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ABSTRACT

Tracking the fundamental frequency (f0) of a monophonic
instrumental performance is effectively a solved problem
with several solutions achieving 99% accuracy. However,
the related task of automatic music transcription requires a
further processing step to segment an fO contour into dis-
crete notes. This sub-task of note segmentation is neces-
sary to enable a range of applications including musicolog-
ical analysis and symbolic music generation. Building on
CREPE, a state-of-the-art monophonic pitch tracking solu-
tion based on a simple neural network, we propose a simple
and effective method for post-processing CREPE’s output
to achieve monophonic note segmentation. The proposed
method demonstrates state-of-the-art results on two chal-
lenging datasets of monophonic instrumental music. Our
approach also gives a 97% reduction in the total number of
parameters used when compared with other deep learning
based methods.

1. INTRODUCTION

Music can be represented on a number of levels; these
range from low level representations, such as an audio wave-
form, through to various high level features such as pitch or
amplitude, enabling discrete representations of pitch such
as MIDI or sheet music. Moving between these domains
successfully is one of the key challenges of Automatic Mu-
sic Transcription (AMT) [1]. AMT is a foundational task
for working with music collections, especially when con-
sidering the unprecedented scale of such collections to-
day. These collections otherwise require manual annota-
tion from experts, which is a limiting factor in how they
can be used.

Many good solutions for extracting high level features
have been proposed in the literature: for the widely studied
task of monophonic f0 tracking a number of methods score
above 99% [2,3] while the task of onset detection has simi-
larly effective methods available [4]. Our method builds on
CREPE [2], which represents the state-of-the-art for mono-
phonic pitch tracking. CREPE uses a small convolutional
neural network to process audio samples and output an fO
estimate in a framewise fashion.

The next step to combine these feature-level representa-
tions into a discrete representation of pitch is more chal-
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lenging. Taking an extracted fO contour and segmenting it
using the output of an onset detection algorithm provides a
good baseline approach [5], however there are cases where
typical percussive onsets are absent at the start of a note
transition, for example in legato passages [6]. Other meth-
ods make use of vocal specific features such as phoneme
boundaries [7] or statistical models applied to pitch con-
tours, as reviewed in [8].

For this work we examine the problem of transcribing
monophonic instrumental music into discrete notes with
high accuracy. Monophonic note transcription has tended
to focus on the human voice as input [3,5,8,9] however the
human voice is comparatively limited in terms of range and
speed of note transitions when compared with instrumental
music, which we consider to be a more challenging target.
Early work on this task by Brossier [10] and Collins [6]
identifies an important observation: a change in pitch by
more than a semitone often demarcates note boundaries.
This idea is explored more recently by Faghih et al. [5].
Our method also uses this principle, however it differs in
that we combine additional information with the pitch con-
tour to increase the accuracy of the output.

2. METHOD

We have named the proposed method CREPE Notes, as it
builds on the f0 tracking system CREPE [2]. The steps that
make up the method are described in detail below. Fig. 1
is also included as a visual guide to these steps.

2.1 The CREPE model

CREPE is a state-of-the-art solution for monophonic pitch
tracking. It processes raw audio samples using a convo-
lutional neural network (CNN) to predict an fO value for
every 10ms of a given piece of audio. FO predictions are
made for 360 bins, each representing a 20 cent step across
6 octaves, and are trained using a binary cross entropy loss.

In addition to fO estimates, CREPE also includes a mea-
sure of “confidence” which estimates the strength of the
pitch content relative to the overall signal. This confi-
dence measure is one of the inputs to our method. We
observe that there are typically troughs of varying mag-
nitude at note transitions, however the confidence signal
is noisy and simple thresholding is not usually effective.
E.g., see Fig. 2(b), where the troughs (marked with cir-
cles) that correspond to note boundaries in Fig. 2(a) have
a wide range of confidence values, overlapping with non-
boundary trough values.
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2.2 Pitch gradient

As previously discussed, the rate of change in the fO con-
tour can also be used as an indicator of note boundaries [5,
6,10]. When making use of an fO contour it is important to
note that pitch is perceived in a roughly logarithmic fash-
ion. This means that the fO gradient for a unit pitch change
will differ depending on the pitch: e.g., BO—C1 ~ 2Hz,
while B7—C8 ~ 236 Hz. Faghih et al. address this by
“stretching the pitch contour” [5]; we achieve a similar re-
sult by converting the fO estimates in Hz to semitone units,
expressed as a fractional MIDI number, which is based on
log frequency.

An example of such a pitch gradient is shown in Fig. 2(c)
with peaks in the gradient roughly corresponding to note
boundaries shown as circles. Similar to the confidence
measurements, we note that these peaks are not at consis-
tent heights and it would be difficult to choose a threshold
value that distinguishes real from false note boundaries.

2.3 Initial segmentation

Neither the confidence metric from CREPE, nor the peaks
in the pitch gradient, are directly usable for segmentation
without some variable threshold being chosen. A contribu-
tion of this work is that a cleaner signal can be obtained by
combining these two features. We take the inverted con-
fidence output from CREPE (turning valleys into peaks)
and multiply it by the normalised absolute gradient of the
fO contour. An example can be seen in Fig. 2(d) — we
would like to highlight that the combined signal exhibits
less noise and better defined peaks than either of the com-
ponent signals alone. Given the clarity of this combined
signal, a low threshold (empirically set at 0.002 by default)
can be used to detect peaks which generally correspond to
note boundaries. The detected peaks (shown as circles)
align well with the ground truth note segmentations shown
in Fig. 2(a).

This approach does incur some false negatives, particu-
larly around boundaries for repeated notes, where the pitch
gradient is close to zero. These are addressed via an alter-
native mechanism discussed in Section 2.4.

A further processing step compares each pair of succes-
sive segments. If the median pitch for the segments dif-
fers by more than 1 semitone then the boundary between
the segments is confirmed. But if the difference in median
pitch between the two segments is less than one semitone,
then the segments are combined to form a longer segment.
This helps to avoid false positives in the segmentation pro-
cess. The result is a sequence of candidate notes. The use
of the median pitch for this step follows the implementa-
tion of the widely used PYIN Notes function [3].

2.4 Repeated notes

The steps mentioned above assume that every onset coin-
cides with a pitch transition, but this is not the case for re-
peated notes. For these we see no movement in the fO gra-
dient, and if we see insufficient change in the confidence
measure from CREPE, it will result in the segments being
merged. For the specific case of segmenting repeated notes

we employ an additional onset detection algorithm [4] with

a very high threshold (empirically set at 0.7) and re-segment
any long notes that contain highly probable onsets within

them. Treating repeated notes as a separate step in the tran-

scription process is also described in [11] which focuses on

piano transcription.

2.5 Amplitude thresholding and trimming

At this stage the note segmentation is practically useful,
however the original CREPE method does not explicitly
distinguish between periods of silence and instrumental
activity. This leads to spurious predictions during peri-
ods of silence or inactivity. To remove these, we compute
the maximum amplitude measurement for each note seg-
ment and remove those below a user-configurable thresh-
old from 0 to 127. This corresponds to the velocity param-
eter used in the MIDI protocol and is set by default to 15.
We also remove extremely short notes via a configurable
threshold, set by default at 30ms (determined empirically).

A final stage of processing is required because CREPE
is insensitive to the amplitude profile of a signal, which
means the detection of pitch can occur at very low levels.
While the pitch may technically be present, it might not
align well with the perceptual onset or offset. We adjust
the remaining onsets and offsets in a step we call “ampli-
tude trimming”’, where each predicted note has the start and
end trimmed if the amplitude has not reached or has fallen
below a user-configured threshold.

3. EXPERIMENTS
3.1 Datasets

While the task of fO tracking can make use of synthetic
datasets to obtain accurate ground truth [2], the process
of note annotation on real audio often requires human in-
put. The challenge of synthesising data on a note level is
that the variations in timbre and amplitude found in real
recordings are difficult to imitate reliably.

Work by Wu et al. [12] offers the possibility of producing
such a synthetic dataset with greater levels of realism along
with accurate note annotations. This approach has very re-
cently been adopted in the “Chamber Ensemble Genera-
tor” (CEG) dataset [13]. The work is promising but CEG
focuses on polyphonic examples with relatively slow mov-
ing parts (e.g. chorales), making it less suited to our task of
solo instrumental onset and offset evaluation. Generating
more challenging synthetic datasets for solo instrumental
material is left for future work.

While several datasets with ground truth note annotations
are available, we avoided those that were used to train the
two other deep learning based methods (Basic Pitch and
MT3 - see below). Instead we test these approaches on
two “unseen” instrumental datasets to facilitate a fair com-
parison.

We would like to focus on the performance of the meth-
ods under challenging conditions, for example pieces which
contain short notes, rapid changes and/or legato phrasing
with unclear onsets. The Filosax dataset [14] is ideal for
this purpose as it contains around 24 hours of audio, made
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Figure 1. Flow diagram describing the main stages of the proposed method.

of jazz saxophone solos with expert human note annota-
tions.

We also show results for the same methods on the “ITM-
Flute-99” dataset: a smaller corpus of 99 recordings of tra-
ditional Irish flute [15] totalling around 20 minutes of au-
dio. This dataset is particularly challenging due to the high
number of short notes (as short as 30ms) which are integral
to the style of the music. The recordings in this dataset
did not all tune to a 440 Hz standard which caused errors
in the ground truth pitch labels provided by the authors.
To rectify this, we converted all recordings to use 440 Hz
tuning using Librosa ' to estimate the original tuning and
RubberBand ? for high quality pitch shifting. Ground truth
note annotations were also provided in Hz and these were
scaled to the new tuning before the corrected pitch labels
were re-calculated.

3.2 Methodology

We compare CREPE Notes with a number of other sys-
tems, however we note that monophonic instrumental note
segmentation is addressed relatively infrequently in the ex-
isting literature. PYIN [3] initially published results on
f0 tracking, however the official implementation also con-
tains code to segment a signal into notes which has been
widely cited and adopted in dataset creation [16, 17]. Bit-
tner et al. [18] have recently proposed an instrument ag-
nostic, multipitch tracking method which also works for
monophonic transcription. We make use of their latest re-
lease of this work which is packaged as “Basic Pitch”. 3

We also include results for MT3, proposed by Hawthorne
et al. [19]. This is a system designed for multi-instrument,
polyphonic transcription that also functions for the mono-
phonic instrumental case. The results are obtained using
the published model, however it was not trained on saxo-
phone or flute data specifically so it is likely that results
could be improved with a more specific model or fine tun-
ing.

We were unable to compare with the method proposed by
Faghih et al. [5] directly, as they focus on vocal transcrip-
tion and we were unable to run their published implemen-
tation. A full comparison is a goal for future work.

A range of model sizes are available for CREPE, and a
parameter count for the published models is listed where
applicable. While the proposed method does not use deep
learning directly, we quote the size of the CREPE model

"https://librosa.org/
https://breakfastquay.com/rubberband/
3https://basicpitch.spotify.com/

CNt CN PYIN | BP MT3
Recall | 88.26 | 88.61 | 50.32 | 80.62 | 40.67
Precision | 77.18 | 76.91 | 69.50 | 71.18 | 45.78
F-measure | 82.31 | 82.31 | 58.28 | 75.54 | 42.97
Overlap | 88.54 | 89.91 | 87.36 | 83.45 | 72.96

Parameters | 0.5M | 22M | N/A 17K TIM

Table 1. Results on the Filosax dataset. Mean scores
are shown for each metric. Abbreviations are CNt (Crepe
Notes “tiny” model, proposed), CN (Crepe Notes “full”
model, proposed), PYIN (PYIN Notes), BP (Basic Pitch).
Parameter counts for each model are shown for reference.
For the proposed models we quote the size of the CREPE
model which was used to provide the fO and confidence
estimates.

CNt | CN PYINS | BP MT3

Recall | 66.66 | 65.79 | 36.58 55.56 | 23.87
Precision | 66.73 | 67.18 | 64.83 64.92 | 28.35
F-measure | 66.58 | 66.35 | 46.44 59.58 | 25.47
Overlap | 79.96 | 80.53 | 82.50 77.33 | 69.02

Parameters | 0.5M | 22M | N/A 17K 7TM

Table 2. Results on the ITM Flute 99 dataset, showing
mean scores for each metric. Abbreviations are given in
Table 1.

which was used to provide the fO and confidence estimates
for these experiments. We include results for the largest
and smallest available models, named “full” and “tiny” re-
spectively.

3.3 Results

We use the mir_eval [20] library to calculate precision,
recall, F-measure and overlap. A default threshold of 50ms
was used to evaluate onset and offset accuracy and f0 ac-
curacy is tracked implicitly as fO errors will result in lower
scores. Results across 238 tracks in Filosax * are shown in
Table 1. Results for the “ITM-Flute-99” dataset are shown
in Table 2.

The proposed method outperforms the others we have ex-
amined for these datasets. From informal observations, all
methods appear to produce good results on slower moving
passages but the proposed method maintains a high degree
of accuracy when faster groups of notes are played, making
it suitable for solo instrumental transcription tasks.

4Two tracks omitted due to alignment issues in ground truth annota-
tions.

3 Dataset was originally created with PYIN, thus the high overlap
score.
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(d) Combined confidence and gradient (blue line) with
peaks (circles)

Figure 2. Data and features for an extract from the Filosax
dataset (Participant 4, Track 17). X-axis shows time in
seconds.

Surprisingly, the use of the smallest CREPE model has
minimal impact on performance for this task. This can be
explained by two factors: one is that the CREPE authors
note that there is around a 1.5% drop in raw pitch accuracy
(RPA) between the largest and smallest models which is
not a large reduction relative to the difference in parameter
count. Also we suspect that taking the median fO estimate
for each segment makes the method more robust to short-
term fO errors.

4. DISCUSSION AND CONCLUSIONS

We present a system for monophonic musical note tran-
scription which outperforms other solutions by a signifi-
cant margin on two datasets of real instrumental audio. An
appealing aspect of the solution is that it is implemented as
a series of simple algorithmic post-processing steps over
the output of a state-of-the-art fO tracking system. Once
the initial pitch tracking has taken place, the note segmen-
tation runs faster than realtime on a single CPU with no
additional models required. The original CREPE model is
instrument agnostic [2] and effective on the full range of
musical pitch; these are properties which our method in-
herits. CREPE also reports good robustness to noise which
is a property we hope to explore in further work.

The fact that our proposed method is able to outperform
a larger model like MT3 may be surprising. However, we
would like to highlight that MT3 performs both polyphonic
transcription and multi-instrument classification. These tasks
together are inherently more difficult and explain the need
for the additional parameters. Thereforre MT3 may still be
considered to be efficient in that context.

This method currently relies on the use of CREPE as it
provides a high level of fO accuracy and useful signal for
segmentation in the form of the confidence measure. Other
fO tracking methods have metrics that are similar to this
confidence measure, such as voiced/unvoiced predictions.
In future work we seek to examine whether this method can
be made more general by combining the calculated pitch
gradient with the various confidence terms.

Our results also suggest that the role of post-processing in
this task requires further examination. A similar approach
is used in many successful transcription models, namely
that pitch contours are first calculated in a frame-wise man-
ner and then post-processed to segment the notes. In future
work we hope to examine the role of post-processing for
transcription tasks in more detail, including an exploration
of methods to learn note segmentation as an end-to-end
process. MT3 is an example of such a method, however a
more specialised model for monophonic instruments may
yield better results.
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