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ABSTRACT
In the Western art music tradition, expressive piano performance
consists of two kinds of information: the score, with pitch and timing
expressed in simple musical units along with occasional expression
instructions, and the performer’s interpretation of the score, involv-
ing variations in tempo, dynamics and articulation. In this paper, we
present a novel framework for learning representations that disen-
tangle musical content and performance style from expressive piano
performances in an unsupervised manner. Our method is based on
an extension of the vector-quantized variational autoencoder (VQ-
VAE) with individual content and style branches, along with mu-
tual information (MI) minimization techniques and self-supervising
strategies. We performed experiments and ablation studies on the
ATEPP dataset, a large set of automatically transcribed virtuosic pi-
ano performances with rich stylistic variations, and evaluated the
content reconstruction and style discrimination in a style-transfer
manner. Our experiments demonstrate that the model learnt sepa-
rate latent variables that encode musical content (such as pitch and
relative timing) and stylistic attributes, as generated samples align
well with the content input with low note error rates (NER), and the
40-way style discrimination proxy task outperformed the baseline
with top1 accuracy of 0.168.

Index Terms— Content-style disentanglement, representation
learning, style transfer, expressive piano performance

1. INTRODUCTION AND RELATED WORK

Expressive music performance is the art of shaping a musical piece
by continuously varying interpretative parameters such as tempo and
dynamics. Human musicians do not play a piece of music mechan-
ically as written in the printed music score. When we hear a per-
formance, two pieces of information are heard: the conceptualized
composition described by strict musical units with occasional, gen-
eral expression instructions, and the performer’s interpretative input
that consists of variations like speeding up, slowing down, stressing
certain notes or passages, and so on. More importantly, such artistic
decisions are often highly specific to each individual performer, and
there have been numerous attempts [1, 2] to characterise the individ-
ual styles of performers (e.g., the so-called “Horowitz factor” [3]).
In Fig. 1, a visualization 1 is shown to demonstrate such expressive
factors.

Such division between structure and aesthetics has also man-
ifested in other domains: in visual arts and general image process-
ing, geometric information can be distilled and isolated from textural
properties [4]; in speech and audio, voice and speaker information is
learnt separately from the text content. Understanding and disentan-
gling such components leads to applications like image completion

1Generated by https://midialignment.github.io/score-performance-match-
editor/ScorePerformanceMatchEditor.html

Fig. 1. A visual comparison between the metrical score (middle)
and Brendel’s expressive rendering (bottom) of the opening phrase
of Mozart’s K310 sonata slow movement (top). Expressive devices
such as the asynchrony of the chords and ritardando towards the end
of phrase are clearly identifiable.

[5], artistic style transfer [6], and speech synthesis [7]. However,
few researchers attempt to disentangle content and style for expres-
sive music performance.

Previous work on music transformation using audio data [8, 9]
focuses on isolating timbre from pitch in a similar fashion as in
speech transfer learning. For work in the symbolic music realm
[10, 11, 12], the focus usually lies in disentangling aspects of the
compositional content such as harmony, texture and arrangement,
especially with the aim of controllable music generation. Moreover,
unlike compositional disentanglement works that utilize pop music
MIDI and MusicXML datasets with annotations of chords and meter
[10, 13], our work requires expressive performance data that con-
tains simpler (no annotations) but more nuanced information (such
as precise onset timing and pedals) [14], and thus brings higher com-
plexity to the model.

Meanwhile, many methods have been applied to learn the dis-
entangled representation of style and content from data. Under the
variational autoencoder (VAE) framework, models like FH-VAE
[15], DSAE [16], TS-DSAE [9] have been proposed for encoding
and generating high dimensional sequential data. We also followed
this framework of encoder-decoder structure, but the usual approach
based on decoupling global and local tokens [9, 17] does not align
well with our task, since unlike voice or timbre which can be sum-
marized at the sequence level, expressive deviation is not a global but
a time-varying attribute. Other work on disentanglement is based on
generative adversarial networks (GANs) [18], but they can be hard
to train and require careful hyperparameter tuning [19]. Meanwhile,
various techniques have been applied in guiding the model for dis-
entanglement, such as minimizing the mutual information between
latent variables [20, 7] and adversarial training [6]. Another viable
strategy is to introduce additional information such as the chord
progression reconstruction [10].



To our knowledge, this is the first work that address music style
translation from a performance interpretation perspective. Our con-
tributions can be summarized as follows:

• We present the first neural framework for learning content and
style representation in expressive piano performance.

• We propose new evaluation metrics for this specific task, such
as NER for validating the content reconstruction and a proxy
performer recognition task for style discrimination.

• Using a dataset [14] of 11742 transcribed classical piano per-
formances with rich stylistic variation, our model learnt sepa-
rate latent representations in an unsupervised manner, outper-
forming the baseline in both style and content evaluations.

2. METHODOLOGY

2.1. Problem Formulation and Loss Objectives

Based on the assumption that each performance rendering is a com-
bination of musical content and interpretative input, the likelihood
of observing the performance sample X given content information
Zc and style information Zs is pθ(X|Zc,Zs), where θ is the model
parameters. In VAE, we use variational inference to learn an approx-
imate posterior for each latent variable through encoder functions
qc(Zc|X) and qs(Zs|X), with optimization proved by evidence
lower bound (ELBO). The base loss function for the two-branch
VAE is shown in Eq. 1, with reconstruction and Kullback-Leibler
(KL) divergence.

Lbase = Ep(X)Eqθ(X|ZS ,ZC)[− log(pθ(X|ZS , ZC))]+

Ep(X)[KL(p(ZS)||qθ(ZS |X))] (1)

Mutual Information Minimization We followed the MINE [21]
method to construct a lower bound of mutual information based on
the Donsker-Varadhan representation of KL divergence as shown in
Eq. 2. By minimizing the mutual information I(Zc,Zs) between
the hidden representations Zc and Zs which equals to the diver-
gence of their joint distribution P(Zc,Zs) and product of marginals
PZc × PZs , we alleviate possible content leakage and ensure dis-
entanglement. In the equation, the supremum is taken over all func-
tions G such that the two expectations are finite. Given that there is
no closed-form computation of mutual information, we use a neural
network G to approximate this lower bound of mutual information,
and it is optimized along with the main network.

LMI = sup
G

EP(Zc,Zs
)[G]− log(EPZc×PZs

[eG]) (2)

Vector Quantization The technique of vector quantization (VQ)
[22] has been proven effective in multiple disentanglement tasks
[23]. The VQ layer encourages the content encoder output ze(x)
to minimize the distance between itself and the nearest codebook
vector e. The VQ loss in Eq. 3 is added, where sg(·) is the stop gra-
dient operation. In our experiments, we take the commitment loss
weight α as 1.

LVQ = ∥sg[ze(x)]− e∥22 + α∥ze(x)− sg[e]∥22 (3)

Our overall loss objective is comprised of the above elements, where
β1 and β2 are weighting parameters:

L = Lbase + β1LVQ + β2LMI (4)

Fig. 2. Model architecture.

2.2. Input Representation

Each piece of symbolic data is represented by four token sequences
P ∈ R1×T ,V ∈ R1×T ,O ∈ R1×T ,D ∈ R1×T , correspond-
ing to pitch, velocity, onset and duration. The four sequences are
each fed through an embedding layer and then concatenated into in-
put X ∈ RT×embDim , similar to the compound word (CP) symbolic
music tokenization scheme [24]. In inference, four separate projec-
tion layers invert this process and output generated token sequences
P̄ , V̄ , Ō, D̄.

Vocabulary-wise, following the MIDI standard, P and V both
take on 128 values, and O and D take on 2300 values and 700 val-
ues, respectively. The time tokens are quantized with 10ms resolu-
tion, and we take sequence length T = 128.

Although the MIDI vocabularies of P ,V ,O,D are discrete,
they are not actually categorical as they have continuous semantic
meaning of pitch and timing. Thus, in terms of reconstruction loss
we experimented with regression into the output with the L2 norm
loss instead of cross-entropy classification, so that the distances be-
tween vocabulary classes are incorporated into training.

2.3. Model Architecture and Training Details

Our overall model architecture is summarized in Fig. 2. As described
in section 2.2, the symbolic music input and output sequences are
processed via an embedding layer and a projection layer, respec-
tively, from their tokenized representation of MIDI events.

The content encoder EC(·) aims to extract a sequence of latent
variables Zc ∈ RT×LatentDim that only represent the content from
the input X . The content encoder is built on top of a convolutional
stack and two layers of bidirectional gated recurrent units (GRU) to
represent the musical content in a context-aware fashion. As men-
tioned in section 2.1, the information bottleneck is applied on top of
the content encoder via a vector quantization layer with a codebook
size of 4096, guiding the branch to focus on localized information.

ES(·) functions as the style branch in our architecture, and aims
to factor out the style latent that only represents the expressive devia-
tions. It is built with a similar architecture, but without the VQ layer.
Both branches have a variational layer at the end and the latents are
sampled according to Zµ and Z2

σ .
We train the model using Adam to minimize the loss from Eq. 4.

We trained for 450 epochs, taking about 46 hours in total on two
RTX 2080 GPUs. We take embDim = 128 and LatentDim =
512, and for the loss weighting parameters, we used β1 = 0.5 and
β2 = 0.5. Ablation studies on other parameters are presented in the
results section.



Baseline Given the limited prior work on our topic, we set our base-
line as the vanilla VAE framework with the loss objective described
in Eq. 1.
Self-Supervised Training Inspired by Cı́fka et al. [8], we also ex-
plore the self-supervised training technique. To ensure that the style
encoder only encodes style, we feed the style encoder another seg-
ment Xj from the same training set recording as the content input
Xi. The rationale is that given the same expressive style throughout
a recording, even if Xj has different content, the model should be
able to reconstruct Xi with the style latent from Xj and content
latent from Xi. Besides the paired segment input, other training ob-
jectives and the model architecture remain the same as for the main
experiment.

3. EXPERIMENTS

3.1. Dataset

The content and style experiments are supported by the ATEPP
dataset [14], which contains 11742 tracks of virtuosic solo piano
performances in MIDI format obtained via automatic transcription.
The transcribed MIDI files contains detailed expressive information
such as the key velocity and pedal depths. With 49 pianists perform-
ing an overlapping corpus of standard Western classical repertoire,
rich stylistic variations are represented in this dataset. The training
segments and input representations are generated following the pro-
cedure in Sec. 2.2. We split the data into train/valid/test sets by each
track of music instead of individual segments, as repetition in the
music might otherwise compromise the test set.

In this project, we simplify the labelling of expressive style by
using performer identity as a proxy. We acknowledge that from a
musical perspective, there does not exist a bijective mapping be-
tween performer and interpretation style. But given the subjective
nature of interpretation, very few objective parameters of perfor-
mance style have been proposed [25], so this is a reasonable ap-
proximation.

3.2. Evaluation

We evaluate the effectiveness of our disentanglement model from a
style-transfer perspective. In test-time generation, the decoder takes
a content input Xc and a style input Xs from a different excerpt,
concatenates their hidden representations and decodes an expressive
rendering X̂ . Considering effects that the proximity of inputs may
have on the results, the following input shuffling schemes are pro-
posed:

1. SR: Xc and Xs are taken from the Same Recording
2. SD: Same performer but Different piece
3. DP: Different recordings from Different Performers

At test-time, a set of samples is generated for evaluation of each
scheme, by selecting inputs Xc and Xs according to the respective
scheme.
Content Preservation: For evaluating the faithfulness of content re-
construction, we introduce the measure of note error rate (NER) that
is analogous to the word error rate (WER) used in speech recogni-
tion [7, 20]. An alignment of the generated X̂ and content input
Xc is produced by Nakamura’s algorithm [26]. This algorithm em-
ploys hidden Markov models (HMMs) to align two symbolic per-
formances and correct errors. The NER is then calculated from the
alignment outputs, where Sextra , Swrong and Smissing denote the set
of extra, pitch-incorrect and missing notes of the generated MIDI

Fig. 3. Visualization of latent variables, showing greater proximity
of performers by style (a) than content (b), and of pieces by content
(d) than style (c).

performance with regards to the content input returned by the align-
ment function.

NER =
|Sextra |+ |Swrong |+ |Smissing |

|Smatched |+ |Smissing |
(5)

Style Fit As mentioned in section 3.1, stylistic characterization is
subjective and no standardized measure exists. Thus, we achieve the
evaluation for style fitness via neural approximation. A neural net-
work discriminator D, acting as a probe [27], is trained to evaluate
how well the generated samples simulate the ground-truth distribu-
tion [28]. D is first trained on generated samples and then discrimi-
nates on ground truth test data as a 40-way classification task of style
discrimination (a few pianists are not present in the test split). D is
a simple recurrent neural network consisting of an embedding layer,
2 layers of biGRUs and a softmax projection. The discriminator is
trained on the generated data for 300 epochs with an early stopping
of 10 epochs to prevent overfitting. Top1 and Top5 accuracy are
reported.

3.3. Results and Discussions

Table 1 shows the results of our experiments. Both proposed models
PERFVAE and PERFVAESS outperform the vanilla VAE baseline.
In terms of NER, both models achieved less than 0.2, which means
the generated content is roughly 80 percent aligned with the desired
content. In terms of style discrimination, on the 40-way classifica-
tion task we achieved the highest accuracy of 0.168, demonstrating
the style-transferred generative output partially matched the ground-
truth style distribution. With the content and style evaluation results
combined, we can informally say that the disentanglement is par-
tially successful and can be viewed as a starting point for this novel
task.

We also note that the self-supervised model performs less ac-
curately in NER (content reconstruction) than the unsupervised ver-



Content Style
Configuration Valid. recon. acc. Shuffle Note error rate Top1 acc. Top5 acc.

BASELINE 0.875 ± 0.087
SR 0.234 ± 0.036 0.102 ± 0.032 0.281 ± 0.047
SD 0.241 ± 0.036 0.067 ± 0.051 0.223 ± 0.063
DP 0.268 ± 0.075 0.045 ± 0.033 0.212 ± 0.046

PERFVAE 0.726 ± 0.094
SR 0.121 ± 0.046 0.168 ± 0.051 0.341 ± 0.041
SD 0.123 ± 0.038 0.145 ± 0.050 0.304 ± 0.035
DP 0.171 ± 0.051 0.098 ± 0.037 0.281 ± 0.037

PERFVAESS 0.713 ± 0.102
SR 0.166 ± 0.033 0.164 ± 0.030 0.347 ± 0.052
SD 0.172 ± 0.056 0.151 ± 0.042 0.307 ± 0.060
DP 0.201 ± 0.033 0.130 ± 0.061 0.263 ± 0.047

Table 1. Comparison of different methods in terms of both content and style measures with 0.95 confidence. PERFVAE is the proposed
model with the loss objective from Eq. 4; PERFVAESS is the proposed model with self-supervised training as described in Sec. 2.

Codebook size MI loss NER(SR) Top1-acc(SR)

2048 ✓ 0.115 ± 0.047 0.151 ± 0.037
× 0.109 ± 0.064 0.141 ± 0.049

4096 ✓ 0.121 ± 0.046 0.168 ± 0.051
× 0.116 ± 0.033 0.134 ± 0.041

8192 ✓ 0.126 ± 0.051 0.162 ± 0.045
× 0.118 ± 0.060 0.140 ± 0.039

Table 2. Results of ablation studies on the codebook size and mutual
information loss, all performed on the SR shuffle group without the
self-supervising strategy.

sion, which is possibly due to the fact that different content goes
through the style branch during the training process. In terms of the
reconstruction accuracy regarding the input original, the proposed
models actually perform worse than the vanilla VAE baseline. This
is possibly due to the fact that more regularization is placed on the
proposed models’ training objective.

Another interesting observation involves different shuffle groups.
The results for both content and style measures show a decrease
from SR group to DP group. Given that the groups correspond to
high proximity and low proximity respectively of the pair of in-
puts, we can infer that the model struggles as the content and style
inputs become more distant and less musically plausible (for exam-
ple, blending an Ashkenazy performance of a Chopin ballad with
Gould’s Bach Inventions).

Our subjective observations upon examining the outputs mostly
match the objective evaluation. We find that the musical con-
tent from content input is generally well-preserved in the style-
transferred output. Also, under the shuffle group DP, the output is
more disorganized compared to the other two groups, demonstrating
that the disentanglement quality is still quite limited. See a subset of
examples in https://tinyurl.com/csd-examples.
Ablation Study We also performed an ablation study on the effect
of VQ codebook size as well as the use of mutual information loss.
As shown in table 2, the incorporation of mutual information loss
helped the model produce better disentangled results in both content
and style measures in all configurations. There are some positive
correlation between increasing codebook size and decreasing NER
results as well as discrimination accuracy, but not too much signif-
icance was observed, even when we increase the codebook size to
8192. This might be attributed to the codebook collapse [29] issue
that is common in VQ-VAE.

3.4. Latent Space Analysis

In Fig. 3, we analyze the information content learnt in latent vari-
ables ZC and ZS by projecting them into the first three principle
components using PCA. We prepared a set of data samples, which
are created from combinations taken from five different styles and
five different musical excerpts. In Fig. 3a and 3b, the colors are based
on style labels, and in 3c and 3d the colors are based on musical con-
tent. In the dimension-reduced latent space, the style latents from the
data points from the same style label have style latents grouped more
closely together (Fig. 3a) than their content latents (3b). Similarly
in the bottom two plots for data points containing the same musi-
cal content, no correlation of style latents is observed (3c) but the
content latents show some clustering (3d).

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for content and style dis-
entanglement for expressive piano performance. Under the vector-
quantized variational autoencoder architecture with mutual informa-
tion minimization, our model demonstrated effective decoupling of
musical content information and performance style. Unlike previ-
ous work, we demonstrate the feasibility of unsupervised learning
of expressive performance data without score annotation, thus en-
abling much larger-scale analysis of performance style. We hope
this work can shed light on the realm of expressive performance
understanding, especially on the relationship between composition
elements and interpretative inputs.

In the future, we plan to extract more musically-grounded fea-
tures by guiding the training, as well as setting up a more standard-
ized profile for style characterization evaluation with the support of
subjective assessment.
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