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Abstract— It is shown that there exist information networks
where messages can be sent (utilising Network Coding) more
easily in one direction than in the opposite direction. Thisis
valid even though each channel is assumed to have the same
capacity in both directions.

It is shown that irreversible information networks only have
solutions that use non-linear Network Coding. I argue that this
result is more surprising than might appear at first sight and that
it follows using ideas resembeling the path integral in Quantum
Mechanics.

I. M AGIC IN INFORMATION NETWORKS

Network Coding is a new area of multi-user information
theory that has expanded dramatically within the last few
years. Network Coding is based on a simple mathematical
model of network flow and communication first explicitly
stated in its simplicity in [2]. Recently, ideas related to Net-
work Coding have been proposed in a number of distinct areas
of Computer Science and engineering (e.g. broadcasting in
wireless networks [25], [24], [23], data security [4], distributed
network storage [6], [1] and wireless sensor networks [16]).
Network Coding has also a broad interface with various
Mathematical disciplines (error correcting codes [19], [5],
[11], circuit complexity [17], information theory [12], algebra
[15], [14] and graph theory).

The basic idea underlying Network Coding has been ex-
plained in many papers e.g. [15], [2], [17], [7]. The idea can
be illustrated by considering the "butterfly" network in figure
1.
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The task is to send the messagex from the upper left corner

to the lower right corner and to send the messagey from
the upper right corner to the lower left corner. We say the
lower left (lower right) node requiresx (requiresy) and write
this requirement asr : y (r : x). The messagesx, y ∈ A

are selected from some finite alphabetA. Assume that each
information channel can carry at most one message at a time.
If the messagesx and y are sent simultaneously there is a
bottleneck in the middle information channel. On the other
hand if we, for example, organiseA as a commutative group

(A,+) and sendx + y ∈ A through the middle channel, the
messagesx and y can easily be recovered at ‘output’ nodes
at the bottom of the network (sincey = (x + y) − x and
x = (x+ y) − y).

It is often convenient to think about each message as a
flow of elements fromA. Viewed this way we can consider
messagesa andb as sequences. . . a−2, a−1, a0, a1, a2 . . . and
. . . , b−2, b−1, b0, b1, b2, . . .. The solutiona+b then consists of
the sequence. . . , a−2 + b−2, a−1 + b−1, a0 + b0, a1 + b1, a2 +
b2, . . . being sent through the middle channel.

The information network in figure 1 is an
example of a multiple-unicast information network.
In general a multiple-unicast information network
N = (V,E; s1, t1; s2, t2; . . . , sn, tn) is an acyclic graph
with source nodess1, s2, . . . , sn of in-degree0 and target
nodest1, t2, . . . , tn of out-degree0.

Informally, the idea is (repeatedly) to send messages
m1,m2, . . . ,mn ∈ A from the source nodes to the target
nodes. More specifically messagemj has to be sent from
source nodesj to target nodetj (nodetj requiresmj). The
messages are chosen from an alphabetA that throughout the
paper is assumed to be finite, containg at least two letters.

Formally, associate to each source nodesj a variablexj and
associate to the corresponding target nodetj the requirement
r : xj . Furthermore associate to each edgee = (v, w) in N

with v having in-degreek(e) ∈ N a k(e)-ary function symbol
fe. In the casev is a source node a1-ary function symbol is
associated to(v, w).

For an edgee = (v, w) each of thek(e) incoming edges is
associated to one of thek(e) arguments offe. Finally, to each
target nodetj of in-degreek(tj) ∈ N is associated ak(tj)-
ary function symbolftj

. Each of thek(tj) incoming edges is
associated to one of thek(tj) arguments offtj

.
A flow ρ for the multiple-unicast network coding problem

N (over the alphabetA) is an assignment that to each function
symbolfe (or ftj

) assigns a map̄f : Ak(e) → A (f̄ : Ak(tj) →
A). The map assigned tofe by the assignmetρ is denotedf̄ρ

e ;
and the map assigned toftj

by the assignmentρ is denoted
f̄

ρ
tj

.
Notice that a flowρ uniquely determines (inductively) to

each edgee = (v, w) (as well as to each target nodetj) a
function h̄ρ

e : An → A (or h̄ρ
tj

: An → A) that expresses the
flow through the edgee (target nodetj) as a function of the
messagesm1,m2, . . . ,mn ∈ A.

The flow through the edge e = (v, w)
is (obviously) defined by the equation
h̄ρ

e(x1, x2, . . . , xn) : f̄ρ
e (h̄ρ

(u1,v), h̄
ρ

(u2,v), . . . , h̄
ρ

(uk,v))

where (u1, v), (u2, v), . . . , (uk, v) are all incoming
edges to v. The flow through each edge(sj , u) ∈
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E is given by h̄
ρ

(sj ,u)(x1, x2, . . . , xn) = xj .
Finally, the flow arriving at node tj is given by
h̄

ρ
tj

(x1, x2, . . . , xn) := f̄ρ
e (h̄ρ

(u1,v), h̄
ρ

(u2,v), . . . , h̄
ρ

(uk,v))

where(u1, tj), (u2, tj), . . . , (uk, tj) are all incoming edges to
tj .

A flow ρ is a solution to N (over the alphabetA) if
h̄

ρ
tj

(x1, x2, . . . , xn) = xj for each target nodetj . A multiple-
unicast information networkN is solvableover the alphabet
A if there exists a flowρ that is a solution toN (over the
alphabetA).

Expressed less formally, a flow is a solution if messages
m1,m2, . . . ,mn are sent from the source nodes to their
corresponding target nodes. A flow specifies how the messages
are transmitted, mixed, and transformed through the network.
A flow is a solution if for each choice of "input", the messages
are sent correctly to their destinations.

In general instantenous information networks might not be
multiple unicast and have different type of requirement where
one message, for example, might have more than one desti-
nation. It is straightforward to modify the above definitions to
include this case. However we do not need this generalisation,
but interested readers might, for example, consult [8] for a
more general definition. For a multiple-unicast information
networkN the “dual” information networkNd is obtained
by reversing all edge directions of edges inN and reversing
the role of source and target nodes. Notice that the dual
information networkNd (of a multiple-unicast information
network) is a multiple-unicast information network.

In figure 2 (a) a multiple-unicast information networkN is
given. The information flow problemN is solvable (over any
alphabet), and a natural solution (that works for any alphabet
A that is organised as an abelian group) is indicated. In figure
2 (b) the dual information flow problemNd is considered.
This problem also has a solution as indicated.
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Notice that the ‘forward’ solution in the information net-

work N in figure 2 (a) is quite different from the ‘backward’
solution in figure 2 (b). Actually any forward solution differs
from any backward solution. It can, for example, be shown that

eachforward solution has some channel (edge) that carries an
information flow that depends on all ‘input’ messages (i.e. like
x+ y+ z depends on the messagesx, y andz). On the other
hand innone of the ‘backward’ solutions is there a channel
(edge) that has an information flow that depends on more than
two input messages.

In this paper I state and prove two curious theorems con-
cerning multiple-unicast information networks. According to
one of the theorems there exists a multiple-unicast information
networkN which is solvable (over an alphabet of size2), but
where the dual information networkNd not is solvable (over
an alphabet of size2). Expressed in ordinary everyday terms:

There exists an information network configuration such that
a set ofk users (38 users in my construction) in general can
send messages without congestion (or delay) to theirk friends
(38 friends). On the other hand the friends cannot reply back
to the recipients without creating congestion (or delay).

The other theorem states that for linear maps such a situation
cannot appear. Maybe this might appear to be what we would
expect, but I will try to convince the reader that this resultis
more surprising that it might appear at first!

To see this it has to be appreciated that for many information
networks there seems to be (at least from the superficial level)
hardly any relationship between their linear solutions, and their
linear solutions to the dual (reverse) problems. We alreadysaw
an example of this in figure 2 where each forward solution
looks very different from each backward solution.

For some classes of information networks the messages have
to flow through completely different regions of the network
depending on whether “forward” or “backward” solutions
are considered. To illustrate this consider, for example, the
network in figure 3.
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As usual assume that each channel can carry at most one

messagem from some finite setA of potential messages. The
task of the network in figure 3, is to send messagesa,b as
well as messagesx1, x2, . . . , xn from the upper source node
to the target nodes at the bottom of the network. Each target
node requires one of the messagesa,b andx1, x2, . . . , xn (a
node labelledr : y is required to reconstruct messagey).
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Consider also the reverse problem (the dual problem) where
the direction on all edges has been reversed. The information
network in figure 3 might (or might not) have a solution over
a given fixed alphabet. This depends, of course, on the exact
layout of the regionΩ. What is certain is that channelA is
forced to transmit messagea (or a permutationπ(a)) into the
regionΩ. Thus in any solution, the messageb cannot have any
influence on any flow inside regionΩ.

In other words:

Messageb does not enter or have any influence on
events in regionΩ in any downward solution.

This is in sharp contrast to the situation in the dual problem,
where messages have to be sent from the bottom to the top
of the network. In this case messageb must enter the region
Ω through channelB. And messageb must be sent through
the areaΩ such that edgeA is able to send a function that
depends on botha andb (e.g.a+ b) In other words:

Messageb enters regionΩ and affects events inside
the region as well as the message through edgeA in
each upward solution.

This and other examples make it easier to appreciate the fact
that linear solutions can always be reversed.

The example can be pushed even further and it is not
hard to generalise the construction, and construct information
networks where a large sety1, y2, . . . , yr of messages never
enters a regionΩ in solutions in one direction, but where
all messagesy1, y2, . . . yr have to enter the regionΩ for all
solutions of the dual flow problem. This observation might
suggest that we can get an irreversible information network
by simply making sure that a regionΩ is getting ‘over heated’
with information flows in one direction (by forcing many flows
into the region), while the flows into the regionΩ are keept at
a reasonable level in the dual problem. But as it turns out some
other region (outsideΩ) is then bound to get ‘over heated’. So
even though the reverse (dual) problem might be solvable in
region Ω somehow miraculous (whatever we do) congestion
will always appear somewhere else!!

This fact follows from quite a general theorem (Theorem 1)
that states that under quite general conditionsN and the dual
problemNd in fact have the same number of solutions.

To state Theorem 1 assume thatA has a commutative group
structure (i.e.G = (A,+)). Let R be a space of functions
mappingA to A. We say thatR acts on A. Throughout the
paper I assumeR is closed under compostion and contains the
identity map1 defined by1(x) = x for all x ∈ A.

A flow is R-linear if each functionf̄e(z1, z2, . . . , zk) is of
the form f̄e(z1, z2, . . . , zk) = λ1(z1) + λ2(z2) + . . .+ λk(zk)
whereλ1, λ2, . . . , λk ∈ R.

The spaceR is a *-algebra if there exists a map∗ : R→ R

which satisfies the identities:

(i) (a+ b)∗ = a∗ + b∗

(ii) (ab)∗ = b∗a∗

(iii) (a∗)∗ = a

(iv) 1∗ = 1

The definition ofR-linarity (whenR is a *-algebra) is very
general. The definition include many natural examples from
linear algebra and ring theory.

Theorem 1:
LetN be a multiple-unicast information network. Let
Nd be the dual multiple-unicast information network
where all edge directions are reversed, and the role
of targets and sources reversed. LetA denote the
underlying alphabet, and assume that it is organized
as a commutative groupG = (A,+).
Let R be a *-algebra acting onA. Then the number
of distinct R-linear solutions toN (over A) is
identical to the number of distinctR-linear solutions
to Nd (overA).

The theorem has a number of consequences. To state these
I introduce the following notions.

Assume that the alphabet is organised as a fieldF =
(A,+,×) (in which case|A| haspk elements for some prime
numberp and k ∈ N ). In this case we say a flow isscalar
linear (or just linear) if each functionf̄e(z1, z2, . . . , zk) is
linear i.e. of the formf̄e(z1, z2, . . . , zk) = λ1z1+λ2z2+ . . .+
λkzk with λ1, λ2, . . . , λk ∈ F . Notice thatF naturally acts on
A (since eachr ∈ F defines a mapr : A → A defined by
r(a) = ra). The setRF := F ) of these actions is closed under
composition, and contains the identity map (since1 ∈ F ). And
the identity operation∗ : RF → RF makesRF a *-algebra
(sinceRF is commutative). Thus Theorem 1 applies:

Corollary 2 [13]:
AssumeA is organised as a fieldF = (A,+,×).
ThenN has a scalar linear solution overA if and
only if Nd has a scalar linear solution overA.

Unknown to me this result was first (as pointed out by R.
Koetter) proved in [13] (Theorem 5) where the authors based
their proof on Forney’s Duality Theorem [10].

Another important case appears whenA is a finite dimen-
sional vector spaceV = (A,+, F ) over a (finite) fieldF . In
this case a flow ismatrix linear(or just linear) if each function
f̄e(z1, z2, . . . , zk) is linear i.e. of the formf̄e(z1, z2, . . . , zk) =
λ1z1 + λ2z2 + . . . + λkzk where λ1, λ2, . . . , λk are linear
maps mappingV to V (or equivalentd × d matrices with
entries fromF , whered = dim(V )). Notice that each linear
map in RV = LF (V, V ) mapsV to V and thus naturally
acts onA. The setRV of linear maps fromV to V is
closed under composition and contains the identity map (since
1 ∈ LF (V, V )). Matrix transposition defines a *-operation that
satisfies axioms (i)-(iv). Thus,RV can be organised as a *-
algebra and Theorem 1 applies:

Theorem 3:
AssumeA is organised as a vector spaceV =
(A,+, F ). Then the number of matrix linear solu-
tions toN overA is identical to the number of matrix
linear solutions toNd overA.

This shows that not only doesN has a (matrix) linear
solution if and only ifNd has a (matrix) linear solution, but
in fact the two problems have exactly the same numbers of
distinct solutions.
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In general the alphabetA might also be organised as a finite
commutative ringR (with unity). SinceR naturally acts on
A, is closed under multiplication (i.e. the actions are closed
under composition), sinceR contains the identity map (since
1 ∈ R) and sinceR is commutative (is a *-algebra) Theorem
1 applies:

Corollary 4:
AssumeA is organised as a commutative ringR =
(A,+,×) with one element. Then the number of
linear solutions toN over A is identical to the
number of linear solutions toNd overA.

In this paper I present two proofs of Theorem 3. The
first proof uses ideas I introduced in [18] first to prove two
Theorems (Theorem 7 and Theorem 9). These theorems are
interesting in their own right. When combined with Lemma 8
the Theorems entail Theorem 3.

The second proof (that was added in the revised version
of the paper) in fact proves Theorem 1 that is stronger than
Theorem 3. The proof uses an idea that resemblesFeynman’s
path integralin quantum physics!

So according to Corollary 2 and 4 as well as Theorem 3,
any information network is reversible with respect to linear
solutions. However in general (where solutions might be non-
linear) there exist irreversible information networks.
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Consider the information networkN in figure 4. It contains

38 source nodes and38 target nodes. It has7 vertical channels
which I will refer to as channel1, 2, 3, 4, 5, 6 and7. For each
3-element subsetW ⊆ {1, 2, 3, 4, 5, 6, 7} I introduce a3-way
crossing as illustrated in figure 4. For each of the35 of these
3-way crossings I introduce a variablezj denoting the message
(or flow of messages) I want to send along the3-way crossing.

To defineN unambiguously, I fix an ordering of all cross-
ings. Any fixed ordering will work, but I choose the lexo-
graphic ordering of the3-element subsets of{1, 2, 3, 4, 5, 6, 7}.
The variables are enumerated starting with the variables asso-
ciated the smallest sets first. The reader can check that in this
assignment the variablez1 corresponds to the set{1, 2, 3}, the
variablez16 corresponds to the set{2, 3, 4}, the variablez26
to the set{3, 4, 5}, the variablez32 to the set{4, 5, 6} and
finally variablez35 corresponds to the set{5, 6, 7}.

I will show:

Theorem 5:
The multiple-unicast information networkN in fig-
ure 4 has a solution over alphabets of size2.
The “dual” multiple-unicast information networkNd

is unsolvable over alphabets of size2.

The solution for the problemN allows the 38 source
messages to be sent through the network along the arrows
to their destinations (target nodes) so each of the38 messages
always arrives correctly at their destination.

In the dual problemNd only 37 out of the total of38
messages can (expressed in non-technical terms) be guaranteed
to arrive ‘unscrambled’ and without delay at their destinations.

II. GRAPHS AND THEIRGUESSINGNUMBERS

The first proof of Theorem 3 follows from two theorems
(Theorem 7 and Theorem 9) that are interesting in their own
right. The second of these Theorems (Theorem 9) was first
introduced in [18], but for completeness I include and prove
this Theorem in this paper. The guessing number of a directed
graphG is defined by introducing a simple cooperative game
that is played onG.

Let G = (V,E) be a directed graph on vertex setV =
{1, 2, . . . , n} and let s ∈ {2, 3, . . .}. I define a cooperative
game (GuessingGame(G, s)) that is played on the graphG.
The vertex setV = {1, 2, . . . , n} representsn players.
Each player is assigned randomly (and independently) a die
value from a fixed setA = {1, 2, . . . , s} of s elements.
No player knows the value of their own die. Each player
v ∈ {1, 2, . . . , n} sends the value of their die∈ {1, 2, . . . , s}
to each playerw ∈ {1, 2, . . . , n} with (v, w) ∈ E. In other
words, each nodew receives dice’ values from a setAw :=
{v ∈ V : (v, w) ∈ E}.

Each player has to guess the value of their own die. We want
to calculate (assuming the players have agreed in advance ona
guessing strategyρ) the probabilityp = p(G, s, ρ) that all the
players (nodes) simultaneously guess their own dice values.
Formally, a guessing strategyρ is a collection of functions
- one functionfj for each vertexj ∈ V = {1, 2, . . . , n}
and with one argument for each incoming edge. If the nodes
1, 2, . . . , n in G are assigned valuesa1, a2, . . . , an ∈ A node
j guess that their own die value isfj(ai1 , ai2 , . . . , aid

). An
optimal guessing strategyρ is a strategy for which the value
of p(G, s, ρ) is maximal. Since there is only finitely many
guessing strategies there always exist one or more optimal
guessing strategies. The maximal value ofp(G, s, ρ) - the
value being achieved whenρ is optimal - is denoted by
p(G, s).
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At first glance it might seem that the players can never
do better than pure (uncoordinated) random guessing (where
players randomly and independenly each making a random
guess in{1, 2, . . . , s}). In other words, it might seem that
p(G, s, ρ) is always independent ofG (and ρ) and given by
(1

s
)n. However, a little reflection shows thatp(G, s, ρ) in

general can be much higher than(1
s
)n for many graphs. Let,

for example,G be the complete graphKn. In this graph each
player has access to all dice values except the value of their
own die. If the players, for example, assume (as their collective
guessing strategyρ) that the sum of all dice values is0 modulo
s, one player guesses correctly his/her own die value if and
only if all players guess correctly the value. In other words
p(Kn, s, ρ) = p(Kn, s) = 1

s
and ρ is an optimal guessing

strategy. Theguessing numberk = k(G, s) of a directed graph
G is defined as the unique numberk that satisfies the equation
(1

s
)|V |−k = p(G, s). The complete graphkn on n nodes has

guessing numbern − 1. Notice that the players all correctly
guess the value of their own dice with a factorsn−1 better
than pure uncoordinated random guessing.

In general, a directed graphG has guessing numberk(G, s)
if the players have a strategy so they all correctly guess the
value of their own dice with a factorsk(G,s) better than pure
uncoordinated random guessing.

The guessing numberk(G, s) of a directed graph depends
in general on the direction of the edges inG. Theorem 5
(combined with Theorem 7) can be used to show that there
exists a graphG such thatk(G, 2) 6= k(Gd, 2) whereGd

is the dual graph that appears fromG by reversing all edge
directions. However, I will show that if the players use linear
guessing strategies (in a wide sense) then the corresponding
guessing numbers are the same forG andGd.

The most clear case appears ifA is organised as a fieldF
(i.e. F = (A,+,×)). However to get more generality assume
A is organised as a vector spaceV = (A,+, F ) (d dimensional
vectorspace over a finite fieldF ). A linear guessing strategy
is a strategy where each player assumes that their own die
value is given byλu1,v(au1

) + . . .+ λud,v(uad
) whereλuj ,v

for each incoming edge(uj , v) is a linear mapλuj
: A → A

and auj
∈ A is the die value assigned to the nodeuj. Let

LF (V, V ) denote the space of linear maps fromV to V .
Notice that each linear guessing strategy is uniquely deter-

mined by assigning to each (directed) edge inE an element in
LF (V, V ) i.e. a linear mapr : V → V (i.e. ad×d matrix with
entries inF ). Conversely, each assignment that assigns a linear
map inLF (V, V ) to each edge (i.e. ad×d matrix with entries
in F ) corresponds to a linear guessing strategy. This natural
one to one correspondance shows that the number of linear
guessing strategies is|LF (V, V )||E|. The dual graphGd has,
of course,|LF (V, V )||E| guessing strategies since|E| = |Ed|.
Actually, there is a natural one-to-one correspondance between
the linear guessing strategies ofG andGd via the labelling of
E that naturally can be viewed as a labelling forEd. More
specifically, if (v, w) ∈ E has assigned valuet ∈ LF (V, V ),
then (w, v) ∈ Ed has assigned the adjoint valuet∗ (given by
the transposed matrix of thed× d matrix associated tot).

As already pointed out, for each fixed strategyρ, each
node makes a guess givenλρ

u1,v(au1
) + . . . + λρ

ud,v(uad
).

This can be displayed as a row vector(λρ
1,v, λ

ρ
2,v, . . . , λ

ρ
n,v)

that is multiplied by the coloumn vector(a1, a2, . . . , an)
in order to get the value guessed by nodev. The matrix
Mρ := (λρ

ij)1≤i,j≤n, with entries beingd × d matrices over
F uniquely determine (when it is multiplied by the vector
~a := (a1, a2, . . . , an) of the actual dice values of then nodes)
the guessed vector~aguess := (aguess

1 , a
guess
2 , . . . , aguess

n ).
The players all guess correctly their own die value exactly

when ~a = ~aguess i.e. wheneverMρ~a = ~a, or equivalently,
whenevever(Mρ−I)~a = 0 whereI is then×n identity matrix
(with d×d identity matrices as entries). Now this product can
be written as(Mρ − I)~a = 0 where we viewMρ and I as
nd × nd matrices overF and view~a as and-dimensional
vector overF .

From this we get:
Lemma 6:

Let G be any directed graph, and letA be a d-
dimensional vectorspace over a finite fieldF . For
each linear guessing strategyρ the set of dice values
~a where each player guesses correctly their own die
value is a linear subspace (of thend-dimensional
vectorspace overF ). Its vectorspace dimension (over
F ) is given bynd− rankMρ.
The probability that all players are correct is given

by p(G, s, ρ) = |F |nd−rankMρ

|F |nd .
The linear guessing numberk(G, |A|, ρ) is given by
k(G, |F |, ρ) = nd−rankMρ

d
.

Given a linear guessing strategyρ for G, the corresponding
linear guessing strategy forGd is (with slight abuse of
notation) denotedρ∗. From this we get:

Theorem 7:
Let G be any directed graph, and letA be a d-
dimensional vectorspace over a finite fieldF . Let
Gd be the dual graph ofG where all edge directions
have been reversed. For each guessing strategyρ for
G let ρ∗ denote the corresponding guessing strategy
for Gd.
The probability that all players are correct inG using
the linear strategyρ is identical to the probability all
players are correct inGd using the linear strategyρ∗

(i.e. p(G, |A|, ρ) = p(Gd, |A|, ρ∗)). Thus especially
p(G, |A|) = p(Gd, |A|). Furthermorek(G, |A|, ρ) =
k(Gd, |A|, ρ∗) andk(G, |A|) = k(Gd, |A|).

Proof: Depends essentially on the algebraic characterisation
of the linear guessing numbers in Lemma 6, and the fact that
the rank of a matrix is preserved under matrix transposition.
♣

III. I NFORMATION NETWORK PROBLEMS AS CIRTUIT

INFORMATION PROBLEMS

A Circuit is an acyclic graph with input nodesi1, i2, . . . , in
and output nodeso1, o2, . . . , om. Each input node has indegree
0, and each output node has outdegree0. Usually, (in circuit
complexity) each input is0 or 1, and each node (except the
input nodes) computes a Boolean function if its incomming
edges, The function value (0 or 1) is then passed on, along
each outgoing edge, to the successor nodes. In the setting of
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Boolean circuits, nodes are unually referred to as(boolean)
gates. In general, there is no reason only to restrict the
computatinal model to the case whereA = {0, 1} and in
generalA can be any set with at least two elements.

The computational model used in network Coding - the in-
stantanaous information network - is very similar to the circuit
model. However, there is an difference. In the circuit each gate
computes one specific function valuebthat is then passed on to
all successor nodes. In the instantaneous information network
more than one function (in fact one for each outgoing edge)
is computed at each node.

The circuit has the very convinient feature, that each linear
mapf : Adv → A (into a nodev), can be specified uniquely
by labelling each edgee by a linear mapge : A → A. And
conversely, each labelling of each edgee by a linear map
ge : A→ A uniquely determine linear mapsf : Adv → A for
each nodev.

The next figure shows how any instantainous information
N network by “blowing up each node” can be viewed as a
circuit NB.

figure 5

In general each node with indegreed1 and outdegreed2 is
replaced by the graphKd1,d2

containingd1×d2 edges. Nodes
with in-degree1 (or out-degree1) does not need “blowing
up”. This includes all source nodes and all target nodes.

This translation is very convinient (for considering linear
flows) for instantanious information networks since each as-
signment of a linear functionf : Ad1 → Ad2 in N to a
nodev uniquely corresponds to an assignment of linear maps
ge : A → A to the edges (inKd1,d2

) in NB that were
constructed when blowing up the nodev.

Notice if a multiple-unicast information networkN has
corresponding circuitNB (by blowing up its nodes), the dual
multiple-unicast information networkNd has corresponding
circuit (Nd)B identical to(NB)d.

Some of the edges inNB are not needed and actually would
make the next lemma invalid! The reason for this is trivial and
boil down to the fact that two edges(u, v) and (v, w) when
compared to the single edge(u,w) has more assigments (e.g.
an assignment ofrs to (u, v) andr−1 to (v, w) is equivalent
to an asignment ofs to (u,w)). To resolve this “problem” the
above conversion is modified (and simplified) as follows:

Given an multiple-unicast networkN . For each source node
of N add incomming edge of in-degree1. For each target node
of N add an outgoing edge of degree1. This new multiple-
unicast network is denotedN ′ (the added edges are viewed
as source edges and target edges). The Circuit information
problemNC is defined as follows:

Each edge inN ′ is a node inNC . Any two nodes(v1, v2)
and(v3, v4) (that are edges inN ′) belongs to an edge (inNC

if and only if (v2 = v3).
Notice, thatNC appears fromN by essentially first “blow-

ing up points” (as defined above) and then removing “unnes-
sary” edges. Notice that(Nd)C is identical to(NC)d.

Lemma 8:
The linear solutions to the multiple-unicast problem
N is in a one-to-one correspondance to the linear
solutions to the Circuit information problemNC . The
number of distinct linear solutions toN andNC is
the same.

IV. GUESSING NUMBERS AND THEIR LINK TONETWORK

CODING

Given a Circuit Information ProblemN with source nodes
s1, s2, . . . , sn and target nodest1, t2, . . . , tn. The graphGN

appears by identifying nodessj and tj for j = 1, 2, . . . , n.
The following theorem (that was first introduced in [18])

shows an interesting link between multiple-unicast network
problems and guessing games:

Theorem 9:
A Circuit information problemN with n input and
n output nodes has a solution over an alphabetA

if and only if the directed graphGN has guessing
numberk(G, s) ≥ n if and only if k(G, s) = n.
Furthermore, the number of distinct solutions toN is
identical to the number of distinct guessing strategies
ρ for GN that achieve guessing numbern.
And the number of distinct linear solutions toN is
identical to the number of distinct linear guessing
strategiesρ for GN that achieve guessing numbern.

Proof: Consider the graphGN = (V,E). The setV of nodes
can be divided into two disjoint sets: the setI of nodes in
GN that corresponds to the inner nodes inN (i.e. nodes that
are not input or output nodes inN ), and the setJ of n nodes
in GN that corresponds to then input andn output nodes in
N . The setI consists of|GN | − n nodes. The sub-graph of
GN restricted toI is an acyclic graph (sinceN is acyclic).
Thus as we already noticed for any strategy by the players
(it does not matter which) the nodes inI all guess correctly
their own die value with probability(1

s
)|I|. But, this shows

that the probability all players inGN guess correctly their
own die value is at most(1

s
)|I|. Theorem 1 follows because

this probability can be achieved if and only if the players inJ
(corresponding to the output nodes inN ) are able to work out
their own die value with probability1 (given that all players
in I correctly worked out their own die values).

To prove Theorem 9 consider a guessing strategy (i.e. a set
of specific functions assigned to the nodes inGN ).

If we assign the same functions to the information network
N (the output nodeso1, o2, . . . , on get assigned the specific
functions assigned to the nodesJ in GN ).

Conversely, any attempted solution toN can be converted to
a guessing strategy by the same assignment. Thus the space of
coding functions forN is in a natural 1-1 correspondence with
the space of guessing strategies to the graphGN . Furthermore,
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a coding function forN solves the information problem forN
if and only if the conditional probability that then nodes in
J guess correctly their own die values (given that all "inner"
nodes (i.e. all the nodes inI) guess correctly their own die
values) is1. ♣

Now Theorem 3 follows by combining Theorem 7, Lemma
8 and Theorem 9.

V. PROVING THEOREM 1 USING "PATH INTEGRALS"

Now I prove of Theorem 1, based on ideas akin to Feymann
Integrals!

A very nice introduction to Feymans paths integrals can
be found in [9]. Roughly the idea behind the path integral
is that the probability that a Quantum Mechanical system in
statev in a later mesurement is in statew, can be found by
summing over all possible ways (all possible paths) the system
can move from statev to statew. A key feature is that the
contribution of different paths might cancel out if the paths
have different phases. It should however be emphasised that
my proof does not presupose any results or knowledge about
Quantum Physics or the path integral. In fact the proof can -
if one please - be presented as a simple pice of algebra and
graph theory.

To begin with a simple example that illustrates how ideas
akin to the path integral can be applied in network coding,
consider the butterfly network in figure 1 (figure 6a). Each
edge is assigned numbers1 and−1 as illustrated in the next
figure:

x

r : x

1 1

1

1 1

−1−1

y

r : y

x y

r : y r : x

(a) (b)

−1

1

figure 6

Two edges assigned value1 and −1 are out of phase. In
agreement with Feynman’s treatment the phase of a path is the
product of the phases of edges along the path. If we consider
ordinary (classical) routing, the messagex can move to the
lower left corner in two distinct ways (see Figure 6b). One
path have phase−1 while the other have phase1. Thus the
two paths are out of phase and they cancel out (since they
add up to0), which implies that messagex does not arrive at
this node. On the other hand messagex can, using ordinary
(classical) routing also arrive at the lower right node. This can
only happen in one way and the phase of the path is1 which
ensure that the messagex arrive at this node (with its original
phase).

Similar for messagey. The two paths to the lowere right
node have phase1 and−1 and thus cancel out, while the single
path to the lower left node have phase1 so y only arrive at
this node.

In general (towards proving Theorem 1) we assume thatA

is organised as an abelean group whileR is a *-algebra acting
on A. This covers the case whereA is the additive structure
of a fieldF = (A,+,×) andR = A denote the set of actions,
wherer ∈ R = A is multiplication byr.

To illustrate the idea with one more example consider again
the information network from figure 3 (now represented as a
circuit) and assume thatA = {0, 1}.

x y z r: x r: z

r: y r: z r: x y z x

(a) (b)

x+y

x+y

x+y+z

x+y+z

z

y

y z+y

x

z

x

y+x

y+x

y

z

z

y

r: y

x+z

x+z

f v

f d
v

figure 7
To each nodev in N is assigned a functionfv(x, y, z) =

avx+ bvy + cvz with av, bv, cv ∈ {0, 1}.
Notice that each coefficientav is 1 if and only if there is an

odd number of paths from the input node forx to v. And each
coefficientbv (cv) is 1 if and only if there is an odd number
of paths from the input node fory (z) to v.

To each nodev in the dual networkNd is assigned a
functionfd

v (x, y, z) = ad
vx+bdvy+c

d
vz with ad

v, b
d
v, c

d
v ∈ {0, 1}.

For this network notice that each coefficientad
v is 1 if and

only if there is an odd number of paths from the source node
in Nd (target node inN ) for x to v. And each coefficientbdv
(cdv) is 1 if and only if there is an odd number of paths from
the source node (target node inN ) for y (z) to v.

The underlying graphN (andNd) are both labelled so all
edges have phase1 and this labeling determine all the coding
functionsfv andfd

v as already explained. Since the labelling
of N andNd are the same, the two solutions indicated in
figure 3 are infact representing thesameunderlying "reality":

There is an odd number of paths between a source node
and a target node if and only if the source node corresponds
to the same variable required by the target node.

This property is of course valid forN if and only if its valid
for Nd.

Suppose we want to find allR-linear solutions toN (as well
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as toNd) over an alphabetA. Like already noticed there is a
one-to-one correspondance between allR-linear encodings and
labellings of the edges ofN (as well asNd) with elements in
R. Let ρ be an assignment ofN with each edge being assigned
an element inR. The element inr ∈ R associated to the
edge is thephaseof the edge with regards to the assignment
ρ. Then a pathp, (v1, v2), (v2, v3), . . . , (vr−1, vr) with labels
λv1,v2

, λv2,v3
, . . . , λvr−1,r

∈ R has path integral (or phase)
λvr−1,r

. . . λv2,v3
λv1,v2

and is denoted
∫

p
ρ. Notice that

∫

p
ρ

is an element inR.
The coding functionfv(x, y, z) = λ1vx+ λ2vy + λ3vz are

determined (using this assignmentρ) such thatλ1v equals the
sum of all paths integrals from input nodex to v, λ2v equals
the sum of all paths integrals from input nodey to v, while
λ3v equals the sum of all paths integrals from input nodez

to v. Let P (u, v) denote the set of paths fromu to v. For-
mally, we can then writefv(x, y, z) = (Σp∈P (i1,v)

∫

p
ρ)(x) +

(Σp∈P (i2,v)

∫

p
ρ)(y) + (Σp∈P (i1,v)

∫

p
ρ)(z).

The assignmentρ is a solution forN if and only if
fo1

(x, y, z) = x fo2
(x, y, z) = y andfo3

(x, y, z) = z.
Or equivalently the assignmentρ is a solution forN if and

only if Σp∈P (ij ,ok)

∫

p
ρ = δjk whereδjk = 1 if j = k and

δjk = 0 if j 6= k.
The assignmentρ∗ is defined such thatr∗ ∈ R is assigned

to the edge(u, v) (in Nd) if and only if the assignmentρ
assignsr ∈ R to edge(v, u) (in N ) the elementr ∈ R. In
general

∫

p∗
ρ = (

∫

p
ρ)∗ wherep∗ denote the pathp (in N ) in

opposite direction (inNd).
But, then by the same argument as above (and since0∗ =

0 and 1∗ = 1) ρ∗ is a solution forNd if and only if
Σp∗∈P (ij ,ok)

∫

p∗
ρ∗ = δjk whereδjk = 1 if j = k andδjk = 0

if j 6= k.
Thus ρ is a solution forN if and only if ρ∗ is a solution

for Nd.
So far we only considered special networks like in figure 6

and figure 7.
Now let me consider the general case whereN might denote

any multiple-unicast network. The argument is essentiallythe
same I just developed, except that in general the networkN

might have nodes of in-degree≥ 2 and out-degree≥ 2. In
this case linear maps cannot be represented just be labeling
the edges ofN . However by "blowing up" such nodes and
removing all superfluous edges, the graphNC has the same
set ofR-linear solutions asN . TheR-linear maps inNC are
in one-to-one correspondance with labellingsρ of edges in
NC with elements inR.

EachR-linear solutionρ determines aR-labelling ρ, and
eachR-labellingρ determine aR-linear solutionρ. With slight
abuse of notation, the linear solution and the corresponding
labelling are both denoted byρ.

A labelling determine aR-linear flow by letting a nodev
with incomming edges(u1, v), (u2, v), . . . , (ud, v) labelled by
λu1,v, λu2,v, . . . , λud,v ∈ R transmit the messageλu1,v(z1) +
λu2,v(z2) . . . λud,v(zd) with z1, z2, . . . , zd are the messages
transmitted fromu1, u2, . . . , ud. Notice, that nodev transmit
a message that can be expressed as aR-linear function of the
messages transmitted fromu1, u2, . . . , ud.

When the R-linear functions in the different nodes
in NC are composed each node transmit a message
fv(x1, x2, . . . , xn) that can be expressed (using path integrals)
as (ΣjΣp∈P (ij ,v)

∫

p
ρ)(xj).

Like in the special case, in general aR-linear flowρ defines
a solution if and only ifΣp∈P (ij ,ok)

∫

p
ρ = δjk whereδjk = 1

if j = k andδjk = 0 if j 6= k.

By the same argument theR-linearρ∗ defines a solution if
and only if Σp∗∈P (ij ,ok)

∫

p∗
ρ∗ = δjk whereδjk = 1 if j = k

andδjk = 0 if j 6= k.

This shows:

Lemma 10:
Let N be an multiple-unicast information flow prob-
lem. There is a natural 1-1 correspondanceψ be-
tween the class ofR-linear flows for N and la-
bellings of NC with elements fromR. This map
maps the set ofR-linear solutions ofN onto the set
of R-linear solutions forNC . There is also a natural
1-1 correspondanceψ′ between the class ofR-linear
flows forNd and labellings of(Nd)C = (NC)d with
elements fromR. This map maps the set ofR-linear
solutions forNd onto the set ofR-linear solutions
for (Nd)C = (NC)d.
Furthermore,ρ is aR-linear solution forNC if and
only if ρ∗ is aR-linear solution for(NC)d.

Theorem 1 follows directly from Lemma 10.

VI. PROOF OFTHEOREM 5

Consider the information networkN in figure 4. A related
information network was analysed [17]. I claim:

Lemma 11:
The information networkN is solvable over the
alphabet{0, 1}.

Proof: The8 vertical channels need to send the messagesx, y

and z i.e. 8 messages. This is done be introducing the code
(in the sense of error correcting codes) that consists of the8
words (0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 0, 1). These 8 messages
are the only messages send along the7 vertical channels.

The solution is indicated in figure 8.



9

z1 1r: z

z2 r: z2

z34 r: z34

z35 r: z35

zyx

r: x r: y r: z

s2 s3 s4 s5 s6 s7
s1

z1+s1

z +s2

z +s3

z1

z1

z1

s1 s2 s3 s4 s5 s6 s7

z1+s1

s1 z +s2

s2 z +s3
s3

z2

z2

z2

z2+s1

s1

s1 s2 s3 s4 s5 s6 s7

z2+s2

s2
z2+s4

s4

1

1

1

1

z2+s1

z2+s2

z2+s4

s1 s2 s3 s4 s5 s7s6
z34 z34+s4

s4

z34+s4

z34

s6 z34+s7

+s
6

z
34

z35

z35

z35

z35+s5

s5 z35+s6

z35+s7

z35+s5

s6

s7

s1 s5s4s3s2 s6 s7

figure 8
For each variablez1, z2, . . . , z35 the corresponding message

is send accross each of the three horizontal channels. On
arrival two of these message are without error. Thus each
messagezj can be reconstructed using a simple “majority”
decision in the target node that requireszj . ThusN has a
solution. ♣

z35

z34

z2

z1r : z1

2r : z

34r : z

35r : z

zyx

r : x r : y r : z

figure 9

Consider the reverse (dual) information flow problemNd, in
figure 8 and fix an information flow (it might or might not be
a solution).

For each horizontal crossing a number of different things
can happen (depending on the functionf(s, w)). Consider
figure 10. The variablew denotes any of the variables
z1, z2, . . . , z35, while s = s(x, y, z) denotes any message
sent through the vertical channel. In generals is a function
depending onx, y andz (see figure 9 and figure 10).

w

s s

s

f(s,w)

f(s,w)

figure 10
A horizontal channel isactiveif the coding functionf(s, w)

can be affected byw.
A horizontal channel isinactive if it not is active (i.e. if

the coding functionf(s, w) can be expressed as a function of
s). If a horizontal channel is active this can happen in two
different ways:
One-sided activity: This happens iff(s, w) (or f(s, w) + 1)
is given by one of the expressionssw, sw, sw + s, sw+w or
sw+ s+w. In each of these cases the horizontal channel can
forcef(s, w) to take a constant value. Iff(s, w) = sw w = 0
force f(s, w) = 0. Similarly for f(s, w) = sw + w, w = 0
force the functionf(s, w) = 0. If f(s, w) = sw + x, w = 1
forcef(s, w) = 0 and if f(s, w) = sw+ s+w , w = 1 force
f(s, w) = 1.
Two-sides activity: This happens iff(s, w) = s+ w. In this
case the horizontal channel has a choice. It can either force
f(s, w) = 0 by letting w = s (i.e. by lettingw(x, y, z) =
s(x, y, z)) or it can forcef(s, w) = 1 by letting w = s + 1
(i.e. by lettingw(x, y, z) = s(x, y, z) + 1).

In both cases it is possible to construct a horizontal message
w that ‘blocks’ the vertical information flows (since the
horizoltal channel can send a messagew = w(x, y, z) such
that f(s, w) = f(s(x, y, z), w(x, y, z) is independent ofx, y
andz).

Based on this observation an horizontal channel (corre-
sponding to a variablezj) is said toblock the vertical channel
it is linked to. And we say that the variablezj can be used to
block the vertical channel.

Lemma 12:
There is no solution toNd where five variables
zj1 , zj2 , zj3 , zj4 and zj5 can be used to block five
distinct vertical channels.

Proof: Assume thatNd has a solution where five variables
zj1 , zj2 , zj3 , zj4 and zj5 can be used to block five distinct
vertical channels.

Let s1 = s1(x, y, z), s2 = s2(x, y, z), . . . , s7 = s7(x, y, z)
denote the vertical flows. By definition there exists five
functionswj1(x, y, z), wj2(x, y, z), . . . , wj5(x, y, z) such that
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five of the functionss1, s2, . . . , s7 are constant functions
independent ofx, y andz. But then there is only two vertical
channel to send8 messages which is impossible, ♣

To get a contradiction I show the following simple combi-
natorial lemma:

Lemma 13:
Let S = {1, 2, 3, 4, 5, 6, 7} be a set with7 elements
and letl be a choice function that for each3-element
subsetB selects an elementl(B) ∈ B. Then there
exists a5-element subsetW ⊂ S as well as5 3-
element subsetsB1, B2, B3, B4 and B5 such that
W = {l(B1), l(B2), l(B3), l(B4), l(B5)}.

Proof: Pick any 3-element subsetB1 and letv1 := l(B1). Let
B2 be any3-element subset ofS\{v1} and letv2 := l(B2). Let
B3 be any3-element subset ofS\{v1, v2} and letv3 := l(B3).
We continue like this.

Let B4 be any 3-element subset ofS \ {v1, v2, v3} and
let v4 := l(B4). Finally, let B5 be any 3-element subset
of S \ {v1, v2, v3, v4}. The setS \ {v1, v2, v3, v4} contains
3 elements so there is such a set. Letv5 := l(B5). The
set W = {v1, v2, v3, v4, v5} contains5 elements andW =
{l(B1), l(B2), l(B3), l(B4), l(B5)}.♣

This implies:

Lemma 14:
For any solution toNd (overA = {0, 1}) there exists
five variableszj1 , zj2 , zj3 , zj4 and zj5 that can be
used to block five distinct vertical channels.

Proof: Assume thatNd has a solution overA = {0, 1}. For
each variablezj we have naturally associated a3 element
subsetBj ⊂ {1, 2, 3, 4, 5, 6, 7}. Let l(Bj) denote the smallest
number of the3 vertical channels that correspond to an active
channel. Using Lemma 8, notice that there exists a setW

corresponding to five variableszi1 , zi2 , . . . , zi5 such that each
of the variables can be used to block one vertical channels.♣

This Lemma shows (when combined with lemma 12) that:

Lemma 15:
The information networkNd is not solvable over the
alphabetA = {0, 1}.

Theorem 5 now follows by combining Lemma 11 and
Lemma 15.

VII. A NON-CONSTRUCTIVE PROOF OFTHEOREM 5

Finally let me present another proof of Theorem 5 that is
based on two facts:

• (i) Each solution toN requires the use ofall vertical
crosssings.

• (ii) If there is a solution toNd it doesnot need the use
of all vertical crossings.

When combined we infer thateither Nd has no solution
(in which caseN is irreversible)or Nd has a solution, in
which case we according to (ii) can remove one crossing
from N and obtainN ′ such that(N ′)d still has a solution.
But, since according to (i) any solution toN requires the use
of all vertical crossingsN ′ has no solution. Thus(N ′)d is
irreversible.

There are105 vertical crossings ofN so all this argument
shows is that one of106 networks (the105 networks(N ′)d

or N itself) is irreversible. Of course since we have already
showed thatN is irreversible, none of the networks(N ′)d are
in fact solvable.

Item (i) follows using one of the most fundamental results on
forbidden configurations of matrices:

Proposition 16 [20], [21], [22]:
LetKk denote thek×2k matrix of all possible(0, 1)-
columns onk rows. Then eachm × s (0, 1)-matrix
A (with no repeated columns) has configuration
Kk (i.e. a submatrix ofA is and row and column
permutation ofF ) if

s =

(

m

k − 1

)

+

(

m

k − 2

)

+ . . .+

(

m

0

)

+ 1

The value ofs is in general the best possible.

A very basic induction proof of this can be found in [3].
For my application I only need the very special case where
k = 2 andm = 6, which givess =

(

6
1

)

+
(

6
0

)

+ 1 = 8.

Lemma 17:
Consider again the networkN in figure 4. Assume
that one of the three horizontal channels that links
a variablezj with the node where it is required
is removed. Then the resulting networkN ′ has no
solution overA = {0, 1}.

Proof: Consider the networkN ′. The7 vertical channels send
messagess1, s2, . . . , s7. Consider the variablezj for which
there is only two vertical crossings (channels) inN ′. The
messagezj can (if we assumeN ′ is solvable) be reconstructed
from two messages that must be on one of the following forms:

(1) si + zj andsk + zj

(2) si + zj andsk

(3) si andsk.

Case (3) give no hope of reconstructingzj . Case (2) only make
is possible to reconstructzj if si or si + sk is a constant (i.e.
independent ofx, y and z). Finally, zj can only be derived
from 1 if at least one ofsi or sk are constant. In all cases one
of the vertical channels is superfluous (since it is only sending
“dummy” information) and is not needed for transmitting the
messagesx, y and z. Assume, channel7 is sending dummy
messages. For each of the8 settings of the variablesx, y andz
consider the flow(s1, s2, s3, s4, s5, s6) throgh the6 remaining
vertical channels. We can list these8 distinct words as a6×8
(0 − 1)-matrix:

















s11 s12 s13 s14 s15 s16 s17 s18
s21 s22 s23 s24 s25 s26 s27 s28
s31 s32 s33 s34 s35 s36 s37 s38
s41 s42 s43 s44 s45 s46 s47 s48
s51 s52 s53 s54 s55 s56 s57 s58
s61 s62 s63 s64 s65 s66 s67 s68
















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But then the this matrix contains (according to the special
case of Proposition 16 fork = 2 andm = 6 sinces = 8), the
configurationK2 i.e.

(

0 0 1 1
0 1 0 1

)

In other words there existsi, j ∈ {1, 2, 3, 4, 5, 6} with i 6= j

such thatsi and sj can send all possible pairs of(0 − 1)-
messages. Now letr ∈ {1, 2, . . . , 6} \ {i, j} be arbitrary and
let zu denote the variable that corresponds to the3-element
subset{i, j, r} ⊆ {1, 2, 3, 4, 5, 6}. The messagezu has to be
constructed from three messages. They might for example be
zu+si, zu+sj andzu+sr (the other cases e.g.(si, zu+sj, zu+
sr), (si, sj , zu+sr), (zu+si, sj , zu+sr) are treated similary).
The task is to derivezu from these three messages. Since
howeversi andsj take all4 combinations we conclude thatsr

must be uniquely determined bysi andsj . But r was chosen
arbitrarily in {1, 2, . . . , 6} \ {i, j}, so we conclude thatsr is
uniquely determined fromsi andsr for eachr ∈ {1, 2, . . . , 6}.
This is a contradiction sincesi andsj can determine at most
4 words and not the8 words required. ♣

Item (ii) follows from the slightly stronger statement:

Lemma 18:
There is no solution (overA = {0, 1}) of Nd in
which all vertical channels are active.

Proof: Assume that there is a solution to the information flow
problemNd where all105 = 3 × 35 horizontal channels are
active. We consider only the variablesz1, z16, z26, z32 andz35.
The variablez1 affects channels1, 2 and3, z16 affects channels
2, 3, 4, z26 affects channels3, 4, 5, z32 affects channels4, 5, 6
andz35 affects channels5, 6 and7. From this we can clearly
‘jam’ channel1, 2, 3, 4 and5. To see this we choose the value
of z1 (z1 might be a function ofx, y and z) such that any
message that passes through channel1 is independent ofx, y
and z. Next, choose a value ofz16 such that any message
that passes through channel2 is independent ofx, y and z.
Then the variablez26 is selected (as a suitable function ofx, y
and z) such that any message that passes through channel3
is independent ofx, y and z. Finally, after suitable functions
z32(x, y, z) and z35(x, y, z) have been chosen, the first five
vertical channels have been blocked in such a way that no
information aboutx, y or z can be transmitted through these
channels. This leaves open only the vertical channels6 and
7 and thus only4 messages can be sent through the vertical
channels. To transmit the messagesx, y and z successfully
through the next work we need to be able to send8 messages
through the vertical channels. This is a contradiction and thus
we conclude that not all horizontal channel are active♣

An anonymous referee pointed out that this lemma in fact
shows that one of5×3+1 = 16 rather that one of35×3+1 =
106 specific multiple-unicast problems are irreversible. If this
can be improved further using the type of argument just given
is, of course, somewhat irrelevant since we know that only
N and none of the105 other multiple-unicast problems are
irreversible overA = {0, 1}).
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