Assume thatN? has a solution where five variables
Zj1s %ja» %, 24, @Nd z;; can be used to block five distinct
vertical channels.

Let 51 = s1(z,y,2), 82 = s2(x,y,2),...,87 = s7(x,y,2)
denote the vertical flows. By definition there exists five
functionswj, (z,y, 2), w;, (2, y, 2), . . ., wj, (z,y, z) such that
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five of the functionssy,ss,...,sy are constant functions There arel05 vertical crossings ofV so all this argument
independent of, y and 2. But then there is only two vertical shows is that one of06 networks (thel05 networks(N')?

channel to sen@ messages which is impossible, & or N itself) is irreversible. Of course since we have already
To get a contradiction | show the following simple combishowed thatV is irreversible, none of the networka/’)¢ are
natorial lemma: in fact solvable.
Lemma 13 Item (i) follows using one of the most fundamental results on

Let S ={1,2,3,4,5,6,7} be a set with7 elements forbidden configurations of matrices:
and let/ be a choice function that for eagkelement  Proposition 16 [20], [21], [22]

subsetB selects an elemert{B) € B. Then there Let K, denote thekx 2% matrix of all possiblg0, 1)-
exists a5-element subselV C S as well as5 3- columns onk rows. Then eachn x s (0, 1)-matrix
element subsets3;, Bo, B3, B, and Bs such that A (with no repeated columns) has configuration
W = {l(B1),l(B2),l(Bs),l(B4),l(Bs)}. K. (i.e. a submatrix ofA is and row and column

Proof: Pick any 3-element subs& and letv; := [(B;). Let permutation ofF) if

Bs; be any3-element subset of\{v; } and letv, := [(By). Let m m m

B3 be any3-element subset &f\ {v1, v2} and letvs := {(Bs). s = <k: B 1) + <k: B 2) + ...+ <0> +1

We continue like this.

Let By be any3-element subset of \ {vi,v2,v3} and The value ofs is in general the best possible.
let vy := [(By4). Finally, let B; be any3-element subset A very basic induction proof of this can be found in [3].

of S\ {v1,v2,vs,v4}. The setS\ {v1,vs,vs,v4} contains For my application | only need the very special case where
3 elements so there is such a set. hgt:= [(Bs). The k=2 andm = 6, which givess = O+ Q) +1=5.

. ! 1 0
setW = {v1,v2,v3,v4,v5} CONtains5 elements and?V =

Lemma 17
{Z(Bl_>’_Z(BQ_)’1(33)71(34)71(35’)}"” Consider again the networK in figure 4. Assume
This implies: that one of the three horizontal channels that links
Lemma 14 a variable z; with the node where it is required
For any solution taV¢ (over A = {0, 1}) there exists is removed. Then the resulting netwoX has no
five variablesz;,, z;,, zj,, 2j, and z;, that can be solution overA = {0,1}.

used to block five distinct vertical channels. Proof: Consider the networl/’. The7 vertical channels send
Proof: Assume thatV¢ has a solution ovel = {0,1}. FOr messagess, so, ..., s;. Consider the variable; for which
each variablez; we have naturally associated 3aelement there is only two vertical crossings (channels) &. The
subsetB; C {1,2,3,4,5,6,7}. Leti(B;) denote the smallest message; can (if we assumeV’ is solvable) be reconstructed

number of the3 vertical channels that correspond to an activeom two messages that must be on one of the following forms:
channel. Using Lemma 8, notice that there exists al¥et

corresponding to five variables, , z;,, . . ., z;; such that each (1) s; + z; and sy, + 2;
of the variables can be used to block one vertical charkels.
This Lemma shows (when combined with lemma 12) tha&) s
Lemma 15 '
The information networkV< is not solvable over the 3) s
alphabetA = {0,1}. ’

Theorem 5 now follows by combining Lemma 11 an@ase (3) give no hope of reconstructing Case (2) only make

+ z; and sy,

and sy.

Lemma 15. is possible to reconstruet; if s; or s; + s is a constant (i.e.
independent of,y and z). Finally, z; can only be derived
VII. A NON-CONSTRUCTIVE PROOF OH HEOREM 5 from 1 if at least one of; or s, are constant. In all cases one
Finally let me present another proof of Theorem 5 that Rf the vertical channels is superfluous (since it is only sepnd
based on two facts: “dummy” information) and is not needed for transmitting the

messages;, y and z. Assume, channet is sending dummy
messages. For each of theettings of the variables, y andz
consider the flow(sy, s2, s3, s4, S5, s¢) throgh the6 remaining
vertical channels. We can list the8alistinct words as & x 8

« (i) Each solution toN requires the use oéll vertical
crosssings.

« (i) If there is a solution toN? it doesnot need the use
of all vertical crossings.

When combined we infer thagither N has no solution (0 = 1)-matrix:
(in which caseN is irreversible)or N¢ has a solution, in S11 S12  S13 S14 S15 Si6 Si7  S18
which case we according to (i) can remove one crossing S91 S92 893 So4 So5 S92  So7  S98
from N and obtainN’ such that(N’)? still has a solution. S31 S32 S33 S34 S35 S36 S37  S38
But, since according to (i) any solution f§ requires the use S41  S42 843 Saa  Sa5  Sag  Sa7 S48
of all vertical crossingsN’ has no solution. ThugN’)¢ is S51  Ss2  Ss3  Ssa Ss5 Sse ST Shs

irreversible. 861 Se62 S63 Se4 S65 Se6 S67  Ses



But then the this matrix contains (according to the special
case of Proposition 16 fot = 2 andm = 6 sinces = 8), the

configurationk, i.e.
00 11
01 01

In other words there existsj € {1,2,3,4,5,6} with i # j
such thats;, and s; can send all possible pairs ¢6 — 1)-
messages. Now let € {1,2,...,6}\ {i,5} be arbitrary and
let z, denote the variable that corresponds to 3helement
subset{s, j,r} C {1,2,3,4,5,6}. The message,, has to be
constructed from three messages. They might for example 1H@
Zu+$i, zu+$; andz,+s, (the other cases e.fs;, 2, +5;, 2+ 8]
Sr)s (Sis 85y 2utSr), (Zu+ i, 84, 20 +5,) are treated similary).
The task is to derivez, from these three messages. Since
howevers; ands; take all4 combinations we conclude that ]
must be uniquely determined By ands;. Butr was chosen [1q
arbitrarily in {1,2,...,6} \ {4,7}, so we conclude that, is
uniquely determined frors; ands, for eachr € {1,2,...,6}.
This is a contradiction since; ands; can determine at most
4 words and not th& words required. &

(2]
(3]
(4]
(5]
(6]

[11]

[12]

[13]

Item (ii) follows from the slightly stronger statement: 4]

Lemma 18
There is no solution (oved = {0,1}) of N? in

) ) ) [15]
which all vertical channels are active.

Proof: Assume that there is a solution to the information flol#®!
problem N4 where all105 = 3 x 35 horizontal channels are
active. We consider only the variableg z1¢, 226, 232 andzss.
The variablez; affects channels, 2 and3, z14 affects channels
2,3, 4, 206 affects channel8, 4, 5, 23, affects channeld, 5,6
and z35 affects channels, 6 and7. From this we can clearly [19]
‘fam’ channell, 2, 3,4 and5. To see this we choose the valu
of z; (21 might be a function ofr,y and z) such that any
message that passes through chanrislindependent of,y  [21]
and z. Next, choose a value of;s such that any messagey,,,
that passes through chanrielis independent ofc,y and z.
Then the variableyg is selected (as a suitable functionagfy
and z) such that any message that passes through chann&®
is independent of, y and z. Finally, after suitable functions
232(2,y,2) and z35(x,y, z) have been chosen, the first fivd24l
vertical channels have been blocked in such a way that no
information aboutr,y or z can be transmitted through thesees)
channels. This leaves open only the vertical chanfedsd
7 and thus onlyd messages can be sent through the vertical
channels. To transmit the messagey and z successfully
through the next work we need to be able to s8ndessages
through the vertical channels. This is a contradiction dmncbt
we conclude that not all horizontal channel are acée

An anonymous referee pointed out that this lemma in fact
shows that one di x 3+1 = 16 rather that one a5 x3+1 =
106 specific multiple-unicast problems are irreversible. isth
can be improved further using the type of argument just given
is, of course, somewhat irrelevant since we know that only
N and none of thel05 other multiple-unicast problems are
irreversible overd = {0, 1}).

[17]

(18]
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