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Abstract— We show that an information network flow problem that each information channel can carry at most one message
N in which n messages have to be sent todestination nodes has at a time. If the messages and y are sent simultaneously

a solution (that might utilise Network Coding) if and only if the  {hare js a bottleneck in the middle information channel. On
directed graph G x (that appears by identifying each output node the other hand if f | . A th h
with its corresponding input node) hasguessing number > n. The 1€ Other hand it we, for exampie, semts y < roug
guessing number of a (directed) graph G is a new concept defined the middle channel, the messagesindy can be recovered

in terms of a simple cooperative game. We generalise this re ~ at ‘output’ nodes at the bottom of the network.
so it applies to general information flow networks. _ The network in figure 1a can be represented as the network
We notice that the theoretical advantage of Network Coding figure 1b. In this representation (which we will call the

is as high as one could have possibly hoped for: foreache N, . *~. -~ h in th K
we define a network flow problemN,, with n input nodes andn circuit representation’) each node in the network compute

output nodes for which the optimal through-put using Network @ function f : A x A — A of its inputs, and sends
Coding is n times as large as what can be obtained by vector the function value alongeach outgoing edge. Historically,
routing or any other technique that does not allow interference jt is interesting to note that in this slightly different ¢ou
(between messages) . In the paper we obtain a characterisati - athematically equivalent) form, the idea behind Network
of the set of solutions for each flow problem\,,. We use this to Coding (i.e. the power of using non-trivial boolean funoto
prove a number of theorems for information networks. - X . .
rather than “pushing bit") was already acknowledged in tbe 7
(though never emphasised or highlighted) in research paper
I. NETWORK CODING in Circuit Complexity (see e.qg. [23], [21], [17], [22], [2])t is
also worth mentioning that in Complexity Theory many lower
bounds are proven under the assumption that the algorithm is
In recent years a new area called Network Coding h@gnservativeor can be treated as such. Conservative means
evolved. Like many fundamental concepts, Network Codingat the input elements of the algorithm are atomic unchange
is based on a simple mathematical model of network flogple elements that can be compared or copied but can not
and communication first explicitly stated in its simplicity pe used to synthesise new elements during the course of the
[3]. Recently, ideas related to Network Coding have beg{lgorithm. From a perspective of Circuit Complexity, Netwo
proposed in a number of distinct areas of Computer Sciencgding is an interesting theory of information flows since it
and engineering (e.g. broadcasting in wireless network} [2correspond to unrestricted models of computation.
[25], [24], data security [4], distributed network storajg, Information flow in networks falls naturally within a number
[1] and wireless sensor networks [16]). Network Coding hast distinct paradigms. Information flow can, for example, be
also a broad interface with various Mathematical discg8in treated in a fashion similar to traffic of cars in a road system
(error correcting codes [19], [5], [11], circuit complexitl8], |n this view each message is treatedaapacket (e.g. a car)
information theory [12], algebra [14], [13] and graph thgor \ith a certain destination. Messages (cars!) cannot beedopi
The basic idea underlying Network Coding has been eyr divided. This way of treating messages is almost univer-
plained in numerous papers e.g. [14], [3], [18], [8]. Theadesa|ly adopted in today’s information networks (e.g. wissle
can be illustrated by considering the "butterfly” network iBommunication, communication on the web, communication
figure 1a. within processors or communication between processors and
external devises). Another, less used possibility, is &attr
messages in some senseaafiquid that can be divided and

X y

X y
sent along different routes before it reaches its destinati
l This approach (like, for example, in vector routing [6])oalls

A messages to be spread out and distributed over large parts of

A the network. Another and more radical approach is to treat
y X

y X

A. The wave approach to information network flow

messages abwvaves”. Recall that the signals carrying the
messages are digital (discrete) and thus certainly do riavge
like waves. It is, however, possible to transmit and haniée t
(@) (b) figure 1 digital (discrete) signals in a fashion where the messageis (
The task is to send the messagf&om the upper left corner the bits carrying the messages) behave like waves subject to
to the lower right corner, and to send the messagieom interference and super position. More specifically, asstivae
the upper right corner to the lower left corner. The messagdsis a (finite) alphabet of distinct (wave) signals that can be
xz,y € A are selected from some finite alphab&t Assume sent through a channel. The superposition of (wave) signals



wi,wy € A creates a new (wave) signal = w; ® we € A. networks where the success rate for each active channg usin
Thus mathematically, in the wave picture, the gebf wave the wave approach is close (as close as we wish)times the
signals forms a (finite) commutative group with the neutraluccess rate for each active channel in a routing solutiba. T
element0 € A representing the zero-signal. wave approach usually requires more information chanioels t
The network in figure 2 illustrates the point that in specifibe involved than traditional routing (or other methods tthat
Network topologies there can be quite a large advantageraft allow interference). Yet, by allowing interferenceg tiotal
treating messages as waves. The task of the network isngtwork performance divided by number of active informatio
send messages y and z from the source (input) nodes, i channels can for some network topologies be close times
andis to the three output nodes, o, andos. The receiver higher than any approach that is unable to utilise interfeze
(output) nodeo; requiresz, nodeo, requiresy and nodeos Network Coding allows messages to be sent within the
requiresz. We assume that channels are one-way and that thave paradigm. In fact, super-positioning of signals (désd
messages are only sent downwards in the figure. All crossirggsove) represents an important type of Network Coding we
in the figure are ‘bridges’ and it is, for example, only possib will refer to as Linear Network Coding(see also [15]).
to move fromiy to o; by moving through channel. Although Linear Network Coding represents a very important
y z subclass of Network Coding, in general Network Coding
involves methods that go beyond linear Network Coding.
Certain network problems have no linear solutions, butirequ
the application of non-linear boolean functions [18], [®pn-
Linear Network Coding has no obvious physical analogue.
p Rather general Network Coding represents a paradigm of in-
formation flow based on a mathematical model where ‘every-
thing goes’. In this model there are no apriory restrictions
how information is treated. Thus in Network Coding, packets
might be copied, opened and mixed. Sets of packets might be
subject to highly complex non-linear boolean transforoagi

p(x.y,z)

figure 2

If messages are treated as packets (cars) like in traditiona I
routing, or if messages are treated as a liquid, there is no
point in sending information througdh, [ or /3. All messages
z,y andz must pass through the channel labelled wittfor A. A Guessing game with dice

‘public’). This clearly creates a bottleneck in chanpef we While | was researching various flow problems related

assume that only one message can pass at a time. to Circuit Complexity it became clear that a key problem

It howgver, messaghes are treated an v;/]aves We can SRNEh characterise and formalise what pieces of information
ple,y,2) =@y & 2, the superposition of the messages 5o wysefyl” and what pieces of information are genuinely

and z, through channep. And we can send SUPerpositions,qejess |t hecame clear that this distinction can be very

o= —(y@2), b= —(r&2) andly = —(z Sy deceptive. A piece of Information that is useless in oneexmnt

through the nodes with these labels. Nadecan take the ., sometime be very valuable in a slightly different contex
superposition ofl; and p(x,y,z) and then reconstruct the 18].

message = —(y @ z) ® (z & y ® z). Similarly, nodeo,
(or o3) can take the superposition &f (or I3) and p(z,y, 2)
and then reconstruct the message —(z©2)d (z Gy & 2)

COHERENCE UTILISING APPARENTLY USELESS
INFORMATION

To illustrate the problem Mikkel Thorup developed the
following game that illustrates a nice mathematical idealee
- . veloped during a meeting in 1997 [20]: Assume thailayers
(orz=—(z®&y)® (x®y® ). This shows that the wave o ., o o faig_sided dice (each dice has its sides labelled as
approach allows us to eliminate the bottleneck in chamnel

o . . 2,... s). Imagine that each player (simultaneously) throws
in figure 2. Notice also that the wave approach increases ir dice in such a manner that no player knows the value of
overall network performance (of the network in figure 1) th

eir own dice.
a factor3. ! _ N _
In general the advantage of the wave approach (compared t¢) What is the probability that each of theplayers is able
any approach that does not allow interference) can be as larg [0 9uess correctly the value of their own dice?
as one could have possibly hoped for. We will later notice tha 2) Assume that each player knows the values of all other
there exist information flow networks (with source nodes dice, but has no information about the value of their own
andn receiver nodes) for which the optimal throughputis dice. What is the probability that each of theplayers

times larger using the wave approach. Actually, there aea ev correctly guesses the \1/alue of their own dicé#nt:
The probability is NOT(-)"- The players can do much

INotice that this increase of a facto comes at a certain ex- better than uncoordinated guessing!!
pense. In the routing approach only channels are active (namely, 3) Assume the it® player receives a valuey; =
(i1,p), (i2,p), (i3,p), (p, 01), (P, 02), (P, 03) and channep), while in the Vi(T1, Ty oo Tie1, Tigds .- Tn) € {1.2.... 8} that is
Network Coding solution all9 channels are active. The success rgsefor ‘"( L d2, d i—b d”'l’ "’ d.”) {I » ) i
each active channel is higher in the Network Coding soluticen in the allowed to depend on a ice values except

ordinary solution player's own dice. What is the probability that each of



the n players correctly manages to guess the value of (j) (i) (iii)

their own dice? 4
In questionl the probability that each player is rightjgsand V '
thus with probability(%)” all n players successfully manage

to guess correctly their own dice’ value simultaneouslyybta
somewhat surprisingly in question 2, the answer depends on
the ‘protocol’ adopted by the players! An optimal protocol
appears, for example, if the players agree in advance toressu ™) V) AN
that the sum of alln dice’ values is divisible bys. This

protocol ensures that all players simultaneously ‘gue$® t

value of their own dice with probabilit%.

'

)

) ) _ o fig.3
Question 3, can be answered using a minor mod|f|cat|onExamp|eS (i) and (i) correspond to the dice guessing game

of the protocol just discussed. Lef be defined as the sumye already considered (with and 5 players). The players
L1 DT3P ... D10 Ti41 P ... Dx, modulos. Each player have a guessing strategy

then ‘guesses’ that; = —v; modulos. Again, the probability
that all n players simultaneously guess the correct value g
their own dice isi.

that succeeds with probability In the guessing game based

h (iii) (or in general the cyclic graph om points) an optimal
protocol appears if each node ‘guess’ that its own die value
is the same as the value it receives. This strategy succeeds i
each of the four dice has the same value i.e. with probability
(1)3 (or in general1)"~1). Though this probability is low, it

is s times higher than if the players just make uncoordinated
B. Playing the guessing game on a graph random guesses.

In (iv) the graph contains no cycles so the players cannot

We will now define a generalisation of the dice guessin@® any better than just guessing i.e. the players can achieve
game that is (surprisingly?) directly related to a certgipet Probability at most(;)*.
(the so called multiple-unicast type) of information flonopr I (V) it can be shown that there are a number of distinct
lems. Recall a graplty = (V, E) consists of a set/ (the guessing strategies that guarantee the players’ succélss wi
vertex set) and a séf C V x V (the edge set). Our definition probability (1)* (one, optimal strategy appears by dividing
of a graph is sometimes referred to as directed graphs. $n tHie graph into two disjoint cycles (triangles)).

paper all graphs are directed. Finally, in (vi) we consider a graph with2 nodes (one
for each hour on a clock) and edges frginy) if the 'time’
Definition fromi to j is at mosts hours. Using the type of argument we

Assume that we are given a (directed) gragh= introduce later it is fairly simple to show that the playarghe
(V,E) on a vertex seV = {1,2,...,n} represent- GuessingGan&, s) have an optimal guessing strategy that
ing n players. We let GuessingGafd¢ s) denote ensures that the players with probabil@tyﬁ (i.e. with a factor
the cooperative game defined as follows: Each playet better than pure uncoordinated guessing) all simultarigous
v €{1,2,...,n} is randomly assigned a die valge guess the value of their own die.

{1,2,...,s}. Each player sends the value of their die Definition

€{1,2,...,s}toeachplayew € {1,2,...,n} with A graphG = (V, E) has fors € N guessing number
(v,w) € E. In other words, each node receives k = k(G, s) if the players in GuessingGarfe, s)
dice’ values from asetl,, := {v € V : (v,w) € E}. can choose a protocol that guarantees success with
Each player has to guess the value of their own probability(%)'v‘—k.

gie. we want. to calculate (aSS“m‘”Q tr;e Players 1 s the guessing number of a directed graph is a measure
have agregr_j n hadvalrlmi onl an optimal protocol hoy much better than pure guessing the players can achieve
the probabi |_ty t at all t € players (nodes) 9UeSY the players can achieve a factgt better than pure random
correctly their dice values simultaneously. Questiof),.ordinated guessing, the graph has guessing nuiber

2 (in section 1l) corresponds to the case Whefés ;. oy Notice that a directed graph has a guessing number
the complete graph on nodes. for eachs — 2.3.4. .

Definition For many graphs (though not all) the guessing number
A (cooperative) guessing strategy for the gamié independent of. The graphs in figure 3 have guessing
GuessingGan(€, s) is a set of functionsf,, : numbers2,4,1,0,2 and5 (independently ofs > 2). From

{1,2,.. .,S}Aw —  {1,2,...,8} with w ¢ the definition there is no reason to believe that the guessing
{1,2,...,n}. Notice that each player (node) is number of a graph is in general an integer. Yet remarkably
assigned exactly one functiofy,. many graphs have integer guessing numbers. Later we will
show that there exist graphs for which the guessing number

In figure 3, we consider six simple examples: k = k(G,s) (for alphabet of sizes € N) of a graph is not



an integer. We will show that there exist graphs where the The translation between information networks and directed
guessing numbek(G, s) even fails to be an integer for eachgraphs is most clean if we represent information networks
s€4{2,3,4,...,}. such that we place all computations (Network Codings) in

Observation(A) the nodes of the network. We refer to this representation as

In GuessingGan{€?, s) the graphG allows the play- the Circuit RepresentationThis representation is of course

and only if G contains a loop. a mathematical perspective the different representativas

Observation(B) es_sentially equivalent_. In general the circuit reprederias
A graph G = (V, E) contains a (directed) loop if slightly more econon_wlca_l (usually save a few nodes) t_han the
and only if its guessing number is 1. If a graph standard representation in Network Coding. The representa
containsk disjoint loops its guessing number % IS more in Ii_ne with circuit complex_ity, where the task of the
(for eachs > 2). A graph is reflexive if and only Network is in general a computational task. Formally, each
it has guessing numbeil/|. Assume that the setSOUrce node_ls asspuated Wlth a variable. Each _node compute
of nodesV in the graphG can be divided inr a function of incoming edges signals. Each outgoing edge fro
disjoint subsetd/, Va, . .., V, of nodes such that the & node transmits the same signal (function value of nodeh Ea
restriction of G to each subse; is a clique. Then receiver node is required to produce a specific input vagiabl

the graphG has guessing number |V| — r (for In general, given an information flow proble® (in the
eachs > 2). h Circuit Representation) we obtain a directed gragh by

If a graph contains a (directed) loop the players can alwalp?(s)e;;fymg each source node with the corresponding rerety

guess in an “incon.sistent” _fashion (e.g. all but one players In figure 4 we see a few examples of simple information
the loop guess their own die value to be the same as the V%Lé?works together with their corresponding directed gsaph

they receive from the previous node in the loop. The ‘odd onex y

out’ guesses inconsistently with the other players thahbis X z
die value differ from the value received). If we combine this

with Observation A, we notice the curious fact thtag players A [/

have a "good" strategy that ensures that they all succeeld wit

higher probability than uncoordinated random guessingnifla ¥ X Y
only if the players have a "bad" strategy that insures thesene @) (b)
succeed.
Sometimes it is convenient to focus on certain more limited x y z z
guessing strategies.
Definition u y v
Let B be a class of functiong : A? — A for d = N
1,2,3,.... An important class appears if we let > « u
denote a fixed algebraic structure (e.g. a group, a? y
ring or a vector space) of = |A| elements, and let (c) (d) figure 4
the classB = LIN consist of all homomorphisms  The information networkV in figure 4a (or figure 1b) is the
(linear maps)A? — A for d =1,2,3,.... If all the  ygyal ‘butterfly’ network (presented in Circuit Represtioty).

functionsf,, belong to the clas® we say the players |f e jdentify the input node (source node)with the output
have chosen a guessing strategyAnlf B = LIN node (receiver node), and identify input node (source node)
we say that the players use a linear guessing strateg¥yith the output node (receiver nodg)we get the graph in
Definition figure 4b.
A graph G = (V, E) has guessing numbek = The information network in figure 4c does not have any
kp(G,s) with respect to the functions i® if the obvious symmetries, but when input and output nodes are
players in GuessingGart@, s) have a protocol with identified, we get the directed graph in figure 4d that clearly
all guessing functions irB that guarantees succesgontains a humber of symmetries. The translation shows that
with probability (%)'V‘—k. We say G has linear nodesz andu (as well asy and v) are equivalent points.
guessing numbek;,, = kin(G,s) if the players That the points from a deeper mathematical perspective are
have a linear guessing strategy that guarantee succals® equivant in figure 4c is not obvious at a first glance (but
with probability > (2)IVI=F. this will follow from Theorem 1). The guessing number of the
graph in (b), as well as the graph in (d), can be shown to have
the value2.

In general we leC,uitiple—unicast (the class of multiple-

In this section we show that Mathematically there is a vemynicast directed information networks) consist of informa
close link between Network Coding and the guessing gantgsn networks N for which for somen € N, n messages
we just defined. We will show that each information flown,mo,...,m, € A (selected from some alphabd) have
problem is equivalent to a problem about directed graphs. to be sent from input (source) nodésio,...,, to output

II1. NETWORK CODING AND GUESSING GAMES



nodeso;, 0, ...,0,. Somewhat formally, each source node

i; is associated a variable; and each nodev (except
for the source nodes) are assigned a function symhol
representing a functiofi, thatis mapping all i mcommg S|gnals f

ai,as,...,ag, to an element = f(a,as,...,ar,) €
Each outgoing edge from a node transmits the same S|gnal (the

function valuea of the node). Each receiver node is required a e ¢
to produce a specific input variable.

For an information networkV € Cp,uitipie—unicast W€
associate a directed graphy that appears by identifying each
source (input) node; in N with its corresponding receiver
(output) nodep;. If N hasn input nodesy output nodes and
m inner nodes 4n + m nodes in total) the graply has
n + m nodes.

We are now ready to state the surprising link that shows

that each information flow problem is equivalent to a problem  (iii) figure 5
about directed graphs. Consider the three information flow problems in figure 5(i-
iif). They are in circuit representation (i.e. all funct®rmare
Theorem(1) placed in the nodes, and each outgoing edge from a node

An information Network flow problemN ¢ transm_its the same functipn value)._ The three informa_lt_iem n
works in 5(i)-(iii) are non-isomorphic and are clearly dist.

Crultiple—unicast With n input/output nodes has a X ' - _
solution over alphabett with |A| = s elements However if we identify the source nodes and the receiver sode

if and only if the graphG'y has guessing number!” each qf the networks, we get tlamedirected graph in
k(G,s) > n. figure 5 (|_v). .
According to Theorem 2 there is a one-to-one corre-
spondence between solutions of each of the three infor-
The main point of the theorem is that it replaces the flomation networks 5(i)-5(iii), and the successful strategiie
problem - a problem that mathematically speaking involvesuessingGamé{, s). Thus, the set of solutions to each of the
slightly complicated concepts like set of source nodea set  three information networks 5(i)-5(iii) is in a natural ote-one
of receiver nodesis well asa set of requirements (demandskorrespondence. Before we prove Theorem 1 and Theorem
that specifies the destination of each input - with an egeial 2, let us have a closer look at the networks in figure 5. A
problem that can be expressed in pure graph theoretic ter@&operative) strategy for the players in the guessing game
(no special input or output nodes). Actually we show thgith the directed graph in figure 5 (iv) consiststfunctions

theorem in a slightly stronger form: g1, 92, - - -, ge Such that:
qduess — g1 (b d)
Theorem(2) b9"e% = go(a,c, €)
The solutions (over alphabetl with |A] 91 = g3(b, f)
of an information network flow problemV < does* = gy(a,b)
Comuttiple—unicast With n_ input/output nodes are in  ¢““** = g5(d, ))

one-to-one correspondence with the optimal guessing/?"““** = ge(b; ¢
strategies (over alphabet with |A| = s). Each of For all players to guess their own message correctly we
these guessing strategies ensures that the playerdnust havea?““** = q i.e. we must have. = g (b,d). Thus
the guessing game played 6hy have success with assuming that we work under the conditional situation with
probability (1)/“~1=" (where|G | is the number of ad"cess = g, we can substitute with g;(b,d) leading to the
nodes mGN) equations:

bIuess = go(g1(b,d), c,€)

(
o . I . . c9uess = g3 (b, f
The following simple observation highlights (in quite a douess — (

geometric fashion) the difference between Network Coding pguess _
and traditional routin s
¥ foex* = go(b. )

Now pick any equation of the form9“¢** = h wherex
Observation(C) does not appear in the expressionWe might for example
An information flow networkV € C has through put assume: = gs(b, f) (i.e. thec9“¢** = ¢). Substitutinge with
k using ordinary routing (i.e. pushing each messagg (b, f) in the equations we get:
along a unique path) if and only the graphy bIvess = go(g1(b,d), g3(b, f),e)
containsk disjoint cycles. d9vess = g4(g1(b,d),b)



e9uess = gs(d, f) Figure 6 (i)-(iii) shows how this strategy corresponds nat-
fouess = gg(b, gs(b, f) urally to Network Codings in the three information flow
This system of equations still contains one equation of tigeoblems in figure 5(i)-(iii). Figure 6 (iv) shows the strgye
form x9v¢%s = h wherex does not appear in the expressian as a guessing strategy.
Let e = g5(d, f) (assuminge?“c*s = gs(d, f)) and substitute

this into the equations we get:
boress = 92(91 (bv d)v gd(bv f)a 95(d7 f))
d9vess = 94 (91 (b7 d)7 b)
fouess = gg(b, g3(b, f))
For any fixed choice of functiong,, g», g3, 94, g5 and gg

IV. PROOF OFTHEOREMS

Before we prove Theorem 1 and Theorem 2, we need a few
formal definitions of information networks. As already pteid
out, the translation between information networks andaotkre

Ographs is most clean if we represent information networks
uch that all computations (Network Codings) are placed in
the nodes of the network. An information flow netwoik
(in circuit representation) is an acyclic directed grapthvaill
source nodes (input nodes) having in-dedread all receiver
nodes (output nodes) having out-degfedcach source node
is associated with a variable from a d¢f,, of variables. In
= c and e?**** = ¢ is (1)° (essentially this is the receiver node there is a demand assigned i.e. variatote fr
because the restriction a to the nodesa,c andd form p |n each nodes that is not a source, a function symbol
an acyclic subgraph. For a more general argument see thejs assigned. The function symbols in the network are all
proof of Theorem 2). Thus, the conditional probability thagistinct.
the remaining players all guess correctly their own die @alu Messages are assumed to belong to an alphab&ome-
is p, and the probability all players are correcpis,)®. Hence times we assume that has an additional structure (e.g. a
- in agreement with Theorem(1) - the guessing number of tdgoup, a ring or a vector space). Each outgoing edge from a
graph in figure 5 (iv) is3 if and only if there exist functions pode transmits the same signal (function value of node).
91,92, -, g6 such that the equations (*) hold for &lld and  An actual information flow is given by letting each function
[/ (i.e. hold with probability1). symbol f represent an actual functigh: A? — A whered is

As it happens, we can solve the equations by turning thge number of incoming edges to the node that is associated
alphabet4 into a commutative group4, &), and the by letting the function symbolf. The information flow is a solution if
91(b,d) = b @ d,g2(,8,7) = @S, g3(b,f) = bD [, the functions compose such that each demand is always met.
ga(ev, B) = aSP, g5(d, f) = d andge (i, §) = fSa. Thusthe  We let C,uiipie—unicast denote the class of information
players have a (cooperative) guessing strategy (in facteati networks N for which n messagesni,mo,...,m, € A
guessing strategy) ensuring that all players are simulaslg (selected from some alphabd) have to be sent from input
ablg to guess their own message correctly with the prohrﬁbil'(source) nodes,, is, . .., i, t0 output nodes;, o, ..., op,.
(1)3. One strategy is given by: Let Conultiple—unicast D€ an information network in this

let 0 < p < 1 denote the probability that a random choice
b,d and f satisfies the equations (*):

b= gQ(Ql(bv d)v gd(bv f)a g5(d7 f))

d= 94(91 (b, d), b)

It is not hard to show that the probability that“c*s = a,

cguess

ad%ess = phd d model. We define the grap@iy by identifying nodei; with
bIvess =g e o1, nodeiy with oy, ... and nodei; with o; in general for
cguess:b@f j:1,2,...,n.

divess = a 6b Theorem(1) follows directly from Theorem(2). Hence, to
eguess — g prove both theorems it suffices to prove Theorem(2).

fguefs =cob Proof of Theorem(2): Let N be an information network

with input (source) nodes, io, . . . , i, OUtpUt (receiver) nodes
01,02, ...,0, andinnernodesy, no, ..., n,y,. The networkv

is acyclic so we can assume that we have ordered the nodes
asi] < i < ... <1y <Ny <Ny < ... < Ny, <01 <

02 < ... < o, such that any edgé, j) in N hasi < j in

the ordering. Any selection of coding functions (whethexyth
form a solution or not) can then be written as

a b C a (&) C
/ \ e
a b c a e c

@ (ii) 21 = fi(zy, 22,...,Tn)
b d £ a=b+d b=a—e  c=b+f 2 = fa(w1,@2,. .., p, 21)
‘ 23:fg(l‘l,l‘g,...,l'n,zl,z,’g)
N Zm*fm(xlax27"'7xn721722a"'aszl)
b+d f ¢ = g1(T1, T2, ., T, 21, 225 -+ -, Zm)
“‘ x§ = go(T1,%2, ..., T, 21, 22, - - -, Zm)
o~y N
b d f d:’a:/’e:d f=_bac I,?L :gn(zllax%"'7xn721722a_"'azm> ) .
where forj = 1,2,...,n z; is the variable denoting the
(iif) @iv) figure 6  value assigned to the input nodg z; is the variable denoting



the value computed by the inner nadg andz is the variable 27 = fy (27, 25!, ... a7eah)

n
denoting the output value computed by the noge zreal = fo(preal greal  greal jreal)
Next, consider the corresponding graghy we get by 25 = fy(apee! afeal .. greal preal real)
identifying nodesi,- ando, for r =1,2,...,n. We consider e z z z z z z
the guessing strategy given by the functions above i.e. thez,;* = fm (27 s LR Y, 210, 25 ,...,zfneﬁl).
strategy given by: But for each choice ofzfee gheal .. zreel there is
2V — fy (greal greal | greal exactly one choice ofz7eal zreal | zreal Thus the
291058 = fy(afedt, greal | greal greal) number of successful choices ig*. The probability is
%uess }Aeal’ 72"eal7 ’ ;r}eal7 }Aeal real number of successful choices __ _s" __ 1 *
z3 = fd (1‘1 P A 2 R ) ) number of choices T sntm T gme
,,,,,,,,,,,,, Informally we can explain the validity of Lemma 3 by
guess — f, (greal greal greal preal sreal . real) noticing that the restriction of the grajghy to the set of nodes
295 = gy (areal | gheal greal yreal real preal) that corresponds to inner nodes dfforms an acyclic graph,
) AR ) ) Yyt . . .
23U = gy (el greal x:}eal sreal sreal Z%al) and as we already noticed in an acyclic graph, the players
2 ’ oo ’ rom cannot do any better than uncoordinated guessing.
m%uess — gn(x71'eal7 xgeal7 o 7x:leal7 ZI‘eal, deal, e Z;’:al).

Here z7¢e! (or z5°*!) denotes the actual value of the gid Standard representation

associated to that node, whil““** (or 29““**) denotes the There are a few slightly different ways to represent flow in
value being ‘guessed’ by the node. ! information networks. In the previous section we considere

Conversely each guessing strategy @5 can be written the Circuit Representation. We call the standard (and oty
on this form. To see this we use the fact that the restrictié¥y of representing information flows in Network Coding for
of Gy to the nodes that correspond to the inner nodes e Standard Representation If we use the Standard Rep-
N forms an acyclic graph (sincé/ is acyclic). Thus the resentation we get slightly different versions of Theor&m(
equations can be viewed as an attempt to solve the informatf§d Theorem(2). The actual theorems can be stated the same
flow problem N. To prove Theorem(2) we show that thdverbatim)! .The. Theorems are modified tq fit the standard
guessing strategy succeeds with probability™ if and only representation in the way the graply is defined. _
if the corresponding information flow functions solves the An information Network N is a directed acyclic multi-
information network problem. This boils down to showing)faph. Each source node has in-dedrewnhile each receiver
that the probability that all inner nodes guess their owre di®10de has out-degree Associated with each source node is a
values correctly is()™ (Lemma 3). Assume that we havevarlab_le from.a selvar of varlaples. Each outgoing edge is
shown this (lemma 3). Then the probability that all p|aye,§ssomate<_j Wlth.a distinct function symbol with an argument
guess correctly is at most as large as the probability ajlgska for each incoming edge. Each receiver node has a list of
corresponding to inner nodes, n, . .., n,, guess correctly. dmands which is a subset of variables fré,,. In the
Thus all the players guess simultaneously their own diceegal 'eCeiver node the_re is assigned a _functlon symbol for each
correctly with probability < (1)™. Equality holds if and demand. All function symbols are distinct.

only if the conditional probabiiity (under the assumptitrat ~ Messages are assumed to belong to an alphabefn
L9uess _ preal for 5 — 1,23, ..., m) thatz9"“*** = zeal for actual flow (using Network Coding) is given by letting each
jj: 1,2,. .J.,n is 1. This happens if and only if the functionsfunction symbolf represent an actual functioh: A% — A

Fis Foreons fonsG1s -+ -, gn fOrm a solution to the information whered is the number of incoming edges to the node that is
flow problem. So to complete the proof of Theorem(2) gssociated with the function symbgl The flow (that might
suffices to show: utilise Network Coding) is a solution if the functions conggo

such that each demand is given by the functional expression

Lemma (3) .
For any set of functions fy, f fm and of the involved terms. ; ;
1S m We let Couitipie—unicast denote the class of information
g1, g2 g, the probability that players pee
yILy ey In (i.e. players in nodes correspondin networks N for which n messagesn;,mso,...,m, € A
N1, N2, .- M (1€, PIAY h selected from some alphabd) has to be sent from source

to inner nodes in the information network) gues

. i 1 .
_thglr OV:;” tdlc;,cethvalges correctly |i(;)"tl_ (ie. We convert a given information networkN €
independent of the chosen guessing functions). Comuttiple—unicas: 10 @ directed graplily as follows:

Proof: We are asking for the probability/““** = 27! for  gtep 1: For each variable or function symbol assigned to an

nodesiy, iz, ..., i, t0o output nodes, o0, ..., 0.

j=1,2,...,m wherez{"** = fy(afeet xpeet, .. areal) edge or a node we introduce a node in the new g@gh
2549 = fo(areal greal . greal preal) Step 2: We identify nodeg with o1, iy With oy, ... andi
uess . . X
25158 = fy(aheal greal | greal preal jreal) with o; in general forj = 1,2,...,n.
............. With this translation ofV to Gy Theorem(1) and Theo-
zguess — f (greal greal greal preal sreal  zreal)  rem(2) remain valid (verbatim).
The number of choices ofr}°® xheal ... zreal and
speal sreal | real jg gntm \\e want to count the number V. GENERAL RESULTS FOR INFORMATION NETWORKS
of "successful" choices for which?“*** = zpeal for j = Theorem 1 and Theorem 2 only apply for information

1,2,...,m. That is, the number of choices for which: networksN € Cruitiple—unicast- IN this section we generalise



the results so they essentially cover all (!) instantaneous Source nodes

information networks. As a price of the increase in gensrali

I d
we lose some of the elegance of Theorem 1. The proof of nnernode
Theorem 4 (that generalises Theorem 1) provides us, in fact,
with a new (and different) proof of Theorem 1.

Let N be a information network, and let be an (finite) Inner node
alphabet withs elements. For a selection of fixed network \ | wis "split”

functions f, we define the networkd’s global success rate Receiver nodes
p(N, s, f) of a specific network coding flow (with coding
functions f) as the probability thatll outputs produce the

required outputs if all inputs are selected randomly witthein

Source nodes

Lower part
of inner node

pendent probability distribution. Theaximal global success Source nodes Uoper pat
rate p(N, s) of the information flow networkV (over alphabet Winout of inner node
of size s) is defined as the supremum of all global success |1

ratesp(N, s, f) that can be achieved by any choice of coding Receiver nodes

functions f. Since the set of functiong (for a fixed finite
alphabetA) is finite, p(N, s) is the maximal global success

rate p(N, s, f) for some specific choice of coding functions

- ‘

Assume thatV is an information network over an alphabet w
output

A with s elements. Assume thaf hasn source nodes (input
nodes), and that each of these is required by at least one Receiver nodes figure 7

receiver node (output node). Observation

Let G be a directed graph. ThenNg €

Definition i
. L . Grnultiple—unicast andG has guessing numbér =
We define thesource transmission bandwid = k(G,s) if and only if N has source transmission
k(N, s) of the information networkV (over alphabet bandwidthk = k(Ng, 5)

of size s) ask(N, ) = log, (p(N, 5)) +n. For eachp € [0,1] there is a one-to-one cor-

respondence between guessing strategieis the

The notion is motivated by the Theorem(4) below, and can GuessingGan{€r, s) that achieve success with prob-
be viewed as a generalisation of the guessing number of a ability p and information flowsf in N that have
graph. global success rate.

Notice, that a network has source transmission bandwidthrhe Observation is too trivial to deserve to be called a tior
if all output nodes can simultaneously calculate their regli |t i however, quite interesting since it shows (togethéhw
messages with probabiligf higher than what can be achievedhe remark in the end of this section) that the notion of seurc
by the "channel free” network. An information netwalkis  transmission bandwidth generalises the guessing numker of
solvable if and only ifp(NV, s) = 1i.e.ifand only ifk(N, s) = directed graph.
log, (p(N, s)) +n = n. It other words, an information network  \ve now introduce a simple move we call "split". Given an
N with n sources (tha_t send distinct source messages thal tormation networkN — (V,E) (with E being a multiset)
each message |s_reqU|red gt one or more receiver no_d(_as),thgsmove "split" can be applied to any inner nodes V' in
source transmission bandwiditiN, s) = n if and only if it \ (3 hode is an inner node if it is not a source or a receiver
is sglvable (in the sense of network coding) over an alphat}gde)_ The move "split" copies the inner nodeinto two
of size s. NOdeSwinput aNdWouipu:- IN Other words, the move converts
For each (directed) grap& = (V, E) we want to define the vertex setV to the setV’ = V U {winput, Woutput } \
an information flow problemNg = (W, F') with |V | source {w} containing all points inV” but with two copies ©input
nodes (input nodes) and’| receiver nodes (output nodes)and weusput) Of w. For each outgoing edgev, u) € E from
Expressed slightly informally, we defing by splitting each w we introduce an edgéw;,.:,u) € E’ (with the same
nodew € V into two nodeswiypu: and wouspw: (thus the multiplicity as(w, u)). For each incoming edder, w) € V' we
vertex setlV consists of two copies o). For each edge introduce an edgéu, winpu:) € £’ (with the same multiplicity
(w,v) € E we add an edg€winput, Voutpur) € F. Let as(w,u)).
Ng = (W, F) denote the flow problem that appears through The information networkN’ = (V' , E’) has as source
this transformation where each output nogg:,.: requires (input) nodes all source (input) nodes In together with
the message assigned tg,,,.. Notice that the information {w;,p.:}. The set of receiver (output) nodes consists of the
network N¢ is usually very far from being solvable, sincereceiver (output) nodes iV together with {woyipu:}. We
most source (input) nodes have no path to its correspondemspsociate a new variable with the nodew;,,,: and node
receiver (output) node. Woutput 1S associated with the demands All other nodes



keep their demands. p(N',s, f) = P82 We claim thatp(N', s) = p(N', s, ).
In figure 7, we see how the split move can be appliedssume thap(N',s,g) > p(N', s, f). But thenp(N, s, g) =
We say that the information networN’ appears from the s x p(N',s,g) > s x p(N', s, f) = p(N, s, f) which contra-
information networklV by a "reverse split move", iN appears dicts the assumption that was an optimal coding function
from N’ using a split move. for the information networkV (over alphabet of siza). &
The split move always results in an information networkemark: Notice that if ' can be derived fromV by a split
that has no solution (since there is no path from the sour@®ve the graph€zy and Gy are identical. Thus starting

Nodew;,pu: 10 the receiver NOd@ oy put)- yvith any N € Chuitiple—unicast any sequence of split and
The next Theorem can be considered as a generalisatiodterse split moves leavd v unchanged. This shows thaty
Theorem 1 and Theorem 2. is invariant under split and unsplit moves dh

Theorem(4) If N € Cnultiple—unicast haSn_ inqu nodesp output nodgs,
. . andm inner nodes we can ‘split’ all innen nodes producing

Let N and N’ be two information networks thata bi-parte graphV with n + m input nodes andn + m
appear ”0’_“ each ot_her by a sequence of split a%qjtput nodes. Notice that there is a one-to-one correspmeda
mvers/e split moves (in any order). T_he_ networik(s_ etween information flows inV and guessing strategies in
qndN have the salme source transmission bandwid ~ (actually, from a mathematical perspecitive the two are
(ie. k(N S)..: RN, 5)) . . essentially identical since the coding functions in thepauit
More specifically, letN be an .|nformat|on flow nodes are the guessing functions(in,).
network, letA be an alphabet withA| = s letters, o assume that the + m input values of ¥ are chosen
a_md assume thaf is a selection of coding func- randomly (and independently). The probabilityV, s) that all
tions over this alphabet ASS“”.""* thit has source outputs are correct is identical to the probabilitythat each
messagesy, ra, .. ., Ir (they might be transmitted layer in the guessing gandéy correctly guesses his/her own
from more than one input edge). Assume that t e value.
coding functions have a global success rate= But, now according to Theorem #(N, s) = (1)™p(N, s)

= g . . T
ﬁ Eaz\’/;’rkf )thaet a[O, le]érsufartor]ryv bbeaanﬁcég?gn;?t;ﬁg (sinceN appear fromV usingm split moves). In other words
pp y app M€ N is solvable (i.ep(N, s) = 1) if and only if p(IV, s) = (L)™.

split move. ThenN’ with the coding functionsf) : . : . s
has global success raiéN", s, f) = . This happens if and only if the players in the guessing game

. played onGy (=G = N) have a strategy that succedes
In general if N has global success rate (over . PR . .
alphabetd) any networkN’ that appears fron¥ by with probability ($)™. Thus the guessing number 6fy is

application ofr split moves and reverse split moves (n+m)—m = n. This shows that Theorem 4 implies Theorem
PP " SP 87 1 (and that the proof of Theorem 4 together with the remark
(in any order) has global success rate s~ ".

provide an alternative proof of Theorem 1).
Proof: The first part follows from the more detailed second

part, since each application of the split rule increasevahge VI. UTILISING PUBLIC INFORMATION.

of n (the number of input nodes by one), and each applicatign another Game

of the inverse split rule decreases the value:diy one.
Assume that the information networkl = (V, E) has

global success ratp = p(N,s, f) € [0,1] with respect to

Consider the directed graph in figure 8(i) (introduced in 4
(iv)). Each node has to derive their own message. This is, of
. . . . course, impossible and we know that the best the players can
the coding functionsf. Let w € V' be any inner node in hope for (if they use a suitable coordinated guessing siyate

N. Replacew with (split w into) tWo nodeswinpu: and " they are all correct os3 distinct inputs (out of the
Woutput S already explained. The incoming coding function, . . .

: . : . _s6 different inputs). If the players have accessst public
to node wouipy: IS the same function as the inner codin

. . ) . gnessages and these are carefully chosen, it is possiblador t
function to nodew in the networkN. Each outgoing coding .

. . . ° players (through a cooperative strategy) to ensure that eac
function of winpue IS the same as each outgoing functio

for node w. The network N’ has got a new input node.IOIayer %an derlv% his/her (?W” message.

Let us calculate the probability(N’,s, f) that all output 1

nodes produce the correct outputs. The probability thaenod <<§ Public
-

Woutput Produces the correct output is exactlfy Assume message
NOW Woutput = Winput- 1he conditional probability (i.e. the .
probability given zouiput = Zinpur) that all output nodes in -~ d e f
the networkN' produce the correct output js= p(N, s, f). @
But, then the probability that all output nodes MY produce

the correct output is exactly.

The second part of the theorem follows from the first part.
Assume thatf is a selection of coding functions such that
p(N,s, f) = p(N,s) (the alphabet is finite so there are only
finitely many functionsf, and thus there exist functions that
achieve the maximum valyg X, s)). We already showed that ) a b ¢ d e g figure 8

Public
channel




10

If, for example, the valuesobod e A,cobo f € A as message to each playesr € {1,2,...,n} with

well aseS d € A are common knowledge (broadcast through (v,w) € E. Or in other words each node receive
public messages) each node can derive its own message (since messages from a set, ;= {v € V : (v,w) € E}.
a=(acbod)dbed b= (ecd)c(acbod)E(ace),c= The task is do design the functigiiz, 2, ..., )
(cebefiebaf,d=(acb)d(acbed),e=(ead) @d such that each player always (i.e. for any choice
andf =(ceb)s(cabsaf)). of z1,29,...,2, € A) can deduce their own mes-
Another equivalent way of stating this is to consider the sage. If this is possible, we say that the game
biparte flow problem in figure 8 (ii), with public channel of PublicChannelGanié&, A, P) has a solution.
bandwidth3. Notice that figure 8 (i) and figure 8 (ii) are dif- pefinition
ferent representations of the problems that are matheafigitic A directed graphG = (V,E) has (general)
equivalent. linear guessing numbek = k, if the game
Are the solutions (public messagesbod € A,cobo f € PublicChannelGani€, A, P) has solution for some
A aswellaxzod € A) in figure 8 (i) and figure 8 (ii) optimal? A with |A| = s and with P = s/VI=F.

Is it possible to send fewer thad message through the public This definition anticipates Theorem 6.

channel (and still have all players being able to deduce thei : ) S
own message)? From the analysis of the guessing game i ow con5|d(_er, for example, t.he case of figure 3(iii) with
figure 4 (iv) we know that the probability that the players iff P/ayers holding messages (dice values)xs, x5 andzy.
nodesa, ¢ and e guess their own messages is independelﬁ} this case each player is able to calculate their own dice

(for any guessing strategy) and thus nodes ande guess value if, for example;cl D4, 22 D T4 and.‘T“ a4 modulos
correctly their own message with probabili@)i‘. We claim Were know public information. [To see this, notice that ndde

that if nodea, ¢ ande in general are able to derive their own Sc€VESt4 from which it can calculate:; = (21 & z4) © 24,

message they must have access to at l€adistinct messages no@ez =2,3 r§ce|ve3ri_1 from Vg_h'cn It ca(;r czlculat_e:i -
in the public channel. To see this assume that it were pcessigg & 24) © (-1 & 24) ® wi—1. Finally, node 4 receives;

for the players in figure 8 (i) to deduce their own messagdd™ Which it can calculater; = (w3 ®2g) O3]
from a public channel that sendss®. The players could then -0 @ny information networkv we can apply the split move

all agree to guesas if the public channel is broadcasting &'"tll all inner nodes have been spilt. In this casebecomes
) biparte graphBy with no inner nodes. Notice thdy is

uniquely determined by .
X Xp X3 X4 Xg Xg

specific messagen they agreed on in advance. Since the
are less than3 public messages there is a messagéhat is
broadcast with probability> (1)3). This contradicts the fact  *
that the players (especially the players in nodes and c)
cannot do better tha(%)ff. Thus the solutions in figure 8 (i)
(and in figure 8 (ii)) are optimal.

Let G = (V,E) be a directed graph. Assume like before
that each node is being assignhed a messag@domly chosen
from a fixed finite alphabe#l containings = |A| elements.
Like in the guessing game each node transmit their message, ,
(dice value) along all outgoing edges. In other words each ~ figure 9
nodej know the messages (dice values) of exactly all nodes ' NS €xample and the example in figure 4 (iv), suggests that
i with (4,5) € E. it is always is possible to replace the guessing part of gogss

The task of the players is to deduce their own message. TARMe, and instead let all players have access to a suitable
is of course impossible (unless the graph is reflexive) sincePublic channel of information. We will show (corollary 10)
general the players have no direct access to their own messiigt this is possible for linear solutions (also sometimeded
(dice values). The task of the players is to cooperate aretagiatrix linear) for the guessing game, but never possiblelij o
on a protocol and a behaviour of a public channel that ensdlgn-linéar solutions exists. Notice, that the followingabysis

that all players are always able to derive their own messagis©nly meaningful when the alphabet (i.e. the dice values)
Definition can be organised as a vector spatgof dimensiond) over

Let G = (V,E) be a directed graph and let a finite field F' (with a numberg of elements being a prime
denote an alphabet with letters. LetP be a finite POWEr)- The numbeft/| of element ofU is given bys := q’.
set of public messages. Consider the following game Theorem(5)

X, Xg X4 X5 X

PublicChannelGanié:, A, P). The game is played Assume that the alphabéf is a vector space of
as follows. Each nodg € V' is assigned a message dimensiond over a finite field F with ¢ elements

z; € A. A public message = p(z1,x2,...,2,) € (i.e. ¢ is a prime power). Then the following are
P (given by a functiorp : A — P) is broadcast to equivalent:

all nodes. Each nodg have access to the message (1) The players have a linear guessing strategy in
p € P as well asz; for eachi with (4,5) € E. In GuessingGamé{, U) that succeed with probability
the game each playerneeds to deduce the content (q%)k

of their own message;. (2) G has linear guessing numbee= k;;,, (G, ¢).

Each player (nodey € {1,2,...,n} send their (3)  PublicChannelGamé{, U, U*) has a solution
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(possible non-linear). For each vector. € U we consider the linear "side" space
(4)  The Biparte information Flow problenBs w4+ W. Let ug(= 0),u1, us,...,u; denote a maximal family
associated t@- has a solution (ovet/ and possible of vectors withW = ug + W, uy + Wyus + W,...,uy + W
non-linear) that uses a public chann@lof band- all being disjoint. It follows thal = ¢ — 1 i.e. that there are
width . q?* disjoint side spaces df and thatUézo(uj +W)=U.

(5)  The Biparte information Flow problem asso- We can now convert this into a solution to
ciated toGG has a linear solution over a field of ¢  PublicChannelGanté&, U, U*). We do this by broadcasting a
elements, that uses a public channel of bandwidth public message as follows: Assume each nod¥& ihas been
(6) The Biparte information Flow problem associ-assigned a value frorfy. The information of all dice values
ated toG has a linear solution (over the vector spacare contained in a vectar € U. There exist exactly one

U) that uses a public channel of bandwidth indexj € {0,1,2,...,1} such thatu € u; + W. Broadcast

(7)  PublicChannelGamé{, U, U*) has a linear the indexj € {0,1,2,...,q% — 1} by selecting a bijection

solution. from {0,1,...,¢% — 1} onto U (this is possible sincé/
From this we get: contains exactlyg?* points). Now each node can calculate
Theorem (6) its own message by correcting their guess (they would have

Assume that the alphabé is a finite dimensional Made had they played the Guessing Game) by the suitable
vector space over a finite fiel#". The nodes in Projection ofu;. _ .

a directed graphG' can calculate their messages NS shows that the game PublicChannelGamé(, U")
(selected fromU) if they have access to a publichas a solution (possible non-linear) with the public messag

channel of bandwidtk: % if and only if the (special) P€ing selected from the sét* public messagesh _
linear guessing number @ is > |V| — k. In this construction, the public channel broadcasts diffier

Theorem (6) explain the terminologyeneral linear guess- messages fqr each mdg_xe {0,1,2,....1}. In g(_aneral, this
ap is not linear. We will show that any non-linear strategy

ing number In the case where the alphabet is a vector-spa@e . .
the linear guessing number (in sense of linear maps) agFe"’len be turned into a linear strategy.

with the general linear guessing numbefhe two notions Lemma 8

of linear guessing number agree when they are both defined. (4) implies (5)

The general linear guessing number is, however, defined ®efore we prove this implication we make a few general obser-
all s € {2,3,4,...,}, while the linear guessing number onlyvations and definitions. Assume the bi-parte flow problem in

is defined whenms is a prime power (since a finite dimensiona(5) (in theorem 5) has a solution with the public channel broa

vector space always has a number of elements being a pricastingp: (x1, z2, ... Zn), ... Puw(Z1,2Z2,...,2,). SinCep; :

power). A™ — A and A is a field, each functiop; can be expressed
as a polynomialp; € Alz1,z2,... z,]. Each output node

B. Proof of theorem 5 oj receivepi,pa,... pw € A as well asz;,,zj,,...,z;, €

A. The task of output node; is to calculatex; € A.

First notice tha(1) and(2) are equivalent (by definition). g, any polynomialg € Afz1, s, ... z,] we let L(q) €

We claim: Alz1,z9,. .. z,] denote the sum of all monomials (with the
Lemma 7. _ original coefficients) ofq that only contains one variable
(1) implies (3): (e.g. z;,2;3, or z;7). In other wordsL(q) consists ofg

Proof: We are given a grapli = (V, E) and we consider where the constant term as well as all monomials containing
GuessingGant(é/, U, U*), for U being a vector space ofmore than one variable have been removed. If for example
dimensiond over a fieldF with ¢ elements ¢ being a prime ¢ = 5z1x3 — Tx122 + 321 — bzo + 1, thenL(q) = 3z1 — Szo.
power). The numbek is given by (1). We assume that the In the following lemma we assume thdf (= A) is
players have a linear guessing strategy, i.e. a stratedyallit structured as a finite field (containing-elements).

functions f,, : U™ — U are linear (i.e. given by a.,d x d Lemma(9)

matrix with entries inF"). Further more we assume this linear A biparte information flow problemB has a so-
guessing strategy make it possible for the players to guess lution with public information given by polynomi-
correctly all their own dice values with probabili()g]%)k. als p1,p2,... pw € Alz1,2a,... 2, then B has
Consider U := U!V!, the linear subspace of vectors a solution with public information given by linear
(v1,v2,...,0y)) € UVl with v; € U for j = 1,2,...,|V|. expressionsy, ls, ... l, € Alx1, Ta,. .., Ty).

Let W C U denote the linear subspace of dice values f@€emark: It is instructive to notice some of the reasons why
which the players all successfully guess their own diceealih general non-linear flows cannot be eliminated from infor-
(while using the linear guessing strategy we assume exisigation networks. In a general network a non-linear solution
Since the strategy is successful with probabiliy)** and might for example involve that two nodes send messages
since the number of points i is ¢?IV'! the number of points (z + y) and (y + z) to a noder where their productz +

in W is ¢¥IVI=4k, SinceWV is a linear subspace withf'!V'1=%¢  4)(y +2) = ay + vz +yz +3y?> = a2y + 2z +yz +y is
points over a field of; elements its vector space dimension ibeing calculated. Removing mixed monomials would lead to
d|V| — dk (thusdk must be an integer). L(z+y)=x+yandL(y+ z) = y + z to be sent to node
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whereL((z +y)(y + z)) = y2 must be calculated. Since it ishappensG has linear guessing numbég;,, that is strictly
not possible to derivg2 (or y) from x+y andy+z the process smaller thanG’s guessing numbek. We have the following
of removing monomials with mixed variables fails in generatharacterisation:

The networks in [18] and [8] show that certain flow problems Corollary(10)

only have non-linear solutions. For such networks any gitem Let G = (V,E) be a graph and let/ be a fi-
of removing non-linear terms (not just using local procesir nite vector space. The linear guessing numhgr
will fail. The point of lemma 9 is that the network together of G over U is smaller or equal to the guessing
with any public channel is structured in such a fashion that number k& of G. Equality holds if and only if
allows us to remove mixed terms and then replace the regultin PublicChannelGani&, U, U!V|=%)) is solvable.

function with linear functions. Information networks in igh We have seen that the problem of solving information
only two messages are transmitted provide another casewh§&nyork flow problems (of clas&uitipie—unicast) CaN be
linearisation is always possible [9]. . _ restated to that of calculating the guessing number of ahgrap
Proof of lemma(9): Assume that we are given a biparterpg jinear guessing number of a graph is an important concept
flow problem B that have a solution with public informa-\ye have the following version of Theorem 1 (that could -with

tion given by polynomialg, ps; ... pw € Afz1,22,... Zn]-  minor modifications - also be proved as Theorem 1).
Assume that in this solution the output nodgsos, ..., o, Corollary(11)

have a_SS|gned coding funct|ory’s,f2,..:,fn. Assume the The information flow problem N c

underlying alphabetd hasq elements { is a prime power). . .

Th isdl field. Each functior : A Crultiple—unicast With n input/output nodes

A enhwe czn_orga?lsld as a tI)e - Bac (ljmc lorf : | r;m'al has a linear solution (i.e. a solution within the "wave
(where A is a field) can be expresed as a poly ! paradigm”) over an alphabet of sizeif and only

p € Alr1,za,..., 2] Thug, without loss of generality_ we if Gy has its linear guessing numbg(G, s) > n

can assume that the functiorfs, fo, s fr are polynomials (which happens if and only (G, s) — n)f -

in Az, x2,...,%n, 21, 22, - . ., 2] SiNCe output node, re- ’

quires; for eachj & {1,2,...,n}, the polynomial equation VIIl. A LGEBRAIC CALCULATIONS OF LINEAR GUESSING
fi(x1, 22, ..., 0, 1, D25 - - Pw) = T NUMBERS

Let Fi (@1, @0, T, 21, 22, - s Za) — Consider a di.rected grap@ = (V,E). In this seption we

Lfj(21,@2,. . Ty 21,22, - -, 2) @0d letlj (1, 2, - .., 20 show that the linear guessing number (over a field) has an

The polynomials f; and I; have no mixed terms. In @lgebraic definition.

general for polynomials,p L(p + q) = L(p) + L(g) and L8t M = (mi;);; be an x n 0/1-matrix and letA be a
L(p1,p2,-.-.ps) = L(L(p1)L(p2)...L(ps)). From this it finite field. Then we defin€ (M) to be the class oh x n

is not hard to show thaf;(z1, o, ..., @0, 11, ..., lw) = ;. matricesM’ = (mj;);; with entries in the fieldA fo_r whiph
In other words if we apply the operatdr that removes all ™i; = 0 wheneverm;; = 0. Let I denote then x n identity
monomials with two or more distinct variables the publi§natrix and letu(M) := n — minyyec ayrank(l + M').
information then become.(p;), L(ps), ... L(p,). These Notice thatu(M) € {0,1,2,...,n}.
functions can be realised (since there are no restrictionsTheorem 12
on the public channel and all function$” — A% can be Let G be a (directed) graph witm nodes and
calculated). Using the same argument we can remove all incidence matrix M¢. Let A be a finite field.
mixed terms and insure that each output nedereceive a Then the graphG' has linear guessing numbér
function f; of its inputs (the input from input nodes as well (over the field A) if and only if u(Gn) == n —
as from the public channel). Since each of the equations minyecq(mgyrank(l + M') = k.
fj(xl,xg,...,xn,ll,...,lw) = z; hold for j = 1,2,...,n Proof: AssumeG has linear guessing numbker According
B has a solution with public information given by the lineathe Theorem (5 has linear guessing numbkrif and only
expressionsy, la, ... l, € A[z1,2,...,z,] This completes if the PublicChannelGant&!, A, A¥) has a linear solution
the proof of lemma(9)& S with a public channel of bandwidtkh. We say an edge
Now is it easy to prove Theorem(5). We have shawph— (v1,v2) € E in G is active (with respect to the solutia$)
(3) (Lemma 7) , as well ag4) — (5) (Lemma 8). if the message in affects the guessing function in. Let
The implication(5) — (6) follows from the fact that a linear £’ C E consists of all active edges ifi. Let G’ = (V, E’)
map f : F" — F is a (matrix) linear map frol/” — U for be the subgraph of’ that consists of all active edges @.

any vectorspace over whereF is a subfield ofF. For each active edge we assign a value A\ {0}. Consider
The implications(6) — (7) — (1) as well as(3) <~ (4) are a nodew € V such that(vy, w), (va,w),. .., (ve, w) are all
all almost trivial and are left as easy exercises for the eeadactive incoming edges with assigned valugsao, ..., aq €
This completes the proof of Theorem (5). Theorem (6) followg \ {0}. The (linear) signal being send to nodeis s =
as an easy corollary. 1My, + QaMy, + ... + agm,, i.e. the waited sum of all
incoming signals, as well as the signals that are send frem th
VIl. SOME COROLLARIES public channel. Since node requires message., the public

In general the guessing game GuessingGé@me) might channel nust send a message from which the message,,
only have non-linear optimal guessing strategies. Whes tlfi.e.cc;m,, + agm,, + ... + agm,, + m,,) can be derived.



Next assume that the rank of
ref(G') is k for some G’ - G. Let
ll(xl,xg, e xn), lg(xl,xg, ce xn), e lk(xl,xg, ce xn)

denote thek linearly independent rows ofef(G’). Send
these signals as public messages. etbe an arbitrary
node. The node receive a signal,, + my, + ... + m,,
from the channels inG’. The nodew need to derive
m, SO it suffice to show that the node can derive
My, + My, + ... + my, + z,, from the public messages.

13

Theorem(14)
Assume that the public information is
given by a functionp : A" — A. Then

PublicChannelGameVarigiit,,, s) is played on
the complete grapli,, has a solution if and only if
there exists a commutative groupl, ®) structure
on the alphabetd and there exists permutations
m,m,..., T, € S Of elements ind such that the
public channel broadcast

But, the row m,, + m,, + ... + m,, + m, appears in
ref(G') and thus it belong to the span of the vectors

li(x1,@a,. .. 2p),la(21, 29, . .. x@), o (@1, 32, ) Roughly, Theorem(14) states that the set of solutions stmsi
that are send through the public chanrl. of all the “obvious” solutions (Where(z1,zs,....z,) =

For a graphG let Ref(G) denote the reflexive closure ofgc1 S 1s®...®a,for a commutative group), together with all
G. Let rank(G) denote the rank over the fielh, 1} of the “encryptions”r : A — A of these.

incident matrix ofG.
Theorem(13)

Assume the alphabetd = {0,1} only con-
tains two elements. LetG be a graph. Then In this section we show that the advantage of (linear)

PublicChannelGani€&’, {0,1},{0,1}*) has a solu- Network Coding over any method that does not allows "in-
tion if and only if terference" is as high as one could possible have hoped
‘ , for. Consider the information network¥ in figure 10. The
k > mingcgrank(Ref(G"))

network corresponds to the Guessing Game on the complete
graph K,,.
Public "Channel”
replaced by
many channels
in serial.
Given a directed grapliy = (V, E) and assume that eachfigure 10
node with in-degred can only compute functions that belong Theorem (15)
to S,. How does this affect the guessing number of the graph? For eachn there is a networkV with n input nodes
How does it affect the set of solutions? and n output nodes such that the through-putnis
The network in figure 2 corresponds to a type of games that times higher than any method that does not allow
can be described as follows: interference.
« PublicChannelGameVarigitt, s): As before letG = For anyn € N and for anye > 0 there exists a
(V,E) be a graph on a vertex s&f = {1,2,...,n} network N (n, €) such that the through-put divided by

P(T1, T2, ..., Tn) =TT DML B ... DTy

X. ON THE POWER OFNETWORK CODING

IX. MORE GAMES

SupposeN € Cruitiple—unicasts 1S an information network
where some nodes have in-degre@. For each node with
in-degreed > 2 we can replace the incomingedges with a
tree withd leaves and a root in.

Theoretically this replacement restricts the power of the
information network since not all functions: A? — A can
be written as a composition ¢f — 1) functionsg,; : A2 — A,
with j =1,2,...,d— 1.

Let S; denote the class af-ary functionsf : A? — A that
can be written as a composition @f- 1, 2-ary functions.

of persons. The game is played hy players. Each
player is assighed a message selected from some alphabet
{1,2,...,s}. Each persomw € {1,2,...,n} receivethe
function value(a value in{1,2,...,s}) from the set

the number of active channel using Network Coding,
is n — e times as high as the maximal through-
put divided by the number of active channels using
methods that does not allow interference.

Ay = {v € V : (v,w) € E} C V. Each player also If each inner node is required to have in-degree (and
have access to a public information chanmeHow many out-degree}> 2 the result remains valid.
messages should the public charmbk able to broadcast Proof: For eachn > 2 (and eache > 0) we base the con-
for all players to be able to deduce there own messagstfuction on the network in figure 10. Assume that the public
Problem 3 in section Il corresponded to the case wheshannel consists ofn channels in serial. In any “solution”
G is the complete graph on nodes. (operating at ratel) that does not allow mixture of data
As we already pointed out there exists gragh$or which packets all messages must go through thesghannels. Thus
the dice guessing game only can achieve maximal probabilitie number of active channelsiis+2. In the Network Coding
if the players uses non-linear functions. solution (operating at raté) all n(n — 1) 4+ (m + 2) channels
We will show (and this will follow as a corollary of are active. We can choose such tha’mx(ﬁ) >
y t

n +(m+2)
Theorem(16)) that: n — €. For thism the through-put divided e number of
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active channel (in the Network Coding solution)is- € times The solution we already considered can be achieved (within
as high as the maximal through-put divided by the number tife framework of linear Network Coding) as follows: Let
active channels using methods that does not allow interéere (A, ®) be an abelian group, letx1, xo, x3) := 21 B 22 P 3,
letl;(x,y) := ady fori =1,2,3 and letr;(z, y) := xey for

i =1,2,3. We leave to the reader to check that this defines a

solution to the flow problem associated with the netwdik
Public "Channel" Actually, for each abelian groupA, @) and for any thrge
permutationsry, mo, w35 : A — A the network has a solution

replaced by with p(x1,z2,23) = mx1 O moxe & m3x3, l1(T2,23) =
ToXo D T3x3, l2($1,$3) = ma; @ maxz and l3($1,$2) =
mx1 & mexe. We will show that all solutions are essentially
of this form. More generally leiV,, denote the network:

The networkN,, hasn input nodes. These transmit mes-
sageszy, z2,... r, € A. The messages,zs,... z, are

figure 11 iadependent so we assume that the network cannot exploit

The serial construction in this proof might be consider ; .
unacceptable. It might be argued that the cost of using fﬂgden coherence in the data. The netwdik hasy intemal

. nodesiy, ls, ... I,. The nodel; is connected to each input
serial channels ought to count Bsather thann. To overcome nodeexcentthe node that transmits mess The network
this criticism we can modify the serial channels as indiddte b age

figure 11 and seleat so each path through the public channeqasn output nodes that are required to receive the messages

? . : T1,%2,... Tn—1 andz, (one message for each output node).
still must involve> m active channelsit chosen as before). -1’2’ n-l n (0ne messag P )
& The node required to receivg is connected td; as well as

to the public channep. The public channel broadcasts one
message = p(x1,z2,... 2,) € A to all output nodes. First
XI. ANALYSIS OF SPECIFIC NETWORKS we notice that:

Consider the information networK (n) sketched in figure  opservation

many channels
in serial.

12. Notice that the information network (3) is displayed The network N,, has a solution over any (finite)
network (see figure 1a). be transmitted at a time. Thus the through-put using
The networks N (n) corresponds to Network coding isn-times as large as the through-
graxth),(L. « « allow interference. This is optimal since any network

Y Sy . problem with n input nodes that is solvable using
network coding can be solved using routing if the
Public bandwidth is increased by a factar
channel The next Theorem gives a complete classification of the set of
( | solutions (all utilising Network coding) to the networ¥,.
X713 Xoyeny
P X Theorem(16)

Consider the network flow probled,, over a finite
alphabetA. Assumen > 3. Letp : A" — A be
any function. The network flow problenv,, has a

Xp o X X3 Xn fig. 12 solution with public informationp if and only if

Let us consider this network again. The netwdvk3) is for some group compositiors on A that makes
quite natural to study and | thank Ken Zeger to have pointed (A, ®) an abelian group, there existpermutations
out that the very same network was considered in [10] with T, T2 Ty 0 A — Asuchthap(zy, za,. .. n) =
essentially the same conclusion (Theorem 16). The network Di_1 T

N(3) (as well as the network® (n) in general) can serve as Proof: In general if Theorem(16) have been shown fgr
building blocks for various constructions in Network Caglin for somer > 3 the Theorem is also valid for each, with
[10]. s > r. Thus to prove the theorem it suffice to show that the
The three output nodes receive the messagisorem is valid forVs.
li(x2,23) € Ala(r1,23) € A and l3(z1,22) € A. Let p: A> — A be defined byp(x1, 2, 73). Assume that
Besides this, each output node has access to public mesdhgenetwork has a solution when the public signal is given by
p = p(x1,72,23) € A. We notice that a solution to thep. The functionp : A3 — A must be ‘latin’ (i.e.f,5(2) :=
flow problem associated witliVs consists of six functions p(a,b, z), ga.c(y) = p(a,y,c) and hy o(x) = p(x,b,c) for
li,l,1l3,71,72,73 : A x A — A as well as one functiop : eacha,b,c € A define bijectionsf, s, ga.c, hv,c : A — A).
Ax Ax A — Asuch that; = r1(p(z1, 22, 23),l1(z2,23)), Notice thatp defines a latin cube of ordéd|. The functions
T = ro(p(z1, 22, 23),l2(x1,23)) and x3 = .0y, 13 : A2 — A are also forced to be latin i.e. they define
r3(p(z1, x2, x3),l3(21, 22))- three latin squares each of ordet|. In order to proceed we



need to prove a number of lemmas.

Lemma(17)
Denote one element iAd by 1. The networkN3 has
a solution for some functiong, ls,l3 : A2 — A
if and only the networkN; has a solution when
li(2e,w3) := p(1, w2, 23), l2(x1,23) := p(w1, 1, 73)
andls(z1,x2) := p(x1, z2, 1).
Proof of lemma(17): We introduce a new and interesting ()
type of argument that might be useful when reasoning about
‘latin’ network flow in general. For each output node we
draw a triangle with a coding function assigned to eact"
corner. The triangle corresponding to the output node tH8t
required outputr; has assigne@(z1, z2, x3), l1(z2, z3) and
x1 to its corners. Ifp andl; are functions that produce a
solution to the network flow problem;; € A can uniquely
be calculated fromp(z1,x2,x3) € A andly(zs,x3) € A (i.e.
there exists a (latin) functiorf : A2 — A such thatr; =
fp(x1,x2,23),l1 (22, 23))). Notice, that any coding function
assigned to one of the corners can be calculated uniquety fr8(
the two other functions. More specifically (z2,23) € A g(ml’
is uniquely determined by; € A and p(z1,z2,23) € A
And the valuep(z1,x2,z3) is uniquely determined byt;
andl; (z2,z3). We say that a triangle with a coding functiori
assigned to each corner is ‘latin’ if each of the three codi Sm

such
such

/(xla Z2, xd) = T(l‘g, xd)
ma(4).
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p(x1,7r' (21, 22,23),1) = p(a1,z2,23). To show lemma (4)

it suffices to show that’ is independent of3 and thatr’ is

independent of:;. Consider the two latin triangles:
P(X1.X2,X3)

P(X1.X5,1) P(X1,X2.X3) P(L,%2,X3)

v figure 14

In each triangle (iv) and (v) each coding function is
iquely determined by the two other coding functions
the triangle. Thus there existg,g : A2
that p(z1,22,23) =
that p(z1,22,23) =
lx1,22) = U'(x1,22,1) and letr(zq, z3) =
and notice thatp(xzi,z2,1) =
p(l,22,23) = p(1,7(22,73),
( (1'1,12, ) 35'3) =
l(x1,22),23) and p(x1,xe,23) = g(x1,p(1,22,23)) =
(1,7(x2,23),1) = p(x1,r(xze,x3),1) .
r satisfies the same equations that uniquely determined
I” and o/

— A
f(p(z1,22,1),23) and
g(x1,p(1,22,23)). Let
(1, 2, x3)
p(1,1(z1,22),1) and
1). But then p(z1,22,23) =
f(p(].,l(l‘1.££2),1),l‘3) =

Thus ! and

and thus l/(Il,ZQ,Zd) = l(l‘l,IQ) and
This completes the proof of

functions can be calculated from the two other functions. Fo Lemma(19)

any solution of the network flow problemVs each of the
following three triangles are latin:
P(XpX2Xg)  liX2.X3)  P(X1.X2.X3)

NN

@ Xy (ii)

I5(X1.X3)

P(Xq.X5,X3) I3(x1.X5)

NS

X3
(iii) figure 13
Lettingz; = 1 in triangle (i) we notice thap(1, z3, 23) can
be calculated froni;(z2,2z3) and conversely we notice that
l1(x2,z3) can be calculated from(1, z2, 23). Thus we can
replace the functioi (x2, z3) with the functionl; (zo, x3) :=
p(1, z2,23). Similarly, by lettingzs = 1 in triangle (ii) and
letting 3 = 1 in triangle (iii) we obtain a solution with
la(x1,23) := p(x1, 1, 23) andlis(z1,x2) := p(x1,x2,1). This
completes the proof of lemmag(3).
Lemma(18)
Assume that there is a solution to the flow problem
N3 with public information given byp : 43 —
A. Then the latin functiorp(z1, z2, z3) determines
(uniquely) two latin functions (i.e two latin squares)
1: A% — A (I stands for ‘left) andr : A2 — A (r
stands for ‘right’) defined by the two equations:

o p(1,1(z1,22), 23) = p(x1, T2, 23)
o p(x1,r(x2,23),1) = p(w1, 22, 23)

X5 Proof:
p(la T‘(l(:ﬂl, :C2)v 393), 1) =
The next three lemma are straight forward to prove.

Lemma(20)

— A has a solution and
that p(x1, x2, x3) = p(1,l(x1,22),23) and assume
that p(x1,x2,23) = p(x1,7(ze2,23),1). Then the
functions I,r : A? — A satisfy the equation
r(l(z1, 22), x3) = l(x1, (22, 23)).

Since p is latin  and p(z1,x2,3)
p(1,l(z1, (22, 23)),1).

Assume thatp : A3

Assume p(x1,z2,z3) allows a solution and
that I(z1,22) and r(xzs,xz3) are defined such
that p(1,l(z1,22),23) = p(21,22,23) and
p(x1,r(ze,23),1) = p(x1,22,23). Then for
each pair my, 73 A — A of permutations
p'(x1, w2, 23) = p(mxy, 2, m3x3)  allows
a solution and!(xz1,22) = I(ma1,22) and
r'(ze,x3) = r(x2,msx3) Satisfies the equations
o' (1,1 (x1,22), x3) = p'(x1,x2,23) and
' (x1,7r (22, 23),1) = p' (21, 2, T3).

Lemma(21)

There exists permutations , s : A — A such that
l(’]Tll'l, ].) = x; and such that"(l,m:cd) = 3.

Lemma(22)

If p(z1,x2,x3) is a solution, there is another solution
p'(x1,22,23) = p(mia1,ze,m32x3) such that the
two functionsi’(z1,z2) and r’(xz2,23) that satisfy
the equationg’(1,!'(z1,x2),23) = p'(x1,x2,x3),
p'(x1,7" (x2,23),1) = p'(x1,22,23) as well as
U(z1,1) = xp andr’(1,23) = x3.

Proof of lemma(18): Certainly (sincep is latin), there Without loss of generality (possibly after having replaced

ro A3
p(l‘l,l'g, ZS)

exist uniquely defined functiond’, — A

such that p(1,!(z1,z2,23),23) =

x1 and z3 by mx; and w3x3) we can assume that we
and are given a latin functiorp(z1, z2,23) and two latin func-
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tions I(x1,z2) and r(xq,x3) that satisfiesl(x1,1) = 1, X
r(1,23) = x3, and havel(zy,r(z2,23)) = r(l(z1,z2), x3) \
for all z1, 22,23 € A. But, thenr(xy,z3) = r(l(z1,1),23) =
lz1,7(1,23)) = l(z1,z3) and thusl = r. But then! is

transitive i.e.l(xz1,(z2,23)) = I(l(x1,z2), x3). Furthermore
sincel(z,1) = z andl(1,z) = r(I,z) = = we notice that :

defines a group operation ofv Thus we have shown that for p\ p\ N

any functionp(z1, z2, x3) that allows a solution to the network .

flow problem N3, there exist permutations;,ms : A — A FXy X TXg T3 figure 16

such that if we lety’(z1, 22, 23) = p(miz1, 22, T323) then The new node is added 1§ (3) to ensure that the node only
there is a group structure on A such thaty’(z1,2-,23) = Can reconstructs by essentially computings from z3 & z3.
p'(1,21 % xo % x3,1) for all a1, x9,23. But then there is a Heuristically, nodé; receivesrs @3, nodel; receivesr; ®rs
permutationr : A — A such that if we let”(z1,z2,23) = andls receivesr; & z2. From these three messages the new

7(p(x1, 22, x3)) thenp”(1,b,1) = b for all b € A. Notice, node needs to derive the message The natural way to do
that p“(zl, To, xd) = ﬂ(p/(xhxz, xd)) = ﬁ(p/(]_’ Tq * T * this is to calculat®zs = (lEl D Id) D (1'1 D 1'3) o (1'1 D 1'2).
x3,1)) = p" (1,21 * 29 % 23,1) = 21 * T2 * x3. This shows:  Now, intuitively, whis is only possible if the abelian group
Lemma(23) (A, @) has the linear map : A — A given byl(a) = 2a
Letp: A> — A be the public information in the net- P€ing invertible. This holds if and only ifA| is odd (for a

work Ns. Then, if there is a solution to the networks”gxh“y Xmorexdetailed exglanation of this see [10]).
1 2 3 n

flow problem/V3, there exists a group compositien
on A such that ‘essentiallyp(z1, z2, x3) = 1 * X2 *
x3 (modulo the application of suitable permutations
to z1,z3 andp (or z2) ).
Lemma(24)
Let (4, x*) be a group and lep(z, 2, x3) := x1 *
xo * x3. Then the flow problemVs has a solution if
and only if (4, *) is a commutative group. |
Proof: Assume thatp(x1,x2,x3) := x1 * x2 * x3 (Or just L
x1xox3 for short) allows a solution. Then we have the fol- &

Public
channel

P(XyXp0---%)

lowing ‘derivation’ from latin triangle with coding funaiins o : X fig. 17
p(a, b, c) = abe, p(a, 1, ¢) = ac andb. Next, consider the networkl/(n) in figure 17. Again,
abe ac clbe ac heuristically nodel; receivep & z; and thus the canonical
v \ / way of calculatingz,, is to calculate(n — 1)z, = (p ©
2)®POx)D...(p— Oxp_1) © (n—2)(p S xy,). This
b b figure 15 calculations can always be carried out if the miapdA — A

Figure 7, represents the fact tHatan be uniquely deter- given by l(a) = (n — 1)a is invertible. Intuitively, if there
mined from abc and ac. But, then givenc—'bc and ac we is no such invertible mag we would (keeping Theorem
can calculateabc = (ac)c~'bc and thus we can determinel6 in mind) not expect that there are any solutions to the
b. Now ac can take any value (depending @) and thus corresponding information flow problem. We will now prove
this equation is useless in calculatibg This shows that this more formally:
is uniquely determined from~'bc. The expressiornt—'bc Lemma(25)

must be independent efand thusc™'be = 17'b1 = b. But, The information flow problem\/(n) has a solution
thenbe = b for all a,b,c € A which shows that the group (that might utilise network coding) over alphahét
(A, ) must be a commutative group. The converse is rather of size s if and only if the linear mapl : 4 —
obvious, since if A, «) is an abelian group anez, z2, z3) = A given byl(a) = (n — 1)a is invertible for some
x1x2x3, We get a solution by lettindy (z1,z2) = z122, abelian groupg(A, @) of sizes.

l2($1,$3) = 213 andlg(ml, 1‘2) = I1T2. This Completes the . . . _
proof of lemma(10) which in turn clearly implies the theorem Proof: According to Theorem(16) the public channel broad

for V3. This in turn easily implies the validity of theorem(2)ca3t the message= m (21) ©7(22)D. .. S (). Without
; loss of generality we can assume that the public information
for generalN,, with n > 3. & L .
is given byp = z1 ®z2® ... D x, (Since we can replace the
_ ) o input variablesz; with z/; := w]fl(a:j) and then the output
A. Constructions using the networR&(n) as building blocks requirementz; can be achieved if and only i/, can be
A very natural construction is seen in figure 16. The netwodchieved). First notice that;,l; andp form a latin triangle
M (3) appear by adding a new node A(3) that requireses in any solution. Sincez;,p © z; and p also forms a latin
and receive its input frond;, [ and!l3. The idea behind the triangle and since; and p © x; are independent of; we
construction ofM (3) is to ensure that the network only hasotice thatl; andp & z; can be computed from each other.
solutions for certain alphabet sizes. Thus, any solution to the information flow probleii(n) can



without loss of generality be assumed to hayve= p© x; for
j=1,2,...,n

First, assume thdtis not invertible over the group4, ®).
Then, existsz € A with a # 0 with (n — 1)a = 0. Consider,
the input messages; = =2 = ... = z, = a and compare
them with the input messagas = 22 = ... =z, = 0. In
the both case§, = I, = = [, = 0 and thus, since # 0,
the new added node is in general not able to recoydisince
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c with @’ := (7,) "1 (a), b := ()~ 1(b) and ¢’ := (m.) " ()
and then “decrypt” the messagesb and ¢ in the receiver
nodes. This point needs a bit care since the decryption might
not be a linear function (see comment belov).

Anyway first assume that = a ® b andl, = a & ¢ and
lo =b®c. Thusl, = a @ ¢ can be derived fromd, = a ® b
andi, =bdec.

a+b

it cannot in general distinguist from 0). This argument is
essentially, identical to an argument in [10].

Conversely, assumeis invertible for some ablean group
(A, @) of sizes. Letp = 1 @22 . . Bz, and letl; —p@x

for j =1,2,...,n. Notice that(n — 1)z, = (p©& xl)

T2) D ... D (p & Tp-1)© (n—2)(pSxy). If Lis |nvert|ble figure 19

xn =17*((n — 1)x,) can be recovered. As indicated in figure 19, we then infer thatp c always
& can be derived fronx & ¢ andb ¢ c. But the messagé + ¢
From this we get: depend on (is “infected” by) and so we conclude that® ¢
Theorem(26) always can be derived fromé& ¢ alone. But then there exists

f:A— Asuchthatt®c = f(aSc) (Had we only considered
encoded signals we would have reached the same conclusion
since a suitable decoding could be build into the definitibn o
f):

If we let ¢ = 0 we notice thatu = f(a) and sof is the
identity map. Thust & ¢ = a & c i.e. 2¢ = 0. From this we
conclude that the only possibly solutions can appe&dif®)
is an abelean group for which all elements have oedérhis
is only possible if| A| = 2% for somek.

On the other hand for any alphabétwith 2* elements the
network L has a (linear) solution given bl = a & b,1, =
a®clo=b®candp=aPbPc. &

The information network)M (n) (for n > 3) has a
solution over an alphabet if and only if n — 1 and
|A| are relative prime (i.eged(n — 1, |A|) = 1).

B. A neat application of Theorem 16

Consider the information networl in figure 18. This
network is related (but non-isomorphic to) the netwdvk

constructed in [8].
a b c

a b c

XII. M ULTIPLE UNICAST NETWORKS

I will finish the paper by introducing a simple construction
that allows us to convert the results in the previous sedtion
similar results for multiple unicast networks.

Consider the information network’ in figure 20 (i). The
source nodes send messageszs, .. .,x, t0 a collection of

receiver nodes. Assume two receiver nodes require3o be
a multiple-unicast network we require that different reeei
nodes require different messages.

X, X2 *3

r-a figure 18
We show:
Theorem(27)
The information flow problend has a solution over
an alphabetd if and only |A| is a power of two
(i.e|A| = 2% for somek € N).
Proof: First notice that nodd” that requires: has no access
to the public channel. Thus the message passing thréugh
cannot depend on messa@e But then nodel. receives a
message that is a function afandb, [, receives a message
that is a function of: and¢, while nodel, receives a message
that is a function ob andc. Thus, we can apply Theorem 16,
and deduce that there exists an abelian group stru¢tiire)
on A such that the public channel broadcast a message on
the formp = 7, (a) ® mp(b) ® 7.(c) wheren,, m, andr. are
permutations (encryptions!!) of the messages andc.
Without loss of generality we can assume=a ® b d ¢
since otherwise we can simply “encrypt” the messagésand y
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figure 20 [7] Deb, Choute, Medard, and Koetter. Data harvesting: Aloam coding
In figure 20 (ii) we have modified the information network approach to rapid dissemination and efficient storage o#.daln

L . . . INFOCOM, 2005. Submitted.
in figure 20 (i). New source and receiver nodes sending a’]@] R Dougherty, C Freiling, and K Zeger. Insufficiency ofdar coding in

receivingy have been added. Notice that any solution must network information flow. 2004. To appear.
have message, enter at noded and have messagg leaving [9] R Dougherty, C Freiling, and K Zeger. Linearity and sdiity

. . . in multicast networks. IEEE Transactions on Information Theory
the network at pointB. This ensures that the netwo¥ in 50(10):2243-2256, October 2004.

figure 20 (ii) has a solution over an alphabkif and only if C'  [10] R Dougherty, C Freiling, and K Zeger. Unachievabilityretwork cod-
has a solution over. Actually,we notice (using the analysis ing capacity.IEEE Transactions on Information Theory and IEEE/ACM
f the butterfl t K in 1191) that th t of uti t Transactions on Networking (joint issy&005. submitted March 2005.
0 .e u er y network in [ ]) a. € sel or solutions ?11] C. Fragouli and E Soljanin. A connection between neklwarding and
the information flow problent” is a direct product of the set convolutional codes. ItEEE International Conference on Communica-

of latin squares of ordef4| and the set of solutions t@'. tions, 2004. , , )
[12] T Ho, M Medard, and R Koetter. An information theoretiew of

Thus, the class of functions ngeded to salvas essentially network management. IRrooceeding of the 2003 IEEE Infocom
the same as the class of functions needed to s6lve [13] R Koetter and M Medard. An algebraic approach to netwanting. In
Theorem(28) Proocedings of the 2001 IEEE International Symposium oorinétion

. . . . . Theory
There exists a multiple unicast information flow14] R Koetter and M Medard. Beyond routing: An algebraic rmggh to
problem U , that is solvable, but have no linear network coding. InProceedings of the 2002 IEEE Infocp2002.
; [15] Li, Yeung, and Cai. Linear network codefsEE Trans. v.49,371-381
solutions (Over any vector sp:?\ce). ) [16] K. Rabaey J Petrovic, D. Ramchandran. Overcommingngatturadios
Proof: In [8] the authors construct an information flow prob-  in wireless networks with network coding. To appear.

lem N,,onin that is solvable, but have no linear solutions ovet?] L.G. Pippenger, N. Valiant. Shifting graphs and theppkcations.

lohab ised Usi he idea i JACM, 23:423-432, 1976.
any alphabet organised as a vector space. Using the idea !Hﬁt S. Riis. Linear versus non-linear boolean functions@work flow. In

introduced we can modify this problem to a multiple unicast  Proceeding of CISS 2004
problemU that has a set of solutions that is a direct produff] S. Riis and R Ahlswede. Problems in network coding antbrer

. . correcting codes. NetCod 2005.
of the set of latin squares of ordet| and the set of solutions [,5; m Thorup and S Riis. Personal communication. March 1997

t0 Noontin. de [21] L. Valiant. Graph-theoretic arguments in low-levelngolexity.
[22] L Valiant. On non-linear lower bounds in computatioraimplexity. In
Theorem(29) . . . . Proc. 7th ACM Symp. on Theory of Computipgges 45-53, 1975.
There exists a directed graghwith guessing num- [23] L. valiant. Why is boolean circuit complexity theoryfiiult? In M.S.
ber k that can only be achieved if the players use[§4] Eatgnrsgn, %d:t(or\'?\%inger JLe'gture Slf_frieLspages 84|—9_4, 1992.ﬁ_ .
mh ; ; . Boudec J-Y. Widmer, J. Fragouli. Low-complexity egeefficient
non Imea,r guesglng strategies. i i broadcasting in wireless ad-hoc networks using networkingpd To
There exists a directed grajgh with guessing num- appear.

ber kc(s) depending ons. Furthermore there exists[25] Wu, Chou, and Kung. Information exchange in wirelestvoeks with

P network coding and physical-layer broadcast. TechnicgiloReMSR-
k such thatkc s) < k for infinitely many values of - 325504 75 "microsoft Technical Report, Aug. 2004.

s while k¢(s) = k for all remaining values of (also [26] Yeung and Zhang. Distributed source coding for sagetiommunica-
infinitely many). tions. IEEE Trans. Inform. Theory(IT-45):1111-1120, 1999.

Proof: The first part of the theorem follows by combining
Theorem 2 and Theorem 28. The second part follows by
combining Theorem 2 with Theorem 27 (or Theorem 26) and
the general conversion methé
Open Question
Is the guessing number of an undirected graph always
an integer?
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