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Abstract
Convolutional neural networks (CNNs) with di-
lated filters such as the Wavenet or the Temporal
Convolutional Network (TCN) have shown good
results in a variety of sequence modelling tasks.
While their receptive field grows exponentially
with the number of layers, computing the convolu-
tions over very long sequences of features in each
layer is time and memory-intensive, and prohibits
the use of longer receptive fields in practice. To in-
crease efficiency, we make use of the “slow feature”
hypothesis stating that many features of interest are
slowly varying over time. For this, we use a U-
Net architecture that computes features at multiple
time-scales and adapt it to our auto-regressive sce-
nario by making convolutions causal. We apply our
model (“Seq-U-Net”) to a variety of tasks including
language and audio generation. In comparison to
TCN and Wavenet, our network consistently saves
memory and computation time, with speed-ups for
training and inference of over 4x in the audio gen-
eration experiment in particular, while achieving a
comparable performance on real-world tasks.

1 Introduction
Sequence modelling is an important problem central to many
application domains, including language, audio, and video
generation [Bai et al., 2018; Yu et al., 2017; Trinh et al.,
2018]. In some of these applications, the sequences can be
millions of time-steps in length (e.g. in the case of audio gen-
eration due to the high sampling rate of audio signals), and it
can be vital to model the long-term dependencies present in
such sequences (for example to be able to repeat a melody in
a music piece that occurred a minute earlier).

This problem is often framed as the task of predicting the
next element in a sequence given all of the elements observed
so far, giving rise to auto-regressive models. Recurrent neu-
ral networks (RNNs) are often used in this context since they
can theoretically remember inputs for an arbitrary number
of time-steps, and also offer quick inference at test time as
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the hidden state carries all the information about previous
sequence elements and only needs to be updated using the
next element. However, in practice, these models can be dif-
ficult [Bengio et al., 1994] and slow [Trinh et al., 2018] to
train due to their strictly sequential nature. More recently,
CNNs with dilated filters were shown to be competitive ap-
proaches for sequence modelling. Instead of relying on re-
currence to retain information over a large number of steps,
which might be difficult to achieve in practice, CNNs such as
the temporal convolutional network (TCN) [Bai et al., 2018]
and Wavenet [van den Oord et al., 2016] access far-away
time-steps more directly through their dilated filters.

Despite their impressive performance, these architectures
suffer from two issues. Firstly, each convolutional layer oper-
ates at the same time resolution as the input. This results in a
high memory usage and training time especially with long se-
quences, rendering long-term modelling infeasible even with
large scale, multi-GPU training [van den Oord et al., 2016].
Secondly, inference is slow as elements have to be predicted
sequentially and require a forward pass through the CNN’s
many layers. Although re-using layer outputs from previous
steps helps, all layers still have to be traversed and updated to
predict the next sequence element.

In this context, “slow feature analysis” [Wiskott and Se-
jnowski, 2002] poses that for a wide variety of tasks impor-
tant features of an input signal vary only slowly over time –
which leads to an interesting approach of increasing effi-
ciency by computing some features at lower sampling rates
compared to the input without compromising model perfor-
mance. Notably, U-Nets [Ronneberger et al., 2015] already
incorporate the equivalent of this principle for image process-
ing, by computing features at different time-scales with two-
dimensional convolutions and combining them to make pre-
dictions at the same resolution as the input. A version with
one-dimensional convolutions was presented for audio source
separation [Stoller et al., 2018]. We base our model on this
U-Net variant, as it should be able to process many kinds of
temporal sequences, not just audio signals. We show how to
adapt it for our auto-regressive setting by making all convolu-
tions causal, such that each prediction for the next time-step
can only depend on past inputs.

As a result, we obtain the “Seq-U-Net”1, a general-purpose

1Code available at https://github.com/f90/Seq-U-Net
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Figure 1: Architecture diagram of our proposed model. 1D Con-
volutions are applied across time with LeakyReLU activations fol-
lowed by Dropout. Strided and transposed strided convolutions are
used for down- and upsampling the features, respectively. Since the
convolutions do not use padding, the output is smaller than the input
and skip connections need to be cropped at the front.

network architecture that is not limited to audio tasks but
can be applied to a wide range of sequence modelling prob-
lems – while providing considerable efficiency improvements
over TCN and Wavenet. Inference is greatly accelerated by
only computing new layer activations if they are not deci-
mated in the downsampling process. This time-variant pro-
cessing gives each layer its own “update rate”, which is in
contrast to fully-convolutional TCN and Wavenet approaches.
In particular, we compare to TCN in the context of word-
and character-level language modelling as well as symbolic
music generation. Additionally, we tackle the task of gen-
erating piano music directly in the time-domain and com-
pare performance with a Wavenet reimplementation using a
log-likelihood metric as well as listening tests. Overall, we
find that our architecture achieves competitive results while
requiring less memory and training time.

2 Related Work
Recurrent neural networks (RNNs) are a commonly used
approach in deep learning for sequence modelling, includ-
ing LSTMs and GRUs [Graves et al., 2013; Boulanger-
Lewandowski et al., 2012]. In practice, training these mod-
els to successfully model long-term dependencies can be
difficult [Bengio et al., 1994] and slow as computation is
strictly sequential and can not be parallelised [Trinh et al.,
2018]. Hierarchical multi-scale RNNs [Chung et al., 2016;
El Hihi and Bengio, 1995] and the Clockwork RNN [Koutnı́k
et al., 2014] model time series on multiple time-scales to
enable longer-term dependency modelling, but the sequen-
tial processing in the high-resolution timescales is still com-

putationally expensive. Further work in this direction also
includes the DilatedRNN [Chang et al., 2017]. The Sam-
pleRNN [Mehri et al., 2016] is a three-layer RNN specifi-
cally developed for audio generation. While it also employs
a multi-scale approach, it inherits the disadvantages of RNNs
mentioned above, and the “slower” layers have to compute
high-level features directly from raw audio and forward them
to the “faster” layers, which is arguably more difficult than
computing them bottom-up.

Alternative approaches involve CNNs with filters that have
increasing dilation factors to cover longer distances between
inputs [Kalchbrenner et al., 2016; Campos et al., 2017], of
which we want to highlight TCN [Bai et al., 2018] and
Wavenet [van den Oord et al., 2016] for sequence modelling.
Due to their depth, these neural models require a large amount
of memory and have slow inference.

The parallel Wavenet [van den Oord et al., 2017] provides
fast inference by using a flow-based student network to emu-
late the outputs of an already trained Wavenet. For long-term
dependency modelling in audio, Dieleman et al. [2018] use
a complex, multi-stage training with auto-encoding networks
to compress the audio before using Wavenets to model the la-
tent state evolution. However, since these approaches involve
training a Wavenet, they inherit its computational complexity.

Other approaches were developed such as FFTNet [Jin et
al., 2018], WaveRNN [Kalchbrenner et al., 2018] and Mel-
Net [Vasquez and Lewis, 2019], which do provide large effi-
ciency gains by means of optimisations specific to the audio
domain, but at the cost of generality.

Finally, the Transformer network [Vaswani et al., 2017]
has shown great potential, but the complexity of its atten-
tion mechanism is quadratic in the length of the sequence,
preventing the use for long sequences. Sparse Transform-
ers [Child et al., 2019] restrict the attention modules to a
sparse subset of all previous inputs to remedy this, but could
still benefit from introducing a multi-scale architecture.

We are unaware of another multi-scale approach evaluated
across a variety of sequence modelling problems, but similar
approaches were used for video segmentation [Shelhamer et
al., 2016] and audio separation [Stoller et al., 2018].

3 Method
We present two variants of our multi-scale approach. The first
is an adaptation of the Wave-U-Net to the auto-regressive set-
ting and shown in Section 3.1. The second variant, presented
in Section 3.2, further adds residual connections to stabilise
training for tasks with very long-term dependencies such as
raw audio generation.

3.1 Seq-U-Net
Our model is based on the Wave-U-Net [Stoller et al., 2018]
and shown in Figure 1. The network features L levels of
downsampling (DS) and upsampling (US) blocks, and a con-
volutional bottleneck and output layer. Each downsampling
block features a convolution, whose outputs are used as a
shortcut connection for the respective upsampling block, fol-
lowed by another convolution with stride k to downsample
the features across time. Each upsampling block has a trans-
posed convolution with stride k to upsample the previously
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Figure 2: Compared to TCN (left, two residual blocks), Seq-U-Net (right, one down- and upsampling block) computes features only at certain
intervals to save memory and training time. Zero-padding is used in the upsampling blocks (white squares), leading to different computational
paths throughout the network (red squares). The red line indicates feature cropping and concatenation.

obtained coarse-grained features. The result is concatenated
with the features from the shortcut connection, and input to
another convolution to combine high- and low-level features.
In this paper, we set the stride k to 2. All convolutions have
the same filter width and a LeakyReLU activation followed
by Dropout, except for the output convolution.

Like in the original Wave-U-Net, the convolutional lay-
ers do not use zero-padding so that all model predictions are
made with the necessary input context. As a result, there are
more feature frames in the shortcut output of a DS block than
in the output of the transposed strided convolution in the cor-
responding US block. Zeros are prepended to the beginning
of input sequences to allow predicting the first sequence el-
ements. In the Wave-U-Net, the outputs at each level of the
network are interpreted as features describing the center part
of the input, so the shortcut features are center-cropped before
concatenation. Consequently, source signals are predicted for
the center part of the mixture excerpt.

Our key idea is to interpret the filters as causal instead: the
output of a filter covering input timesteps n−k to n+k should
now help predict input xn+k+1 outside of its receptive field
instead of some feature of the input at timestep n, i.e. the cur-
rent source audio signal. Therefore, we instead crop the first
feature frames of each shortcut connection to make sure that
features are aligned in time properly. As a result, we obtain
an auto-regressive model for sequence modelling, similar to
Wavenet and TCN, but significantly sparser in terms of acti-
vations due to the decreased resolution in most of the layers.

Fast Inference
From a signal processing perspective, TCN and Wavenet are
time-invariant systems as they apply the same set of opera-
tions at each time step. In contrast, the multi-scale architec-
ture of Seq-U-Net allows us to employ a time-variant process-
ing scheme (inspired by [Koutnı́k et al., 2014]) that drasti-
cally accelerates inference, as many operations do not have to
be computed at every step: If an output computed for the lat-

est time-step in a DS block is decimated, only the US blocks
on the same or higher resolution need to be updated, since the
input to the other blocks does not change. This means that a
block on level i ∈ {1, . . . , L} only needs to be updated ev-
ery ki−1 time-steps. To implement this procedure, all blocks
are given an internal clock based on their level to determine
when to compute a new output. To predict the very first sam-
ple from a given context, a normal forward-pass is conducted
and caches for the resulting layer activations are set up before
switching to the above step-wise procedure. For further de-
tails on the implementation, please refer to our source code.

3.2 Residual Variant
Since raw audio generation benefits from a large receptive
field, we employ much deeper instances of our model for
the experiment in Section 5.2. With this increase in layers
however, we observed training instability. Residual networks
can be trained stably even with hundreds of layers [He et al.,
2015], so we also propose a residual variant of our model.

Compared to the baseline model from Section 3.1, we em-
ploy an additional convolution on the input with F output
channels, and also use F input and output channels for all
up- and downsampling blocks to allow for residual connec-
tions. We replace each convolutional layer in the base model
with a residual layer similar to the one in Wavenet [van den
Oord et al., 2016], whose outputs y are given by

y = I(x) + tanh(C1(x)) · σ(C2(x)), (1)

where x are the layer inputs, σ is the sigmoid function, Ci

applies convolutional layer i to its input and I processes the
input x to provide an identity connection in case the convolu-
tions change the feature dimensionality.

For the convolutions with stride used in the DS blocks, I
first decimates the input x to provide the identity for the resid-
ual layer. For the transposed convolutions with stride in the
US blocks, I takes the input and repeats the feature vector
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at each time step k − 1 times to perform upsampling2. For
both down- and upsampling, I finally crops the resulting fea-
ture sequence at the front to ensure it matches the number of
residual features, which is reduced due to not using padding
for convolutions. To refine the high-resolution shortcut fea-
tures using the low-resolution features from the upsampling
path, we use the shortcut as input x and use the concatena-
tion of the shortcut and the upsampled features as input to the
residual convolutions Ci.

To easily scale the network in size for more complex tasks,
we employ D+1 residual layers in each block (one layer for
up- or downsampling), with D as hyper-parameter, allowing
features to be processed more flexibly at each time resolution.

4 Complexity Analysis
We will analyse the memory consumption and computational
complexity of our approach at both training and test time and
compare with Wavenet3.

4.1 Training
Due to the size N of receptive field increasing exponentially
with the number of layers for the Seq-U-Net and Wavenet,
roughly L = logk(N) levels of processing are required. For
the Wavenet, we define k as the factor with which dilation
increases in each layer.

When presented with I ≥ N inputs during training,
Wavenet needs to compute I feature activations in each of the
L layers, since it operates on the same resolution as the input,
reaching a total of I · logk(N). The Seq-U-Net on the other
hand computes 3I + I

k feature activations in the first down-
and upsampling block, 3 I

k + I
k2 on the second level, and so

on, in addition to a bottleneck convolution with I
kL outputs.

For the Seq-U-Net, we thus obtain at most
∑L

i=0 4
I
ki ≤ 8I

feature activations regardless of the number of layers4. The
above calculation not only demonstrates the time complex-
ity, but also the required memory, since the computed feature
activations need to be maintained for the backward-pass.

4.2 Inference
At test time, and auto-regressive models such as Wavenet and
Seq-U-Net require a forward pass to generate the next ele-
ment in the sequence, which can be prohibitively slow when
sequences are long (e.g. in audio generation) or when a real-
time application is desired. While caching previously com-
puted outputs in the Wavenet reduces computation time, it
still involves evaluating all L layers, which especially affects
deep models (e.g. L = 30 in [Kalchbrenner et al., 2018]).

In the Seq-U-Net, each level in the network only has to be
updated at certain intervals as described in Section 3.1. In
particular, the average number of levels we have to update for
each time-step is

∑L
i=1

1
ki−1 ≤ 2 and thus a constant num-

ber of layers independent of the number of levels L in the
2This operation does not violate the auto-regressive condition.
3Comparison with TCN is omitted as it is very similar to Wavenet

but differs slightly in the number of layers per level of resolution
4This disregards the reduction in size due to not using padding

for convolutions since it occurs in all models

network. While this is an amortised analysis of the average
time per step, in the worst case all layers need to be updated,
although this is not relevant for offline sequence generation.

5 Experiments
We evaluate our method on a variety of sequence modelling
tasks regarding its performance, training time and memory
complexity. Due to the architectural similarity, we will firstly
compare our method with TCN in Section 5.1 on language
modelling as well as symbolic music modelling. To test
whether our model can capture long-term dependencies, we
also compare to TCN on a synthetic copy task and to a
Wavenet baseline on the task of audio generation in the time-
domain. Note that the Wave-U-Net can not be used as a base-
line model for these experiments, since it has access to se-
quence element xt+1 when predicting the successor to xt and
can therefore easily achieve perfect prediction.

For time and memory measurements, we use a single
NVIDIA GTX 1080 GPU with Pytorch 1.2, CUDA 9 and
cuDNN 7.55. We compare the average time required for each
training step and the maximum memory allocated throughout
a training epoch6.

5.1 Comparison With TCN
We will compare our model against TCN across three se-
quence modelling tasks. To match model complexity, we use
the same filter length, Dropout rate, and levels of resolution,
which results in very similar receptive field size. Then, the
number of features in each layer is adapted for Seq-U-Net so
it matches TCN in the number of parameters.

We optimise each model for 100 epochs using a batch size
of 16 and an Adam optimiser with initial learning rate α,
which is reduced by half if validation performance did not
improve after P epochs and more than 10 epochs have passed
since the beginning of training. Finally, the model that per-
formed best on the validation set is selected.

To prevent the training procedure from favouring one
model over the other, we perform a hyper-parameter optimi-
sation over the learning rate α ∈ [e−12, e−2] and optional
gradient clipping with magnitudes between [0.01, 1.0]. This
hyper-parameter optimisation is performed for each combi-
nation of model and task using a tree of Parzen estimators7

to find the minimum validation loss. All results are shown in
Table 1, using the hyper-parameters shown in Table 2.

Character-based Language Modelling
We perform character-based language modelling, where the
task is to predict the next character given a history of pre-
viously observed ones, on the PTB dataset [Marcus et al.,
1993]. The average cross-entropy loss is used as training ob-
jective, and patience is set to P = 5.

For both models, we use 100-dimensional character em-
beddings with 0.1 Dropout as input, and their output is pro-
jected back to character probabilities using the transposed

5We use Pytorch’s benchmark mode to find the best algorithm
for training each network.

6Does not include memory used for purposes such as caching
7“Hyperopt” package: http://hyperopt.github.io/hyperopt/
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Task Model Train Test Time (s) Mem.

Char-LM TCN 1.066 1.31 0.0694 445.9
Char-LM Seq-U-Net 1.08 1.30 0.0286 304.9

Word-LM TCN 47.21 108.47 0.0480 580.5
Word-LM Seq-U-Net 40.43 107.95 0.0234 382.1

M-Muse TCN 5.789 6.931 0.0059 108.5
M-Muse Seq-U-Net 5.794 6.969 0.0065 75.3

M-Nott TCN 1.409 2.783 0.0071 73.1
M-Nott Seq-U-Net 1.850 2.97 0.0067 52.5

M-JSB TCN 6.178 8.154 0.0034 13.1
M-JSB Seq-U-Net 6.151 8.173 0.0037 8.2

Piano Wavenet 1.76 1.88 1.4616* 5294*
Piano Seq-U-Net** 1.83 1.93 0.3621* 1514*

* Measurements were taken with a batch size of 2 instead of 16
due to the high amount of memory required.

** Residual variant

Table 1: Performance (lower is better) for Seq-U-Net and compar-
ison models across different tasks (“M-” denotes symbolic music
modelling). Times denote the duration for a forward- and backward-
pass. “Mem.” is the required GPU memory in MB

version of the embedding matrix. We evaluate models using
the bits-per-character (bpc) metric.

As shown in Table 1, our model performs as well as its
TCN counterpart in this regard, while requiring 59% less time
per training step, and 32% less GPU memory during training.
These results suggest that many of the required features are
on a higher level of abstraction and vary only slowly, e.g. per
word or per sentence, and so do not need to be recomputed for
each new character – a hypothesis also put forth in [Chung et
al., 2016].

Word-based Language Modelling
For our second experiment, we perform word-based language
modelling, which involves predicting the next word following
a given sequence of words. As in the previous experiment, we
use the PTB dataset with a vocabulary of 10,000 words. Fol-
lowing TCN’s experimental set-up [Bai et al., 2018], we use
600-dimensional word embeddings with 0.25 Dropout as in-
put, and use the transpose of the embedding matrix to project
the 600-dimensional outputs from the models to probability
vectors over all words. For training, we minimise the average
cross-entropy with a patience of P = 5, and for evaluation
we use the per-word perplexity.

Similarly to the results for character-based language mod-
elling in Section 5.1, Table 1 shows that both models perform
very similarly, but the Seq-U-Net architecture is substantially
more efficient to train (reducing the training time by 51% and
memory usage by 34%).

Symbolic Music Modelling
For our final comparison with TCN on real-world data, we
model polyphonic music in the symbolic domain. Each music
piece is represented as a piano roll – a binary matrix of size
88 × T that indicates which of the 88 pitches are active at
each of the T time frames. Our models predicts a whole time-
frame at each step in an auto-regressive manner, and we use

the sum of binary cross-entropies over each pitch, averaged
over all time frames as training objective. We use a patience
of P = 10 for early stopping.

Three different datasets of varying complexity and con-
tent are used: Muse8, Nottingham (Nott)9 and the JSB
chorales [Allan and Williams, 2005]. For evaluation, we
use the frame-wise perplexity introduced in [Boulanger-
Lewandowski et al., 2012].

Table 1 shows the perplexity on the training and test sets
for both models on all datasets. We find that both models are
very closely matched in terms of training and test perplexity
on the Muse and JSB datasets. For the Nott dataset, TCN
achieves a noticeably lower perplexity than the Seq-U-Net on
the training partition. This performance gap also appears on
the test set, although it is considerably smaller, indicating that
incorporating the slow feature hypothesis induces a regularis-
ing effect on the model.

For these datasets, no improvement in training time is ob-
served, unlike the previous language modelling experiments.
This is due to the much smaller size of the models, where the
higher number of convolutional layers in the Seq-U-Net has a
larger impact than the reduction in computation time for each
layer. Nevertheless, the memory footprint is substantially re-
duced by an average 32%.

Copy Task
Finally, we compared our model to TCN on the copy task, fol-
lowing the experimental setup outlined in [Bai et al., 2018].
The input to the model is a one-dimensional sequence consist-
ing of 10 integer numbers randomly chosen between 1 and 8,
followed by M zeroes, and 11 entries filled with the digit 9,
acting as a signal for the model to output the initial 10-number
sequence at the end of the input sequence.

Using the same setting of M = 1000 used in [Bai et al.,
2018], we found that Seq-U-Net was not able to retain the
number sequence and output it at the end (reaching an accu-
racy of 12.7%), in contrast to TCN. Theoretically, this can
be explained by the resampling operations contained in the
Seq-U-Net, through which the number sequence needs to be
transported. Neighbouring elements (feature vectors) of the
sequence need to be encoded into a single feature vector so
that subsequent downsampling of this sequence of feature
vectors does not result in information loss. Similarly, even
if the information successfully passes through all downsam-
pling layers, the original sequence has to be decoded in the
upsampling path. Both of these operations would require very
specific configurations of the convolutional filters to be suc-
cessful. However, it seems that retaining such high-frequency
information over large numbers of time-steps is rarely needed
in many real-world applications, since Seq-U-Net performs
well on all real-world benchmarks investigated in this paper.

5.2 Raw Audio Generation
To test whether our model can capture long-term dependen-
cies found in complex real-world sequences, we apply it to
the generation of audio waveforms, using the residual variant

8See http://www-etud.iro.umontreal.ca/∼boulanni/icml2012
9See http://ifdo.ca/∼seymour/nottingham/nottingham.html
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Task Model W L H Dropout Context Params P LR Clip

Char-LM TCN 3 4 600 0.1 80 5.9M 5 0.00014 0.213
Char-LM Seq-U-Net 3 4 390 0.1 73 5.9M 5 0.00073 No

Word-LM TCN 3 4 600 0.5 73 14.7M 5 0.00115 No
Word-LM Seq-U-Net 3 4 390 0.5 73 14.9M 5 0.00037 0.722

Music-Muse TCN 5 4 215 0.2 Full 1.7M 10 0.00023 No
Music-Muse Seq-U-Net 5 4 150 0.2 Full 1.7M 10 0.00047 No

Music-Nott TCN 5 4 215 0.2 Full 1.7M 10 0.000067 0.601
Music-Nott Seq-U-Net 5 4 150 0.2 Full 1.7M 10 0.00108 No

Music-JSB TCN 3 2 220 0.5 Full 534k 10 0.00134 No
Music-JSB Seq-U-Net 3 2 170 0.5 Full 522k 10 0.00051 0.324

Table 2: Hyper-parameters for TCN and Seq-U-Net comparison models investigated in Section 5.1. W is the convolutional filter width, L
the number of layers, H the number of convolutional filters per layer, P the early stopping patience, and LR and Clip are the best learning
rate and clipping magnitude found by hyper-parameter optimisation.

Model Layers Features Context Filter width

Wavenet 13 128 32764 2
Seq-U-Net 11 180 32748 5

Table 3: Models used for audio generation. Context is given as a
number of audio samples.

presented in Section 3.2. Since our architecture resembles
the Wavenet with its use of stacks of residual convolutions,
we use it as our comparison model in the following.

In particular, we use the classical piano recordings as used
by Dieleman et al. [2018] amounting to about 607 hours in
duration, and partition them into a training and test set, while
avoiding pieces overlapping between the two partitions. Note
that our version of the dataset is different as we were not able
to obtain all the recordings listed in [Dieleman et al., 2018].

We train two models in this experiment, listed in Table 3.
The first one is a Wavenet baseline comprised of 4 Wavenet
stacks with 13 dilated convolutional layers each and 512 fea-
tures in the skip connection, and the second one is a Seq-
U-Net model that matches the Wavenet in terms of receptive
field size, and uses a residual depth of D = 2.

Besides downsampling the audio to 16 KHz mono signals,
no further preprocessing is applied. During training, audio
excerpts are loaded from random positions within the au-
dio files, and each audio sample is transformed into a 256-
dimensional one-hot vector using 8-bit mu-law encoding, fol-
lowing the Wavenet approach [van den Oord et al., 2016]. A
training batch consists of 16 examples and uses the last 5000
audio samples in each example as simultaneous training tar-
gets for the model. The average cross-entropy is minimised
over 246000 iterations (equivalent to just over one epoch)
with an Adam optimiser and a learning rate of 0.0005.

Experimental Setup
For evaluation, we report the likelihood of the models in bits
per audio samples (bpa) on the test set. However, the bpa
metric might not reflect perceptual audio quality very well,
especially since the model uses its own predictions as input
and not real samples at test time. This discrepancy is well

Figure 3: Overall distribution of listening test responses for both the
timbre and the musical coherence questions

known in the literature [Huszár, 2015], and we also found in
practice that the two models vary in their stability at genera-
tion time. While the Wavenet starts to introduce progressively
more noise into its outputs with longer generation, the Seq-
U-Net appears stable throughout. Since this effect is very
pronounced with durations of 10 seconds or longer, making
Seq-U-Net clearly preferable, we conducted a listening test
with samples of 5 seconds. We used a temperature of 0.95,
meaning the unnormalised model outputs were divided by
0.95 before applying the softmax to obtain probabilities. In
preliminary experiments, we found this stabilises the genera-
tion process, resulting in increased quality for both models.

Each of the 20 questions presented the participant with a
1.5 second excerpt of real piano randomly sampled from our
test dataset. This was followed by two continuations pro-
duced by our two models that also include the real excerpt
in the beginning. This conditional generation setting allows
directly comparing between outputs of different models for
the same input context: The participants were asked which
excerpt has “better timbre (does it sound like a piano, is the
audio free of distortions?)” and “more musical coherence
(with respect to melody, harmony, rhythm)”. An additional
“Not sure” option was available when the participant thinks
the quality is the same for both excerpts. The total number of
participants is 22.

Results
As seen in Table 1, the Wavenet slightly outperforms the Seq-
U-Net in terms of the bpa metric, albeit achieving a small
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relative improvement of 2.6% on the test set, indicating the
models are closely matched in terms of performance. The
training set results indicate this might be due to the Wavenet
fitting the training set more closely in the given number of
training iterations. At the same time, the required training
time and memory are drastically reduced for the Seq-U-Net
by a factor of 4 and 3.5, respectively.

The results of the listening test are shown in Figure 3.
While the Seq-U-Net exhibits better timbral characteristics,
producing better continuations than the Wavenet in 15 out of
the 20 provided examples, it falls behind in terms of mu-
sical coherence. We suspect this is due to the Seq-U-Net
sometimes producing an unexpected transition from the real
excerpt to the generated section, but then producing sounds
more stably as time goes on. Overall, the two models ap-
pear to have different strengths and weaknesses – we encour-
age the reader to listen to the audio examples provided in our
code repository. Additionally, the high amount of ”Not sure”
responses, especially for such a sensitive paired discrimina-
tion task, indicates that the models are quite evenly matched
in this setting.

Finally, we measure the performance impact of our infer-
ence method introduced in Section 3.1 by comparing to the
Wavenet’s generation speed when caching previous activa-
tions. With a batch size of 1 on a single NVIDIA GTX
1080 GPU, we achieve 69 audio samples per second for the
Wavenet, and 309 for the Seq-U-Net and thereby a speed-up
with a factor greater than 4.

6 Discussion
The predictive performance of the Seq-U-Net as outlined in
Table 1 is remarkably similar to that of Wavenet and TCN
comparison models across all tasks we tested. While effi-
ciency gains are not very noticeable for very small instances
of our model with few levels of resolution, they rapidly in-
crease when moving towards larger and deeper models as
used in language and audio modelling, and we can expect
these gains to become more pronounced for even deeper mod-
els with even longer receptive fields.

Since the metrics used in Table 1 are based on how much
probability the models assign to the test data (log-likelihood)
and not directly on how realistic their generated output is,
we performed a listening test for the piano audio generation
task. Surprisingly, despite better log-likelihood, our imple-
mentation of the Wavenet accumulates noise during genera-
tion, making it unsuitable to generate longer music pieces,
whereas the Seq-U-Net is stable but less capable of smoothly
continuing the real excerpts, for reasons that remain unclear.
A more unified approach to training and evaluating generative
models would be desirable.

7 Conclusion
In this paper, we demonstrated how a causal variant of a U-
Net architecture with one-dimensional convolutions across
the time domain can perform on par with existing state-of-
the-art models in a variety of real-world sequence modelling
tasks, while significantly reducing training time and memory
requirements. Leveraging the idea that many relevant features

in real-world sequences are only slowly varying over time al-
lows the use of convolutional layers that compute features at
progressively lower resolutions. These efficiency gains make
it feasible to train generative models with much longer re-
ceptive fields in the future, which can be very useful in do-
mains such as music and language generation. While results
on the synthetic copy task show that high-frequency informa-
tion can not be retained over large numbers of time steps, the
competitive performance of our model on real-world bench-
marks suggests only modelling long-term dependencies be-
tween “slow features” might be sufficient – although this
should be investigated further in the future.

A limitation of our approach is that the levels of resolution
along with the processing capacity at each resolution has to be
manually pre-defined, which could limit performance. Future
work could include potential solutions as used in the Phased
LSTM [Neil et al., 2016] so the model can adapt its levels of
resolution more dynamically to the task.

Finally, attention mechanisms have shown great potential
for sequence modelling and could be integrated into our ap-
proach by using attention operations in each down- and up-
sampling block alongside or instead of convolutions to further
improve performance, as suggested in [Child et al., 2019].
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