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Abstract
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can provide novel insights into the evolution of styles.
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Introduction

Western art music style steadily evolved over centuries. Musicologists commonly agree that this
evolution proceeded in several phases rather than in a linear fashion (Pascall, 2001). Some of
these phases exhibit a certain homogeneity with respect to stylistic aspects. This is why a catego-
rization of music according to historical periods or eras — as indicated by the clouds in Figure 1 —
has been a “customary method” in musicology (Frank, 1955, p. 1). To date, these categories’
names serve as important terminology and “basis for discussion” (Godt, 1984, p. 38) for describ-
ing musical style in a historical context.

Nevertheless, a categorization into a few historical periods cannot reflect the complex struc-
ture of musical style’s continuous and interlaced evolution (Clarke, 1956; Webster, 2004).
Long transitional phases, parallel or contrasting trends, bifurcations due to esthetic
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Figure I. Overview of the composers in the dataset. A box corresponds to the composer’s lifetime.
Darker boxes indicate that more pieces by a composer are considered in the dataset (e.g., for ). S. Bach).
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controversies,! as well as slow but steady changes in musical style defy a classification using
such simple categories. On closer examination, stylistic similarity of pieces does not necessarily
imply temporal proximity of their composition dates (Frank, 1955). The geographical context
adds another layer of complexity to the overall picture. Composer styles can be influenced by
local folk culture or particular social conditions. The balance between a composer’s personal
style and a time-related contemporary style or epochal style has also changed over the course of
music history (Pascall, 2001). Furthermore, even individual composers have not always writ-
ten in a homogeneous style throughout their life. Beethoven or Schoenberg are only two exam-
ples of this observation.

Because of such reasons, musicologists have criticized models of historical periods for dec-
ades. Nowadays, analyzing the style of individual composers or small regional groups is the
preferred approach in musicology (Webster, 2004). Adler and Strunk (1934) suggest three
definitions of style relating to time, place, and author. They describe the time-related categoriza-
tion as the “essence of independent style-criticism” (p. 174) while regarding author identifica-
tion to be “style-criticism in its highest form,” which, however, “sometimes turns on subordinate
details” (p. 175). This indicates that the detailed analysis of individual composers often lacks
the possibility of generalization and does not provide an overview of larger time spans. To
obtain such an overview, which allows for identifying stylistically homogeneous phases as well
as phases of change,? one needs to consider a broad variety of pieces covering both composer-
specific aspects such as lifetime or place of residence as well as musical aspects such as instru-
mentation, key, tempo, or genre.

In order to account for this variety, one needs datasets of several hundreds or thousands of
pieces where manual inspection is impractical. To make a corpus-based analysis feasible,
computational approaches are required. These approaches often rely on statistical methods
(Bellmann, 2012; Fucks & Lauter, 1965; Rodriguez Zivic, Shifres, & Cecchi, 2013; White,
2013) and, therefore, allow for analyzing style characteristics within a corpus in an objective
and unbiased fashion. As a technical prerequesite, the musical pieces have to be accessible in
a computer-readable format. Musicologists typically choose a symbolic score representation
such as MusicXML (Good, 2006) or MEI (Pugin et al., 2012). In practice, the availability of
symbolic scores in high quality is a major limitation when compiling a dataset. Manual crea-
tion of scores is very time-consuming and current systems for Optical Music Recognition
(OMR) do not yet show adequate performance (Byrd & Simonsen, 2015). As a consequence,
studies on manually curated symbolic scores employ rather small datasets such as the study
by Bellmann (2012), who analyzed 297 piano pieces by 27 composers.?> Some researchers
accept the loss caused by limited OMR performance and hope to achieve meaningful analysis
results when averaging over a large dataset of uncorrected OMR output. Using this strategy,
Rodriguez Zivic et al. (2013) presented a promising study relying on the Peachnote corpus.*
They calculated statistics of melodic intervals mapped to composition years and subsequently
clustered the year-wise features resulting in cluster boundaries roughly at the years 1765,
1825, and 1895.

Another option are MIDI files, which are available in large numbers for classical music.
Similarly to scanned sheet music, however, the quality of available MIDI files is heterogeneous
since many files contain errors and the encoding is often not consistent. Furthermore, the
selection is biased — in particular, orchestral pieces or works by less popular composers are
sometimes hard to find. Using a limited set of 19 popular composers, White (2013, Chapter 3)
presented an interesting study on 5000 MIDI files.> Based on chord progression statistics, he
found that composers and composer groups “tend to cluster in ways that conform to our intui-
tions about stylistic traditions and compositional schools” (White, 2013, p. 176).
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As an alternative to using scanned sheet music or MIDI files, one may consider audio record-
ings of musical pieces. For the typical classical music repertoire, a high number of such record-
ings are easily available. Though capturing a specific interpretation, a recording better
corresponds to the “sonic reality” of a musical piece than a score representation does. To ana-
lyze such recordings, one needs to apply audio processing tools as developed in the field of Music
Information Retrieval (MIR). These algorithms are often error-prone and do not reach a high
level of specificity regarding human analytical concepts. In particular, note objects as specified
by a musical score are not given explictly and, thus, are hard to extract from a recording
(Benetos, Dixon, Giannoulis, Kirchhoff, & Klapuri, 201 3). Nevertheless, several studies (Izmirli,
2009; Sheh & Ellis, 2003; Weild & Miiller, 2014) have shown that suitable audio features can
capture meaningful information that correlates to music theory.

In this article, we present several experiments for such an audio-based style analysis. To this
end, we compiled a dataset of 2000 music recordings by 70 composers covering more than 300
years of music history (see Figure 1). We choose a number of audio features that may be capa-
ble of describing style characteristics of the music. To achieve a certain invariance to the instru-
mentation, we focus on features capturing harmonic and tonal aspects. More specifically, our
features describe the presence of chord progression types and harmonic interval types as well
as the tonal complexity. Restricting to harmony does not provide a comprehensive description
of musical style since, for instance, melody or rhythm capture further important aspects.
Nevertheless, our results show that tonal features alone can provide a meaningful description
and lead to interesting insights. Furthemore, rhythmic and melodic characteristics can have an
influence on our features and, thus, are implicitly captured to a certain degree.

As one main contribution of this paper, we propose a novel visualization technique. For
these evolution curves, we project the piece-wise feature values onto the historical timeline using
the composers’ lifetime. We show several such curves in order to investigate tonal properties of
our data in a statistical way. Performing aggregation and clustering with unsupervised tech-
niques® —i. e., without incorporating any prior information about stylistic similiarity — we ana-
lyze the evolution of musical styles regarding composition years, individual pieces, and
composers. We found interesting coherences that widely agree with traditional views as well as
other data-driven experiments. Even though the choices of data (pieces) and methods (features)
have crucial influence on the results and these choices are also subjective, our investigations
generally demonstrate how computational strategies can contribute to the understanding of
musical style and its evolution from a quantitative and objective perspective.

The remainder of the paper is organized as follows. First, we describe our dataset. Second, we
explain the main aspects of our computational procedure including the extraction and tempo-
ral aggregation of audio features as well as our strategy of computing evolution curves. Third,
we present such evolution curves for different types of features and discuss musicological impli-
cations. Finally, we conduct analyses and clustering experiments for investigating the stylistic
relationships regarding years, pieces, and composers. The main findings of this work rely on the
first author’s dissertation (Weils, 2017, Chapter 7).

Dataset

In this study, we consider the typical repertoire of Western classical music. Thus, we put special
emphasis on composers whose works frequently appear in concerts and on classical radio pro-
grams. For example, we include a relatively large number of works by popular composers such
as]. S. Bach or W. A. Mozart. At the same time, we try to ensure a certain variety and diversity
regarding other aspects (countries, composers, musical forms, keys, tempi, etc.). Following
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such principles, we compiled a dataset of 2000 music recordings” from 70 different composers
covering more than 300 years of music history.8 Figure 1 provides a visualization of the dataset
with respect to the composers’ lifetime. The darkness of the “lifetime boxes” indicates the num-
ber of recordings contained in the dataset by the respective composer. We strived towards a
homogeneous coverage of the timeline with composers. The years before 1660 and after 1975
were ignored for further analysis since less than three composers contribute here.

To avoid effects due to timbral characteristics, we balanced our dataset regarding the instru-
mentation by including 1000 pieces each for piano and orchestra. To avoid timbral particuliari-
ties within the piano data, we only selected piano recordings performed on the modern grand
piano (also for keyboard pieces from the 17th and 18th century, where we did not include any
harpsichord recordings). Moreover, the orchestral data neither includes works featuring vocal
parts nor solo concertos. We tried to ensure a certain diversity among each composer’s works
by considering various musical forms (e.g., sonatas, variations, suites, symphonies, symphonic
poems, or overtures). Furthermore, the dataset exhibits a mixture of time signatures, tempi,
keys, and modes (major/minor). For most aspects — such as tempo and time signature — we
obtained this variety by including all movements of a work cycle or multi-movement work.
However, the selection is not systematically balanced regarding all of these characteristics.
Instead, we prioritized balancing the instrumentations in order to avoid biases caused by audio-
related effects. Beyond this, we put special emphasis on the coverage of the timeline and on the
regional balance of the composers’ countries of residence. Since our experiments rely on statis-
tical procedures, we ensured a certain size of the dataset (2000 pieces) and, therefore, could not
achieve perfect balance regarding all aspects. A systematical investigation of principles for data
compilation and their influence on experimental results is beyond the scope of this paper and
should be addressed in future work.

The recordings originate from commercial audio CDs. To allow reproduction of our experi-
ments and to provide detailed insight into the content, we published a list of the recordings
along with annotations and audio features extracted from these recordings.®

Computational methods

Overview

The computational analysis of music recordings is a young field of research. Extracting score-
like information from audio —referred to as automatic music transcription —is a complex problem
where state-of-the-art systems do not show satisfactory performance in most scenarios (Benetos
et al., 2013). In particular, the output of such systems does not provide a reliable basis for
applying methods developed for score analysis. Nevertheless, some analysis tasks can be
approached without the need of explicit information such as note events. Instead, semantic mid-
level representations can be used, which can be directly computed from the audio recordings
while allowing for human interpretation.

Feature extraction

For tonal analysis, chroma features have turned out to be useful mid-level representations.
These representations indicate the distribution of spectral energy over the 12 chromatic pitch
classes (Miiller, 2015, Chapter 3) and robustly capture tonal information of music recordings.
Several advanced chroma extraction methods were proposed in order to improve the timbre
invariance of chroma features (Gémez & Herrera, 2004; Lee, 2006; Miiller & Ewert, 2010). For
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Table I. Overview of interval and complexity features.

Feature Description

K Interval Category 1 (minor second / major seventh)
b, Interval Category 2 (major second / minor seventh)
B Interval Category 3 (minor third / major sixth)

E, Interval Category 4 (major third / minor sixth)

Fs Interval Category 5 (perfect fourth / perfect fifth)

F, Interval Category 6 (tritone)

E Tonal Complexity Global (full movement)

Fg Tonal Complexity Medium (10s)

Fy Tonal Complexity Medium (500ms)

Fo Tonal Complexity Local (100ms)

Note. The interval features rely on local NNLS chroma features (10Hz). For the tonal complexity, we considered four
different time resolutions.

Table 2. Overview of root note transition features.

Feature Interval A Complementary A Quality

- Perfect unison 0 Perfect octave N -12

F, Minor second 7 +1 Major seventh “ -11 Authentic
F, Major second 7 +2 Minor seventh ~ -10 Authentic
JOR Minor third 7 +3 Major sixth ™ -9 Plagal

F, Major third 2 +4 Minor sixth -8 Plagal

F Perfect fourth 7 +5 Perfect fifth ~ -7 Authentic
F Augmented fourth 7~ +6 Diminished fifth ~ -6

F, Perfect fifth ~ +7 Perfect fourth ™ -5 Plagal

F, Minor sixth 7 +8 Major third ~ -4 Authentic
F, Major sixth 72 +9 Minor third ™ -3 Authentic
F, Minor seventh 7 +10 Major second ™ -2 Plagal

F, Major seventh 7 +11 Minor second -1 Plagal

- Perfect octave 72 +12 Perfect unison 0

Note. The arrows denote the direction of the root note interval (7 = upwards, ™ = downwards). Transitions by com-
plementary intervals in the opposite direction belong to the same category. A indicates the interval size in semitones.

our studies, we rely on a chroma feature type that reduces the influence of overtones using a
Nonnegative Least Squares (NNLS) algorithm (Mauch & Dixon, 2010a).1° The chroma features
computed for our experiment locally correspond to 100ms of audio (feature resolution of
10Hz). We provide details on the feature extraction in Section S1 of the Supplemental Material
Online (SMO) section.

On the basis of such chroma features, researchers developed algorithms for analysis tasks
such as global key detection (Papadopoulos & Peeters, 2012; van de Par, McKinney, & Redert,
2006), local key detection (Papadopoulos & Peeters, 2012; Sapp, 2005), or chord recognition
(Cho & Bello, 2014; Mauch & Dixon, 2010b; Sheh & Ellis, 2003). In this paper, we rely on simi-
lar algorithms extracting various types of tonal features. To account for different aspects of
tonality, we consider 65 features, which we refer to as F,..., F;;. Tables 1 and 2 outline some of
these features.
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The first type of features serves to quantify the presence of different harmonic intervals within
the local analysis segments. Since chroma features refer to the level of pitch classes, we can only
discriminate six different interval types when ignoring the octave and the unison. The system
of these interval categories (IC) was developed for style analysis in the context of the pitch class
set theory (Honingh, Weyde, & Conklin, 2009). Based on local NNLS chroma features, we cal-
culate six interval features as proposed in (Weil}, Mauch, & Dixon, 2014). We denote these
features with F1,..., F;. For example, F| corresponds to minor second or major seventh inter-
vals (IC1) and F, denotes major second and minor seventh intervals (IC2); see Table 1 for an
overview. Due to the fine temporal resolution (100 ms), the features mainly describe harmonic
intervals (simultaneously played notes). At note transitions, the segmentation procedure can
lead to blurry features. More detailed information on the feature computation can be found in
Section S2 of the SMO.

Next, we consider the more abstract notion of tonal complexity. In MIR, several approaches
have been proposed for measuring tonal complexity from audio data (Honingh & Bod, 2010;
Streich, 2006). In this paper, we rely on a feature variant presented by Weil3 and Miiller (2014),
which can be computed directly from chroma representations. These features turned out to be
useful for style classification of classical music recordings (Weild & Miiller, 2015). In particular,
we consider the fifth-based complexity feature, which measures the spread of the pitch class
content around the circle of fifths. Flat distributions of pitch classes result in high complexity
values. Since tonal complexity refers to different time scales (chords, segments, or full move-
ments), we calculate four features F,...,F,, based on different temporal resolutions of the
chromagram (local features with 100ms resolution, two intermediate resolutions of 500ms
and 10s, and a global histogram). In Section S3 of the SMO, we explain the feature computa-
tion in more detail. Figure 2 shows the complexity features for two pieces.

We further look at chord transitions to capture sequential properties. For estimating the
chords, we use the public algorithm Chordino.!! This method relies on NNLS chroma features
and incorporates Hidden Markov Models for concurrently estimating and smoothing the chord
labels (Mauch & Dixon, 2010a). In Section S4 of the SMO, we report the parameter settings and
chord types used in this work. Motivated by music theory concepts (Gardonyi & Nordhoff,
2002), we only consider the relative root note distance between the chords. To this end, we reduce
the chord estimates by only retaining the root note information of the chords (see Figure 3). We
count the occurrence of different intervals between these root notes for all pairs of chord sym-
bols. Since the root note information refers to the pitch class level (no octave information), we
can discriminate only 12 types of steps as given in Table 2 . For example, the root transition
C— A can be described by a minor third downwards (m3™) or by a major sixth upwards
(M6 ) —the complementary interval in the opposite direction. Since we have a temporal order,
we can discriminate between the directions of a given interval here. For example, C—> A (m3™)
belongs to a different category than A — C (m3 /). Ignoring self-transitions of root notes (such
as Cmajor — C minor), we end up with 11 different features referred to as F,,,...,F,,. For the
later experiments, we account for specific chord transitions by looking at the chord types. Only
counting transitions from a major chord to another major chord (maj — maj), we obtain the
features F,,,...,F}, referring to the 11 root note intervals. Similarly, we consider the combina-
tions maj —» min (Fy;,..., F,;), min— maj (F,,,..., Fy,), and min — min (F,..., F,).

An automatic chord estimation system is not free of errors. Moreover, the chosen selection
of chord types may not be suitable for all musical styles in the dataset. For atonal pieces, a spe-
cific “measurement error” may be characteristic rather than a semantically meaningful out-
put. Nevertheless, we expect certain tendencies to occur since we look at a large number of
works and, thus, the “measurement noise” may get smoothed out in the global view. Moreover,
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Figure 2. Temporal aggregation and evolution curve. For two pieces by Beethoven a) and Schoenberg
b), we compute the mid-scale complexity feature (10s) and average over the piece (colored line). Figure c)
shows the projection of these features onto the timeline using the composers’ lifetime.
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Figure 3. Estimation of root note transitions. In this schematic overview, we show the processing
pipeline for estimating statistics on root note transitions. First, we reduce the output of the chord
estimator by only considering the root notes (without octave information). From this root note sequence,
we calculate interval statistics according to the categories presented in Table 2.

errors concerning the chord types do not affect our experiments since we only consider the
chords’ root notes and their transitions.

Temporal aggregation

The experiments in this article are based on on a comparison of entire musical pieces. For this
reason, we need movement-level descriptors rather than local ones. To obtain piece-wise fea-
tures, we simply average the local feature values over each recording. Averaging provides an
easily interpretable summary even though higher-order statistics such as the variance might
lead to a more detailed description. As for the chord transitions, we divide the counts of every
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root note transition by the total number of chord transitions in a piece in order to obtain rela-
tive values. In the following, our feature symbols F,,..., Fy, always refer to these globally aver-
aged values. Thus, each feature has exactly one value per piece. Figure 2 shows the global mean
value along with the local values for one of the complexity features.

Evolution curves

For analyzing musical styles in their historical context, the composition dates of the pieces in
our dataset are of major interest. Compiling all this information requires a huge effort. For
many works, the composition year is unknown or in doubt. If we had all the composition dates
at hand, it would constitute a difficult task to find an equal amount of works for all years while
balancing the dataset regarding other aspects (such as instrumentation, key, or tempo). For
these reasons, we pursue a pragmatic approach where we project the works of a composer onto
a timeline using the composer’s lifetime. As an approximation, we use a roughly flat distribu-
tion with smooth edges (a Tukey window with parameter o = 0.35) while excluding the first 10
years of the lifetime. Figure 2¢ shows the distribution for Beethoven and Schoenberg.

Subsequently, we apply this projection strategy to all 2000 pieces in our dataset. For a
given feature, we obtain an evolution curve (EC), which shows the average value of the piece-
wise values over the timeline. Thereby, each piece contributes to that part of the timeline
which corresponds to the composer’s lifetime as indicated by our distribution. Within this
procedure, all pieces are given an equal weight.12 We decided for this weighting since other-
wise — giving equal weight to all composers — the pieces by less prominent composers would
have a disproportionate effect on the EC. The dashed line in Figure 2c shows the EC for the
complexity feature F;.The projection strategy of our EC is rather simplistic, and it is obvious
that one cannot resolve details of style evolution in this way. For example, the assumption of
stylistic homogeneity over a composer’s lifetime is often violated. Here, one may think of
composers with several “creative periods” such as Schoenberg, who developed from late
Romantic style to dodecaphony in several steps. In our study, however, we are interested in a
rather “global” view and look at the overall tendencies. For this reason, we assume that the
simplifications of the EC do not have a crucial impact when analyzing the general trends over
centuries. With this procedure, the pieces in our dataset are distributed in an approximately
equal fashion over the timeline. For the EC, we consider the span 1660-1975 as indicated by
the red dashed lines in Figure 2.13

Feature aggregation

Since it is hard to obtain an overview of our 65 feature dimensions, aggregation of several fea-
tures to a new one-dimensional feature F* can be useful. Such an aggregation can be a linear
combination or a ratio of selected features where the individual features F, can obtain differ-
ent weights w,. Moreover, there are aggregation techniques that automatically determine these
weights with respect to some optimization criterion. One example is Principal Component
Analysis (PCA; see Pearson, 1901). Hereby, the first principal component points to the direction
of maximal variance and, thus, contains the highest amount of information that can be
expressed in one dimension. With increasing number, the components contain less variance.
Later, we will use PCA for aggregating features as well as for analyzing the variance of the ini-
tial features in the EC. Section S5 of the SMO gives mathematical details for calculating the

aggregated features.
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Style analysis using evolution curves

Analysis of chord transitions

A comprehensive analysis of musical style has to reflect a wide range of different aspects and
musical parameters. According to LaRue (1962), we can find style indicators in the domains of
sound, form, rhythm, melody, and harmony. The situation is complex because of a high inter-
dependency of these categories. Apart from the sound with its “psychological firstness” (LaRue,
1962, p. 92), researchers consider harmony as important and notice “clear conventions of
harmonic behavior” within a period (LaRue, 1992, p. 39). Belaiev (1930, p. 375) stresses the
importance of “chordal combinations” and harmonies in general for defining a style. Other
theorists focus on more specific aspects of harmony but discuss these issues along with their
stylistic meaning (de la Motte & Prater, 1991; Gardonyi & Nordhoff, 2002). In addition to this,
harmony as a musical dimension is — to a certain degree — independent from timbral properties
such as the instrumentation.

For these reasons, our study focuses on tonal and harmonic characteristics. We consider
several types of tonal audio features as described in the previous section. Relying on these fea-
tures, we want to investigate and re-trace hypotheses regarding tonal aspects of musical style.
To this end, we first look at a categorization scheme for chord transitions proposed by Bardos
(1961), taken up by Gardonyi and Nordhoff (2002). This concept is an extension of the well-
known distinction of cadences into the plagal type with an ascending perfect fifth (or descend-
ing perfect fourth) between the chords’ root notes and the authentic type with a descending
(falling) perfect fifth. According to Bardos’ extension, authentic transitions comprise root note
transitions of descending fifth and third intervals as well as ascending second (descending sev-
enth) intervals. Plagal transitions are of opposite direction (see Table 2). These qualities only
refer to pitch classes and are independent from any octave inversion. Thus, transitions by com-
plementary intervals in the opposite direction belong to the same category.'* According to
Gardonyi and Nordhoff (2002), the quantitative relation between authentic and plagal transi-
tions constitutes a useful criterion for discriminating musical styles. They claim modal har-
mony of the 17th century to exhibit a higher ratio of plagal transitions compared to 18th
century harmony. During the 19th century, plagal transitions play an important role again
(Gardonyi & Nordhoff 2002, p. 133).

Motivated by such hypotheses, we estimate for each recording the plagal transition occur-
rences by summing up the features F,,F,,, F,,F,, and F,. Similarly, we estimate the authen-
tic transition occurrences by summing up F,,F,,Fs,F, and F, (Table 2). We aggregate
these two quantities by calculating the ratio of plagal transition occurrences to the sum of
plagal and authentic transition occurrences. We then compute an EC projecting this ratio onto
the timeline. Figure 4 shows the resulting EC along with confidence intervals obtained from a
so-called bootstrapping procedure (Efron, 1992). The proportion of plagal transitions consider-
ably changes over the years — from around 0.3 up to almost 0.5. Overall, we always find a lower
number of plagal transitions compared to authentic ones (ratio < 0.5). This points to a high
importance of chord progressions such as authentic cadences or “circle of fifths” sequences
which are typical for a “functional” or “progressive” concept of harmony. Around the year
1750, we find an increase of the ratio. Here, the contribution of several Baroque composers
disappears (J. S. Bach, Handel, and others). We conclude that the dominance of authentic tran-
sitions constitutes a criterion to discriminate late Baroque from Classical style. Between the
years 1820-1850, we find a decrease of plagal transitions. In this period, works by R. Schumann
and Mendelssohn contribute, among others. We speculate that the new popularity of the
Baroque music in this time influenced the style of these composers.l> Interestingly, this
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Figure 4. Evolution curve for the ratio of plagal chord transitions. The red curve displays the amount
of plagal transitions compared to the total amount of plagal and authentic ones (ignoring tritone and self-
transitions). The dashed error lines are calculated with a bootstrapping procedure.

observation is contradictory to Gardonyi and Nordhoff (2002), who let us expect an increase of
plagal transitions in the 19th century. During the 20th century, the ratio gradually comes
closer to 0.5 (equal presence of plagal and authentic transitions). This confirms our expecta-
tion of a random-like chord estimation or “measurement error,” leading to an equal distribu-
tion of chord transition types. Overall, the proposed analysis technique allows for testing an
existing hypothesis on a style-relevant harmonic phenomenon, which we could verify in par-
tial. For detailed results showing the relevance of individual chord transitions and types, we
refer to Weil3 (2017, p. 125ff.).

Analysis of interval types

To analyze further aspects of tonality, we consider the measurement of interval categories
(ICs), which constitutes an established analysis method (Honingh et al., 2009). Inspired by the
ICs, we calculate our interval features F,...,F; (seeTable 1). Since we use a fine temporal reso-
lution (100ms), the features mainly refer to simultaneously sounding intervals (harmonic
intervals). Figure 5 shows the ECs for these features. We observe a prominent role of the feature
F; corresponding to perfect fifth and fourth intervals. During the 20th century, F; decreases
and the values of the interval classes become more similar. In the 20th century, the “dissonant”
categories represented by F; (semitone), F, (whole tone), and F; (tritone) are more frequent.
We expect such a behavior since 20th century composers typically use more dissonant chords.
Fucks and Lauter (1965) found similar results when statistically analyzing instrumental (vio-
lin, flute) and vocal parts based on symbolic data. They observed a prominent role of the major
seventh and the minor ninth intervals —both corresponding to our F; —in works by Schoenberg
and Webern.

Analysis of tonal complexity

Next, we visualize measures for tonal complexity (Weill & Miiller, 2014). As described in the
previous section, we calculate the complexity features F,...,F,, based on different chroma
resolutions. We average the values and compute ECs shown in Figure 6 . For all temporal reso-
lutions, we find a general increase with time. After 1750, the complexity features decrease. This
supports the composers’ demand for more “simplicity” at that time, which musicologists often



12 Musicae Scientiae 00(0)

e
N

o
T

o
=}
®

o
o
=

Interval Feature Values
g
(<)

002 I F; (Minor Second)  —= = = F; (Minor Third) — F; (Fifth)
e F, (Major Second) = = = F, (Major Third) ~ ===-= F (Tritone)
0 ! | | | 1
1700 1750 1800 1850 1900 1950
Year

Figure 5. Interval category features distributed over the years. For the interval features, inversion
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Figure 6. Tonal complexity features (lower plot) distributed over the years. The complexity features
relate to different temporal resolutions of the underlying chroma features.

claim to be a paradigm for the beginning of the Classical period. During the 19th century, global
complexity increases, whereas local complexity stays approximately constant. We assume that
this effect originates from an increasing use of modulations —leading to a flatter global chroma
histogram — whereas local structures such as chords remain less complex. This relationship
changes towards the 20th century, where we observe a strong increase of complexity for all
temporal scales. For the 20th century, we also find locally complex phenomena such as highly
dissonant chords, which mainly stem from pieces by Schoenberg, Webern, and others.1®

Style analysis using data mining techniques

Analysis and clustering regarding years

In the previous section, we directly investigated the evolution of tonal features using ECs. We
showed that, at first glance, some of the observed phenomena are in accordance with hypoth-
eses from historical musicology and music theory. We now apply data mining techniques such
as feature aggregation and clustering in order to analyze the similiarity of music recordings
across pieces, composers, and composition years. Assuming that our features capture some
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Figure 7. Aggregated features obtained from root note transitions. We display ECs for the aggregated
features F|, F",, and F*; obtained from the root note transition features F,|, ..., F,,. To better recognize
the small component F*;, we multiplied it with the factor 3.

Table 3. Principal component weights for root note transitions.

Feature Interval A wl w2 w3 Quality
Fie Tritone 7 | 6 -0.138 -0.178 -0.045

Fy, Minor second -1 -0.127 -0.159 -0.012 Plagal
Fy Major second -2 0.038 -0.155 0.358 Plagal
Fi; Minor third 7 +3 -0.139 -0.039 -0.136 Plagal

Fi, Major third 2 +4 -0.121 0.068 -0.330 Plagal
Fi, Perfect fifth 7 +7 0.325 0.715 0.407 Plagal
Fis Perfect fifth ~ -7 0.871 -0.202 —0418 Authentic
Fig Major third ~ -4 -0.114 -0.039 -0.250 Authentic
Fio Minor third ~ -3 -0.081 -0.125 -0.021 Authentic
Fi, Major second 7 +2 0.199 -0.579 0.576 Authentic
F, Minor second 7 +1 —0.082 -0.095 -0.087 Authentic

Note. We reordered the vector entries according to plagal and authentic categories.

style-relevant aspects, the results of unsupervised learning strategies can provide interesting
arguments for discussing the existence and borders of historical periods. These experiments are
inspired by Mauch, MacCallum, Levy, and Leroi (2015), who investigated the history of popu-
lar music using suitable audio features.

First, we want to focus on chord transition statistics. To this end, we individually con-
sider the root note transition features £,,,...,F,,, which we project onto the years with our
EC method. To the 11 ECs, we perform feature aggregation (PCA) in order to analyze the
importance of the individual transitions.!” We obtain the aggregated features F,...,F};
(PCA scores). Furthemore, we obtain the weight vectors or loadings w',...,w'". The vector
components indicate how much the initial features contribute to each new feature. Figure
7 shows ECs for the first three aggregated features, Table 3 lists the corresponding weights.
In Figure 7, F" decreases over time, capturing the difference between early periods and
modern styles. Looking at the weight vector w' in Table 3, we find the largest entries for the
perfect fifth transitions with an emphasis on the authentic one (0.871). All components
have negative signs except for perfect fifth and major second transitions — the most impor-
tant transitions in tonal music.!® Thus, F° describes the presence of these
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Aggregated Features

Figure 8. Aggregated features obtained from interval and complexity features. We display ECs for the
aggregated features G, G, and G'; obtained from interval features F,, ..., F, and complexity features
F;, ..., Fjo. To improve visual recognition, we re-scaled the third component G*; with the factor 3.

Table 4. Principal component weights for interval and complexity features.

Feature Feature type vl v2 v?

F, Interval Cat. 1 (minor second/major seventh) 0.341 -0.140 0.081
F, Interval Cat. 2 (major second/minor seventh) 0.334 -0.128 -0.287
F, Interval Cat. 3 (minor third/major sixth) -0.087 0.881 -0.363
F, Interval Cat. 4 (major third/minor sixth) -0.292 0.204 0.739
Fs Interval Cat. 5 (perfect fourth/perfect fifth) -0.310 -0.265 -0.424
Fy Interval Cat. 6 (tritone) 0.336 0.197 0.149
F, Complexity Global (full movement) 0.335 0.174 -0.047
Fg Complexity Mid-Scale (10s) 0.344 -0.031 0.009
Fy Complexity Mid-Scale (500ms) 0.347 0.011 0.132
Fi Complexity Local (100ms) 0.344 0.077 0.110

“tonal transitions” in relation to all others. From 1850 on, other transitions become more
frequent leading to a smaller value of F|". Concerning the second component F,, the cor-
responding weight vector w” also has large values for the perfect fifth transitions but, with
different signs. The plagal fifth transition has a large positive coefficient (0.715) whereas
all authentic transitions (including the authentic fifth and second transitions) have nega-
tive coefficients. This means that F, describes some kind of difference between plagal and
authentic transitions. Looking at Figure 7, we see that F,” mainly distinguishes the Classical
period (about 1750-1820) from the other years. In our opinion, this is a fascinating result
since it stems from an unsupervised transformation of the transition features — without
using any pre-knowledge from music theory. The EC in Figure 4, in contrast, is based on a
manual grouping of chord transitions into plagal and authentic. We conclude that the rela-
tion between plagal and authentic transitions indeed constitutes an important style marker.

We now extend these analyses to the interval features F,...,F, and the complexity fea-
tures F,,..., F},.1° Similarly to the previous experiment, we denote the aggregated features by
G/,...,G), where G/ is the first principal component. The corresponding weight vectors are
denoted as v',...,v". In Figure 8, we show ECs for the aggregated features. Table 4 lists the
entries of the associated weight vectors. The first component G increases over the years
and particularly marks the stylistic change at about 1900. Looking at the entries of v' in
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Figure 9. Clustering result for a combination of features. Based on the first three principal components
from all features, we plot the cluster assignment of the years for different numbers of clusters K.

Table 4, we see that most features have a similar absolute weight, which is an effect of the
standardization. The entries for the complexity features have a positive sign indicating a cor-
relation between G, and tonal complexity, which increases over the years. The entries of v'
for the interval features support this assumption: dissonant interval features (£}, F,, and F|
) have a positive sign whereas consonant interval features (F;, F,, and F;) have a negative
sign. Looking at the weight vector v*, the second feature G, describes the relation between
thirds (in particular, minor thirds with a weight of 0.881) and other intervals such as per-
fect fifths (F; with negative sign). Figure 8 shows that this component mainly discriminates
the Romantic period (about 1825-1890) from the other years. We conclude that chords
with many third intervals such as seventh or ninth chords are important for Romantic style.
The positive coefficient of the tritone in v’ indicates an important role of diminished chords
and dominant seventh chords.

We saw that chord transition statistics, interval, and complexity features may capture different
aspects of style. In the following, we combine all feature types. To add more detailed information
about chord transitions, we also consider specific root note transitions with respect to the chord
types (major/minor type chords).2 As before, we perform PCA based on all features £,..., F,,
applying prior standardization. We obtain aggregated features denoted by H,,...,H,. Based on
the components H, , H, ,and H; , we automatically partition the years into segments using the
unsupervised K-means clustering algorithm (MacQueen, 1967). Since the choice of K (number
of clusters) is crucial for the result, we perform clustering for different values of K (Figure 9). We
observe several stable cluster boundaries and repeating clusters, which occur for different values of
K. In particular, the years 1750 and 1900 seem to play a major role for separating clusters. The
boundary at 1900 bifurcates into two boundaries for K > 8. Furthermore, a boundary at 1820
seems to be important. The Baroque period splits at about 1700 for K > 5. Using K > 6, we find at
least one “intermediate period” between the Classical and Romantic eras. As we mentioned before,
Rodriguez Zivic et al. (2013) performed a similar clustering of years based on melodic interval
statistics from sheet music data.2! Similar to our results, they obtained stable boundaries at the
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years 1760, 1825, and 1895. This agreement is remarkable since the approaches crucially differ
from each other. First, Rodriguez Zivic et al. use graphical scores whereas our experiment relies on
audio recordings. Second, they investigate melodic descriptors where we focus on tonality. Third,
the datasets are very different. We conclude that these clustering methods uncover some historical
trends in musical style evolution — even though both approaches are based on various simplifica-
tions and may suffer from errors in the feature extraction step.22

Clustering individual pieces

In the introduction, we discussed the inhomogeneity and complexity of style evolution. From
this point of view, our procedure — averaging all works over a year — constitutes a coarse and
simplified approach. To better account for this inhomogeneity, we perform clustering using a
different setting. We consider all 65 features for each of the 2000 pieces individually (no EC). On
the resulting feature matrix, we perform PCA (after standardization). Based on the three princi-
pal components, we apply K-means clustering algorithm and then assign every piece in the
dataset to one of the K clusters. We use a value of K =5.23 We then compute ECs for the
resulting cluster assignments. In Figure 10, we plot the resulting curves as spindle plots describ-
ing the fraction of pieces belonging to each cluster over the years. Compared to the previous
section, the results are less clear. Cluster 1 exhibits the most extreme distribution. This cluster
gradually builds up during the 19th century and plays an important role in the 20th century.
We assume that this cluster is mostly characterized by atonal pieces. In the 20th century,
Cluster 5 is also present, which is the most prominent cluster throughout the 19th century. The
presence of Cluster 1 and Cluster 5 during the years 1910-1960 may reflect the parallelism of
styles during this time. For example, Romantic pieces by Strauss and dodecaphonic pieces by
Schoenberg simultaneously contribute here. Cluster 2 obtains a flat distribution over the years
and, thus, is hard to interpret (“noise cluster”). Clusters 3 and 4 seem to mostly describe 17th
and 18th century pieces and slowly disappear after 1850. Here, Cluster 3 is slightly more

1700 1750 1800 1850 1900 1950
Year

Figure 10. K-means clustering of individual pieces with K = 10. For each year, the fraction of pieces
belonging to a cluster is indicated by the width of the respective spindle.
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prominent for the Baroque time and contributes less to the years 1750-1820 (Classical period).
This experiment shows that the situation is much less distinct when clustering pieces before
mapping to years. The individuality of pieces appears to be stronger than the stylistic homoge-
neity of a period. To study this homogeneity, we show in the SMO (Section S6) an analysis of
diversity over time.

Clustering composers

Finally, we analyze the stylistic relationships between individual composers. For each of the
70 composers, we average chord transition, interval, and complexity features over all pieces
by the respective composer. On the resulting feature matrix, we perform PCA followed by
K-means clustering (K =5) on the first three principal components. Figure 11 shows the
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Figure Il1. K-means clustering of composers with K = 5. The color indicates the cluster assignments.
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resulting cluster assignments. Widely, composers with a similar lifetime belong to the same
cluster. This points towards a fundamental relation between historical and stylistic periods.
For example, Cluster 1 (green) comprises most of the Baroque composers. Single composers
appear as outliers to this simple partitioning. For example, Vivaldi and Scarlatti are assigned
to the “Classical” group. C. P. E. Bach was assigned to the “Romantic” Cluster 3 (blue). This
may be an interesting observation since some musicologists point to such a connection: “[C.
P. E.] Bach’s career coincided with the transition between Baroque and Classical styles, even
heralding the Romantic” (Schulenberg, 2014, p. 6). Other pre-classical composers such as
Stamitz or J. C. Bach are assigned to the “Classical” Cluster 2 (gray). For the change at about
1820, we find a clear separation. Beethoven, von Weber, and Rossini constitute the last
Classical representatives whereas Schubert and Mendelssohn are assigned to the Romantic
cluster. For the 20th century, we find two parallel clusters. Cluster 5 (red) comprises the
avant-garde of that time with composers such as Schoenberg, Webern, Varése, Bartok, or
Boulez. Cluster 4 (yellow), the other modern cluster, contains composers with a moderately
modern style such as Prokofiev and Shostakovich. The assignment of Mussorgsky and Faure
to this cluster is rather surprising since most of the late romantic composers (Mahler, Strauss)
as well as the impressionists (Debussy, Ravel) are assigned to the Romantic cluster. This kind
of unexpected observations could serve as an inspiration for musicological research. Looking
at these clustering results, we may arrive at a similar conclusion as White (2013) drew from
his MIDI-based studies: “Although stylistic proximity was found to correlate to chronology, it
also seems that stylistic norms can best be represented as groups of composers whose time
periods often overlap” (White, 2013, p. 177).

Conclusion

In this paper, we presented computational methods and experiments for analyzing the evolu-
tion of Western classical music styles in a historical context. From a dataset comprising 2000
audio recordings of piano and orchestral music, we extracted different tonal features. Projecting
the features onto the timeline in evolution curves, we could verify musicological hypotheses
regarding chord transitions, interval types, and tonal complexity. This shows that audio-based
strategies can be useful tools for analyzing musical pieces not only individually but also in a
larger context. Using automated feature aggregation, tonal complexity as well as the ratio of
plagal and authentic transitions arised as style markers in an unsupervised fashion. This shows
the benefits of computational methods for obtaining insights that are not based on existing
theories. Such experiments may serve as a source of inspiration for music research. Clustering
the recordings across composers and composition years, we independently observed stable peri-
ods and boundaries in accordance with traditional views as well as recent data-driven experi-
ments. In contrast, first clustering individual pieces and then projecting the assignments onto
the timeline produced less clear results. This observation suggests that style evolution is com-
plex and that the individuality of pieces is stronger than the stylistic homogeneity within a
period. Averaging over many works by a composer seems to balance out individual pieces’ char-
acteristics and, thus, helps to uncover the composer’s style. Our study pointed out how such
fundamental questions might be approached using computational methods. Even though the
possibilities of audio-based analysis are limited, meaningful descriptors relating to music the-
ory can be successfully extracted from recordings. Musicological hypotheses can be used to set
up and refine analysis methods with a “human in the loop.” This enables corpus studies in a
novel order of magnitude and, thus, has the potential to open up a new dimension for musico-
logical research.
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Notes

1. One example is the conflict about programmatic music during the 19th century.

2. For example, we think of the transition phase between late Baroque and pre-classical style at about
1730-1760.

3. “Building the database was heavily time-consuming, particularly on account of the limitations of the
software needed to convert the image to digital and remove errors created by the process” (Bellmann,
2012, p. 255).

4. See http://www.peachnote.com. This dataset contains statistics of melodic and harmonic progres-
sions for individual composition years obtained from scanned sheet music with OMR techniques
(Viro, 2011).

5. The MIDI files stem from the commercial platform http://www.classicalarchives.com

6. Unsupervised learning strategies serve to find structure in unlabeled data.

7. For multi-movement works or work cycles, we count every movement as a piece/work in the
dataset.

8. Parts of this dataset (1600 pieces) served as evaluation scenario for classification into four historical
periods (Baroque, Classical, Romantic, Modern), see Weil et al. (2014); Weill & Miiller (2015); Weil3
(2017).

9. See http://www.audiolabs-erlangen.de/resources/MIR/cross-era

10. This algorithm is published as a vamp plugin under http://isophonics.net/nnls-chroma

11. See http://isophonics.net/nnls-chroma

12. Thus, a composer with more works in the dataset has a stronger influence on the EC.

13. For the years before 1660 and after 1975, less than three composers contribute to the year-wise
analysis. Thus, the EC may be heavily biased towards the pieces of individual composers.

14. Because of enharmonic equivalence in the features, we cannot assign the tritone transition (six semi-
tones) to one of these categories (the tritone could be mapped to an augmented fourth or to a dimin-
ished fifth interval).

15. For example, many treatises on music history consider the performance of J. S. Bach’s “St. Matthew
Passion” conducted by Mendelssohn in 1829 as an important event.

16. For studying the complexity regarding individual composers’ works, we refer to the dissertation
(Weil3, 2017).

17. As for normalization, we first subtract from each row its mean value. For features of different type,
a division of each row’s values by the standard deviation would also be necessary. Since we have
features of similar type, we do not divide by the standard deviation in order to maintain the overall
influence of each chord transition type.
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18. These transitions appear in typical chord progressions such as cadences (II-V-I, IV-V-I), pendula (I-V-
I, I-IV-I), or sequences (I-V-VI-III-IV-I-IV-V, and the circle-of-fifths sequence), compare Gardonyi &
Nordhoff, 2002; Roig-Francoli, 2011.

19. Again, we normalize the rows by subtracting their mean value before performing PCA. Furthermore,
we standardize the rows so that the features’ values lie in the same range across all feature types.

20. Inthe dissertation (Weil3, 2017, p. 128), a detailed analysis of root note transitions can be found.

21. Though Rodriguez Zivic et al. (201 3) know the composition dates — in contrast to our scenario — the
results are comparable to some degree since they use a smoothing window of 10 years in order to
balance out local outliers in the clustering results.

22. Among others, these weaknesses comprise the imperfect mapping of pieces to years, pitch and dura-
tion identification errors in OMR, the influence of overtones or vibrato on the chromagrams and,
resulting from these, erroneous estimation of melodic shapes, interval types, chords and chord
progressions.

23. For the composer clustering in the next section, K = 5 arised as optimal using the silhouette score, a
method to estimate the quality of a clustering result. To enable comparability, we used the same value
in this section.
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