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MUSIC SIGNAL PROCESSING

The capability of transcribing music audio into music notation 
is a fascinating example of human intelligence. It involves 
perception (analyzing complex auditory scenes), cogni-

tion (recognizing musical objects), knowledge representation 
(forming musical structures), and inference (testing alternative 
hypotheses). Automatic music transcription (AMT), i.e., the 
design of computational algorithms to convert acoustic music 
signals into some form of music notation, is a challenging task 
in signal processing and artificial intelligence. It comprises 
several subtasks, including multipitch estimation (MPE), onset 
and offset detection, instrument recognition, beat and rhythm 
tracking, interpretation of expressive timing and dynamics, 
and score typesetting. 

Given the number of subtasks it comprises and its wide 
application range, it is considered a fundamental problem in 
the fields of music signal processing and music information 
retrieval [1], [2]. Because of the very nature of music signals, 
which often contain several sound sources (e.g., musical instru-
ments and voice) that produce one or more concurrent sound 
events (e.g., notes and percussive sounds) that are meant to be 
highly correlated over both time and frequency, AMT is still 
considered a challenging and open problem in the literature, 
particularly for music containing multiple instruments and 
many simultaneous notes (called polyphonic music in the music 
signal processing literature) [2].

The typical data representations used in an AMT system are 
illustrated in Figure 1. Usually, an AMT system takes an audio 
waveform as input [Figure 1(a)], computes a time–frequency 
representation [Figure 1(b)], and outputs a representation of 
pitches over time [also called a piano-roll representation, Fig-
ure 1(c)] or a typeset music score [Figure 1(d)].

In this article, we provide a high-level overview of AMT, 
emphasizing the intellectual merits and broader impacts of this 
topic and linking AMT to other problems found in the wider field 
of digital signal processing. We give an overview of approaches 
to AMT, detailing the methodology used in the two main fami-
lies of methods, based respectively on deep learning and non-
negative matrix factorization (NMF). Finally, we provide an 
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extensive discussion of open challenges for AMT. Regarding the 
scope of the article, we emphasize approaches for transcribing 
polyphonic music produced by pitched instruments and voice. 
Outside the scope of the article are methods for transcribing 
nonpitched sounds, such as drums, for which a brief overview is 
given in the “Percussion and Unpitched Sounds” section, as well 
as methods for transcribing specific sources within a polyphonic 
mixture, such as melody and bass lines.

Applications and impact
A successful AMT system would enable a broad range of in-
teractions between people and music, including music educa-
tion (e.g., through systems for automatic instrument tutoring), 
music creation (e.g., dictating improvised musical ideas and 
automatic music accompaniment), music production (e.g., mu-
sic content visualization and intelligent content-based editing), 
music search (e.g., indexing and recommendation of music by 
melody, bass, rhythm, or chord progression), and musicology 
(e.g., analyzing jazz improvisations and other nonnotated mu-
sic). As such, AMT is an enabling technology with clear poten-
tial for both economic and societal impact.

AMT is closely related to other music signal processing 
tasks [3], such as audio source separation, which also involves 
the estimation and inference of source signals from mixture 
observations. It is also useful for many high-level tasks in 
music information retrieval [4], such as structural segmenta-
tion, cover-song detection, and assessment of music similarity, 
since these tasks are much easier to address once the musical 
notes are known. Thus, AMT provides the main link between 
the fields of music signal processing and symbolic music pro-
cessing (i.e., the processing of music notation and music lan-
guage modeling). The integration of the two aforementioned 
fields through AMT will be discussed in the section “Further 
Extensions and Future Work.”

Given the potential impact of AMT, the problem has attract-
ed commercial interest in addition to academic research. While 
it is outside the scope of this article to provide a comprehen-
sive list of commercial AMT software, com-
monly used applications include Melodyne 
(http://www.celemony.com/en/melodyne), 
AudioScore (http://www.sibelius.com/ 
products/audioscore/), ScoreCloud (http:// 
scorecloud.com/), AnthemScore (https://
www.lunaverus.com/), and Transcribe! 
(https://www.seventhstring.com/xscribe/). It 
is worth noting that AMT papers in the literature have refrained 
from making explicit comparisons with commercially avail-
able music transcription software, possibly because of the 
difference in scope and target application between commer-
cial and academic tools.

Analogies to other fields
AMT has close relations with other signal processing problems. 
With respect to the field of speech processing, AMT is widely 
considered to be the musical equivalent of automatic speech 
recognition (ASR), in the sense that both tasks involve convert-

ing acoustic signals to symbolic sequences. Like the cocktail party 
problem in speech, music usually involves multiple simultane-
ous voices, but, unlike speech, these voices are highly correlated 

in time and in frequency (see challenges 2 
and 3 in the “Key Challenges” section). 
In addition, both AMT and ASR systems 
benefit from language modeling compo-
nents that are combined with acoustic com-
ponents to produce plausible results. Thus, 
there are also clear links between AMT and 
the wider field of natural language process-

ing (NLP), with music having its own grammatical rules or 
statistical regularities, in a way similar to natural language [5]. 
The use of language models for AMT is detailed in the section 
“Further Extensions and Future Work.”

Within the emerging field of sound scene analysis, there 
is a direct analogy between AMT and sound event detection 
(SED) [6], in particular with polyphonic SED, which involves 
detecting and classifying multiple overlapping events from 
audio. While everyday and natural sounds do not exhibit the 
same degree of temporal regularity and intersource frequency 
dependence as found in music signals, there are close interactions 
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FIGURE 1. The data represented in an AMT system: the (a) input waveform, 
(b) internal time–frequency representation, (c) output piano-roll repre-
sentation, and (d) output music score, with notes A and D marked in gray 
circles. The example corresponds to the first 6 s of W.A. Mozart’s Piano 
Sonata no. 13, third movement. (Images courtesy of the MIDI Aligned 
Piano Sounds database.) MIDI: Musical Instrument Digital Interface.
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between the two problems in terms of the methodologies used, 
as observed in the literature [6].

Furthermore, AMT is related to image processing and 
computer vision, as musical objects, such as notes, can be 
recognized as two-dimensional patterns in time–frequency 
representations. Compared with image processing and com-
puter vision, where occlusion is a common issue, AMT sys-
tems are often affected by musical objects occupying the same 
time–frequency regions (this is detailed in the “Key Chal-
lenges” section).

Key challenges
Compared to other problems in the music signal processing 
field or the wider signal processing discipline, there are several 
factors that make AMT particularly challenging:
1)	 Polyphonic music contains a mixture of multiple simulta-

neous sources (e.g., instruments and vocals) with different 
pitch, loudness, and timbre (sound quality), with each 
source producing one or more musical voices. Inferring 
musical attributes (e.g., pitch) from the mixture signal is an 
extremely underdetermined problem.

2)	 Overlapping sound events often exhibit 
harmonic relations with each other. For 
any consonant musical interval, the fun-
damental frequencies form small integer 
ratios, so that their harmonics overlap in 
frequency, making the separation of the 
voices even more difficult. Taking a C 
major chord as an example, the fundamental frequency 
ratio of its three notes C:E:G is 4:5:6, and the percentages 
of harmonic positions that are overlapped by the other notes 
are 46.7%, 33.3%, and 60% for C, E, and G, respectively.

3)	 The timing of musical voices is governed by the regular met-
rical structure of the music. In particular, musicians pay close 
attention to the synchronization of onsets and offsets between 
different voices, which violates the common assumption of 
statistical independence between sources, which otherwise 
facilitates separation.

4)	 The annotation of ground-truth transcriptions for poly-
phonic music is very time consuming and requires high 
expertise. The lack of such annotations has limited the use 
of powerful supervised-learning techniques to specific 
AMT subproblems, such as piano transcription, where the 
annotation can be automated because of certain piano 
models that can automatically capture performance data. 
An approach to circumvent this problem was proposed in 
[7], but it requires professional music performers and thor-
ough score pre- and postprocessing. We note that sheet 
music does not generally provide good ground-truth anno-
tations for AMT; it is not time-aligned to the audio signal, 
nor does it usually provide an accurate representation of a 
performance. Even when accurate transcriptions exist, it is 
not trivial to identify corresponding pairs of audio files and 
musical scores because of the multitude of versions of any 
given musical work that are available from music distribu-
tors. At best, musical scores can be viewed as weak labels.

These key challenges are often not fully addressed in cur-
rent AMT systems, leading to common issues in the AMT out-
puts, such as octave errors, semitone errors, missed notes (in 
particular, in the presence of dense chords), extra notes (often 
manifested as harmonic errors in the presence of unseen tim-
bres), merged or fragmented notes, incorrect onsets/offsets, or 
misassigned streams [1], [2]. The remainder of this article will 
focus on ways to address the previously mentioned challenges 
as well as on discussion of additional open problems for the 
creation of robust AMT systems.

An overview of AMT methods
In the past four decades, many approaches have been devel-
oped for AMT for polyphonic music. While the end goal of 
AMT is to convert an acoustic music recording to some form 
of music notation, most approaches were designed to achieve 
a certain intermediate goal. Depending on the level of abstrac-
tion and the structures that need to be modeled for achieving 
such goals, AMT approaches can be generally organized into 
four categories: frame level, note level, stream level, and nota-

tion level.
Frame-level transcription, or MPE, is the 

estimation of the number and pitch of notes 
that are simultaneously present in each time 
frame (on the order of 10 ms). This is usually 
performed independently in each frame, 
although contextual information is some-
times considered through filtering frame-

level pitch estimates in a postprocessing stage. Figure 2(a) shows 
an example of a frame-level transcription, where each black 
dot is a pitch estimate. Methods in this category do not form 
the concept of musical notes and rarely model any high-level 
musical structures. 

A large portion of existing AMT techniques operate at this 
level. Recent approaches include traditional signal processing 
methods [11], [12], probabilistic modeling [8], Bayesian approaches 
[13], NMF [14]–[17], and neural networks (NNs) [18], [19]. All 
of these methods have pros and cons, and the research has not 
converged on a single approach. For example, traditional sig-
nal processing methods are simple and fast and generalize bet-
ter to different instruments, while deep NN methods generally 
achieve higher accuracy on specific instruments (e.g., piano). 
Bayesian approaches provide a comprehensive modeling of the 
sound generation process, but the models can be very complex 
and slow. Readers interested in a comparison of the performance 
of different approaches are referred to the Multiple Fundamental 
Frequency Estimation and Tracking task of the annual Music 
Information Retrieval Evaluation eXchange (MIREX) (http://
www.music-ir.org/mirex). However, readers are reminded that 
evaluation results may be biased by the limitations of data sets 
and evaluation metrics (see the sections “Key Challenges” and 
“Evaluation Metrics”).

Note-level transcription, or note tracking, is one level higher 
than MPE in terms of the richness of structures of the estimates. 
It not only estimates the pitches in each time frame but also con-
nects pitch estimates over time into notes. In the AMT literature, 
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a musical note is usually characterized by three elements: pitch, 
onset time, and offset time [1]. As note offsets can be ambiguous, 
they are sometimes neglected in the evaluation of note-tracking 
approaches, and, as such, some note-tracking 
approaches only estimate pitch and onset 
times of notes. Figure 2(b) shows an example 
of a note-level transcription, where each note 
is shown as a red circle (onset) followed by a 
black line (pitch contour). Many note-track-
ing approaches form notes by postprocessing 
MPE outputs (i.e., pitch estimates in individ-
ual frames). Techniques that have been used 
in this context include median filtering [12], 
hidden Markov models (HMMs) [20], and NNs [5]. This post-
processing is frequently performed for each Musical Instrument 
Digital Interface (MIDI) pitch independently without consider-
ing the interactions among simultaneous notes. This often leads 
to spurious or missing notes that share harmonics with correctly 
estimated notes. 

Some approaches have been proposed to consider note 
interactions through a spectral likelihood model [9] or a music 
language model [5], [18] (see the “MLMs” section). Anoth-
er subset of approaches estimates notes directly from the audio 
signal instead of building upon MPE outputs. Some approach-
es first detect onsets and then estimate pitches within each 
interonset interval [21], while others estimate pitch, onset, and 
sometimes offset in the same framework [22]–[24].

Stream-level transcription, also called multipitch stream-
ing (MPS), targets the grouping of estimated pitches or notes 
into streams, where each stream typically corresponds to one 
instrument or musical voice and is closely related to instrument 
source separation. Figure 2(c) shows an example of a stream-
level transcription, where pitch streams of different instruments 
have different colors. Compared to note-level transcription, 
the pitch contour of each stream is much longer than a single 
note and contains multiple discontinuities that are caused by 
silence, nonpitched sounds, and abrupt frequency changes. 
Therefore, techniques that are ordinarily used in note-level 
transcription are generally not sufficient for grouping pitches 
with a long and discontinuous contour. One important cue 
for MPS that is not explored in MPE and note tracking is  
timbre. Notes of the same stream (source) generally show si
milar timbral characteristics compared to those in different 
streams. Therefore, stream-level transcription is also called tim-
bre tracking or instrument tracking in the literature. Existing 
works at this level are few, with [10], [16], and [25] as examples.

From frame level to note level to stream level, the transcrip-
tion task becomes more complex as more musical structures 
and cues need to be modeled. However, the transcription outputs 
at these three levels are all parametric transcriptions, which are 
parametric descriptions of the audio content. The MIDI piano 
roll shown in Figure 1(c) is a good example of such a transcrip-
tion. It is, indeed, an abstraction of music audio, but it has not 
yet reached the level of abstraction of music notation. Time is 
still measured in the unit of seconds instead of beats; pitch is 
measured in MIDI numbers instead of spelled note names that 

are compatible with the key (e.g., CD versus );DB  and the con-
cepts of beat, bar, meter, key, harmony, and stream are lacking.

Notation-level transcription aims to transcribe the music audio 
into a human-readable musical score, such 
as the staff notation widely used in Western 
classical music. Transcription at this level 
requires a deeper understanding of musical 
structures, including harmonic, rhythmic, 
and stream structures. Harmonic structures, 
such as keys and chords, influence the note 
spelling of each MIDI pitch; rhythmic struc-
tures, such as beats and bars, help to quantize 
the length of notes; and stream structures 

aid the assignment of notes to different staffs. There has been some 
work on the estimation of musical structures from audio or MIDI 
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FIGURE 2. Examples of (a) frame-level, (b) note-level, and (c) stream-
level transcriptions, produced by running the methods proposed in [8], 
[9], and [10], respectively, of the first phrase of J.S. Bach’s chorale Ach 
Gott und Herr from the Bach10 data set. All three levels are parametric 
descriptions of the music performance. 
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representations of a performance. For example, methods for 
pitch spelling [26], timing quantization [27], and voice separa-
tion [28] from performed MIDI files have been proposed. How-
ever, little work has been done on integrating 
these structures into a complete music nota-
tion transcription, especially for polypho
nic music. 

Several software packages, including Fina-
le, GarageBand, and MuseScore, provide 
the functionality of converting a MIDI file 
into music notation, but the results are typi-
cally not satisfying, and it is not clear what 
musical structures have been estimated and integrated during 
the transcription process. Cogliati et al. [29] proposed a meth-
od to convert a MIDI performance into music notation, based 
on a systematic comparison of the transcription performance 
with the aforementioned software. In terms of audio-to-nota-
tion transcription, a proof-of-concept work using end-to-end 
NNs was proposed by Carvalho and Smaragdis [30] to directly 
map music audio into music notation without explicitly model-
ing musical structures.

State of the art
While there is a wide range of applicable methods, AMT 
has been dominated during the last decade by two algorith-
mic families: NMF and NNs. Both families have been used 
for a variety of tasks, from speech and image process-
ing to recommender systems and NLP. Despite this wide 

applicability, both approaches offer a range of properties 
that make them particularly suitable for modeling music 
recordings at the note level.

NMF for AMT
The basic idea behind NMF and its vari-
ants is to represent a given nonnegative 
time–frequency representation ,V RM N

0! #
$  

e.g., a magnitude spectrogram, as a prod-
uct of two nonnegative matrices: a diction-
ary D RM K

0! #
$  and an activation matrix 

A RK N
0! #
$  (see Figure 3). Computationally, 

the goal is to minimize a distance (or divergence) between V  
and DA with respect to D and .A  As a straightforward ap-
proach to solving this minimization problem, multiplicative 
update rules have been central to the success of NMF. For ex-
ample, the generalized Kullback–Leibler divergence between 
V  and DA is nonincreasing under the following updates and 
guarantees the nonnegativity of both D and A as long as both 
are initialized with positive real values [31]:

,andA A
D J

D DA
V

D D
JA

DA
V A

! !9 9< <

<< ` `j j

where the 9  operator denotes pointwise multiplication, 
J RM N! #  denotes the matrix of ones, and the division is point-
wise. Intuitively, the update rules can be derived by choosing a 
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specific step size in a gradient (or, rather, coordinate) descent-
based minimization of the divergence [31].

In an AMT context, both unknown matrices have an intui-
tive interpretation. The nth column of ,V  i.e., the spectrum at 
time point n, is modeled in NMF as a linear combination of 
the K columns of ,D  and the corresponding K coefficients are 
given by the nth column of .A  Given this point of view, each 
column of D  is generally referred to as a spectral template and 
usually represents the expected spectral energy distribution 
associated with a specific note played on a specific instrument. 
For each template, the corresponding row in A is referred 
to as the associated activation and encodes when and how 
intensely that note is played over time. Given the nonnegativity 
constraints, NMF yields a purely constructive representation 
in the sense that the spectral energy modeled by one template 
cannot be canceled by another. This property is often seen as 
instrumental in identifying a parts-based and interpretable rep-
resentation of the input [31].

In Figure 3, an NMF-based decomposition is illustrated. 
The magnitude spectrogram V  shown in Figure 3(a) is mod-
eled as a product of the dictionary D  and activation mat
rix  ,A  shown in Figure 3(c) and (d), respectively. The product 
DA  is given in Figure 3(b). In this case, the templates corre-
spond to individual pitches, with clearly visible fundamental 
frequencies and harmonics. Additionally, comparing A  with 
the piano-roll representation shown in Figure 1(c) indicates 
the correlation between NMF activations and the underlying 
musical score.

While Figure 3 illustrates the principles behind NMF, it also 
indicates why AMT is difficult. Indeed, a regular NMF decom-
position would rarely look as clean as in Figure 3. Compared to 
speech analysis, sound objects in music are highly correlated. 
For example, even in a simple piece as in Figure 1, most pairs of 
simultaneous notes are separated by musically consonant inter-
vals, which acoustically means that many of their partials over-
lap [e.g., the A and D notes around 4 s, marked with gray circles 
in Figure 1(d), share a high number of partials]. In this case, 
it can be difficult to disentangle how much energy belongs to 
which note. The task is further complicated by the fact that the 
spectrotemporal properties of notes vary considerably between 
different pitches, playing styles, dynamics, and recording condi-
tions. Furthermore, the stiffness property of the strings affects 
the travel speed of transverse waves based on their frequency. 
As a result, the partials of instruments like the piano are not 
found at perfect integer multiples of the fundamental frequency. 
Because of this property, called inharmonicity, the positions of 
partials differ between individual pianos (see Figure 4).

To address these challenges, the basic NMF model has been 
extended by encouraging additional structure in the diction-
ary and the activations. For example, an important principle 
is to enforce sparsity in A to obtain a solution dominated by 
activations that are few but substantial; the success of sparsity 
paved the way for a whole range of sparse-coding approaches, 
in which the dictionary size K can considerably exceed the 
input dimension M [32]. Other extensions focus on the diction-
ary design. In the case of supervised NMF, the dictionary is 

precomputed and fixed using additionally available training 
material. For example, given K recordings, each containing 
only a single note, the dictionary shown in Figure 3(b) was 
constructed by extracting one template from each recording. 
This way, the templates are guaranteed to be free of interfer-
ence from other notes and also to have a clear interpretation. 
As another example, Figure 5 illustrates an extension in which 
each NMF template is represented as a linear combination of 
fixed narrow-band subtemplates [15], which enforces a har-
monic structure for all NMF templates. This way, a dictionary 
can be adapted to the recording to be transcribed, while main-
taining its clean, interpretable structure.

In shift-invariant dictionaries, a single template can be used 
to represent a range of different fundamental frequencies. In 
particular, using a logarithmic frequency axis, the distances 
between individual partials of a harmonic sound are fixed, and 
thus shifting a template in frequency allows the modeling of 
sounds of varying pitch. Sharing parameters between different 
pitches in this way has turned out to be effective for increasing 
model capacity (see, e.g., [16] and [17]). Furthermore, spectro-
temporal dictionaries alleviate a specific weakness of NMF 
models. In NMF, it is difficult to express that notes often have 
a specific temporal evolution. For example, the beginning of 
a note (or attack phase) might have entirely different spectral 
properties than the central part (decay phase). Such relation-
ships are modeled in spectrotemporal dictionaries using a Mar-
kov process, which governs the sequencing of templates across 
frames so that different subsets of templates can be used for the 
attack and decay parts, respectively [16], [23].

NNs for AMT
As for many tasks relating to pattern recognition, NNs have, 
in recent years, had a considerable impact on the problem of 
music transcription and on music signal processing in general. 
NNs are able to learn a nonlinear function (or a composition of 
functions) from input to output via an optimization algorithm, 
such as stochastic gradient descent [33]. Compared to other 
fields, including image processing, progress on NNs for music 
transcription has been slower, and we will discuss a few of the 
underlying reasons.
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FIGURE 4. An illustration of inharmonicity: the spectrum of a 1CD  note 
played on a piano. The stiffness of the strings causes partials to be 
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One of the earliest approaches based on NNs was Marolt’s 
Sonic system [21]. A central component in this approach was 
the use of time-delay networks, which resemble convolution-
al networks in the time direction [33] and were employed to 
analyze the output of adaptive oscillators to track and group 
partials in the output of a gammatone filterbank. Although it 
was initially published in 2001, the approach remains com-
petitive and still appears in comparisons in more recent 
publications [23].

In the context of the more recent revival of NNs, a first suc-
cessful system was presented by Böck and Schedl [34]. One of 
the core ideas was to use two spectrograms as input to enable the 
network to exploit both a high time accuracy (when estimating 
the note onset position) and a high frequency resolution (when 
disentangling notes in the lower frequency 
range). This input is processed using one 
(or more) long short-term memory (LSTM) 
layers [33]. The potential benefit of using 
LSTM layers is twofold. First, the spectral 
properties of a note evolve across input 
frames, and LSTM networks have the capa-
bility to compactly model such sequences. 
Second, medium- and long-range depen-
dencies between notes can potentially be captured. For exam-
ple, based on a popular chord sequence, after hearing C and 
G major chords followed by A minor, a likely successor is an 
F major chord. An investigation of whether such long-range 
dependencies are indeed modeled, however, was not within the 
scope of this work.

Sigtia et al. [18] focused on long-range dependencies in 
music by combining an acoustic front end with a symbolic-
level module resembling a language model, as used in speech 
processing. Using information obtained from MIDI files, a 
recurrent NN (RNN) was trained to predict the active notes 
in the next time frame, given those in the past. This approach 
needed to learn and represent a very large joint probability 
distribution, i.e., a probability for every possible combination 
of active and inactive notes across time. Note that, even in a 
single frame, there are 288  possible combinations of notes on 

a piano. To render the problem of modeling such an enormous 
probability space tractable, the approach employed a specific 
NN architecture (the Neural Autoregressive Distribution Esti-
mator, also known as NADE), which represented a large joint 
probability as a long product of conditional probabilities, an 
approach quite similar to the idea popularized recently by the 
well-known WaveNet architecture. Despite the use of a dedi-
cated music language model, which was trained on relatively 
large MIDI-based data sets, only modest improvements over 
an HMM baseline could be observed, and thus the question 
remains open regarding to which degree long-range depen-
dencies were indeed captured.

To further disentangle the influence of the acoustic front 
end from the language model on potential improvement in 

performance, Kelz et al. [19] focused on the 
acoustic modeling, reporting on the results 
of a larger-scale hyperparameter search and 
describing the influence of individual system 
components. Trained using this careful and 
extensive procedure, the resulting model out-
performed existing models by a reasonable 
margin. In other words, while in speech pro-
cessing, language models have led to a dras-

tic improvement in performance, the same effect is still to be 
demonstrated in an AMT system, a challenge we will discuss in 
more detail hereafter.

The development of NN-based AMT approaches continues. 
The current state-of-the-art method for general-purpose piano 
transcription was proposed by Google Brain [24]. Combining 
and extending ideas from existing methods, this approach com-
bines two networks (Figure 6). One detects note onsets, and its 
output is used to inform a second network, which focuses on 
perceiving note lengths. This can be interpreted from a proba-
bilistic point of view. Note onsets are rare events compared to 
framewise note activity detections. The split into two network 
branches can thus be interpreted as splitting the representa-
tion of a relatively complex joint probability distribution over 
onsets and frame activity into a probability over onsets and 
a probability over frame activities, conditioned on the onset 
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FIGURE 5. An illustration of harmonic NMF [15]. Each NMF template (far right) is represented as a linear combination of fixed narrow-band subtemplates. 
The resulting template is constrained to represent harmonic sounds by construction.

Compared to other 
fields, including image 
processing, progress 
on NNs for music 
transcription has  
been slower.



27IEEE Signal Processing Magazine   |   January 2019   |

distribution. Since the temporal dynamics of onsets and frame 
activities are quite different, this can lead to improved learning 
behavior for the entire network when trained jointly.

A comparison of NMF and NN models
Given the popularity of NMF and NN-based methods for 
AMT, it is interesting to discuss their differences. In particu-
lar, neglecting the nonnegativity constraints, NMF is a linear, 
generative model. Given that NMF-based methods are increas-
ingly being replaced by NN-based ones, the question arises in 
which way linearity could be a limitation for an AMT model.

To look into this, assume we are given an NMF dictionary 
with two spectral templates for each musical pitch. To repre-
sent an observed spectrum of a single pitch C4, we can linearly 
combine the two templates associated with C4. The set (or 
manifold) of valid spectra for C4 notes, however, is complex, 
and thus, in most cases, our linear interpolation will not corre-
spond to a real-world recording of a C4. We could increase the 
number of templates such that their interpolation could poten-
tially get closer to a real C4—but the number of invalid spectra 
we can represent increases much more quickly compared to 
the number of valid spectra. Deep networks have shown con-
siderable potential in recent years to implicitly represent such 
complex manifolds in a robust and comparatively efficient way 
[33]. An additional benefit over generative models like NMF 
is that NNs can be trained in an end-to-end fashion, i.e., note 
detections can be a direct output of a network without the need 
for additional postprocessing of model parameters (such as 
NMF activations).

Yet, despite these quite principled limitations, NMF-based 
methods remain competitive or even exceed the results achieved 
using NNs. Currently, there are two main challenges for NN-
based approaches. First, there are only a few, relatively small 
annotated data sets available, and these are often subject to 
severe biases [7]. The largest publicly available data set [11] 
contains several hours of piano music—but all recorded on 
only seven different synthesizer-based and real pianos. While 
typical data augmentation strategies, such as pitch shifting 
or simulating different room acoustics, might mitigate some 
of the effects, there is still a considerable risk that a network 
overfits the acoustic properties of these specific instruments. 
For many types of instruments, even small data sets are not 
available. Other biases include musical style as well as the dis-
tribution over central musical concepts, such as key, harmony, 
tempo, and rhythm.

A second considerable challenge is the adaptability to new 
acoustic conditions. Providing just a few examples of isolated 
notes of the instrument to be transcribed, considerable improve-
ments are observed in the performance of NMF-based models. 
There is currently no corresponding, equally effective mecha-
nism to retrain or adapt an NN-based AMT system on a few 
seconds of audio. Thus, the error rate for nonadapted networks 
can be an order of magnitude higher than that of an adapted 
NMF system [23], [24]. Overall, as both of these challenges 
cannot easily be overcome, NMF-based methods are likely to 
remain relevant in specific use cases.

In Figure 7, we qualitatively illustrate some differences in 
the behavior of systems based on supervised NMF and NNs. 
Both systems were specifically trained for transcribing piano 
recordings, and we expose the approaches to a recording of an 
organ. Like the piano, the organ is played with a keyboard, but 
its acoustic properties are quite different. The harmonics of 
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FIGURE 6. Google Brain’s Onset and Frames Network. The input is 
processed by an initial network detecting note onsets. The result is used 
as side information for a second network focused on estimating note 
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adapted with permission from [24].)
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the organ are rich in energy and cover the entire spectrum; the 
energy of the notes does not decay over time, and the onsets 
are less pronounced. With this experiment, we want to find 
out how gracefully the systems fail when they encounter a 
sound that is outside the piano-sound manifold but still musi-
cally valid. 

Comparing the NMF output in Figure 7(a) and the NN output 
in Figure 7(b) with the ground truth, we find that both methods 
detect additional notes (shown in red), mostly at octaves above 
and below the correct fundamental. Given the rich energy distri-
bution, this behavior is expected. While we use a simple baseline 
model for NMF—and thus some errors could be attributed to 
that choice—the NN fails more gracefully. 
That is, fewer octave errors and fewer spuri-
ous short note detections are observed. (Yet, 
in terms of recall, the NMF-based approach 
identifies additional correct notes.) 

It is difficult to argue why the acoustic 
model within the network should be bet-
ter prepared for such a situation. However, 
the results suggest that the network learned 
something additional: the LSTM layers as used in the network 
(compare Figure 6) seem to have learned how typical piano 
notes evolve in time, and thus most note lengths look rea-
sonable and less spurious. Similarly, the bandwidth in which 
octave errors occur is narrower for the NN, which could poten-
tially indicate that the network models the likelihood of co-
occurring notes or, in other words, a simple music language 
model (MLM). This leads us to our discussion of important 
remaining challenges in AMT.

Further extensions and future work

MLMs
As outlined in the “Analogies to Other Fields” section, AMT 
is closely related to ASR. In the same way that a typical ASR 
system consists of an acoustic component and a language 
component, an AMT system can model both the acoustic se-
quences and the underlying sequence of notes and other 
music cues over time. AMT systems have thus incorporated 
MLMs for modeling sequences of notes in a polyphonic con-
text, with the aim of improving transcription performance. 
The capabilities of deep-learning methods toward model-
ing high-dimensional sequences have recently made poly-
phonic music sequence prediction possible. Boulanger-Le-
wandowski et al. [5] combined a restricted Bolzmann 
machine (RBM) with an RNN for polyphonic music predic-
tion, which was used to postprocess the acoustic output of an 
AMT system. 

Sigtia et al. [18] also used the aforementioned RNN–
RBM as an MLM and combined the acoustic and language 
predictions using a probabilistic graphical model. While these 
initial works showed promising results, there are several 
directions for future research in MLMs. These include cre-
ating unified acoustic and language models (as opposed to 
using MLMs as postprocessing steps) and modeling other 

musical cues, such as chords, key, and meter (as opposed to 
simply modeling note sequences).

Score-informed transcription
If a known piece is performed, the musical score provides a 
strong prior for the transcription. In many cases, there are dis-
crepancies between the score and a given music performance, 
which may be due to a specific interpretation by a performer 
or to performance mistakes. For applications like music educa-
tion, it is useful to identify such discrepancies, by incorporating 
the musical score as additional prior information to simplify 
the transcription process (score-informed music transcription 

[35]). Typically, systems for such transcrip-
tion use a score-to-audio alignment method 
as a preprocessing step to align the music 
score with the input music audio prior to 
performing transcription, as in [35]. While 
specific instances of such systems have been 
developed for certain instruments (piano 
and violin), the problem is still relatively 
unexplored, as is the related and more chal-

lenging problem of lead-sheet-informed transcription and the 
eventual integration of these methods toward the development 
of automatic music tutoring systems.

Context-specific transcription
While the creation of a blind multi-instrument AMT system 
without specific knowledge of the music style, instruments, 
and recording conditions is yet to be achieved, considerable 
progress has been reported on the problem of context-specific 
transcription, where prior knowledge of the sound of the spe-
cific instrument model or manufacturer and the recording 
environment is available. For context-specific piano transcrip-
tion, multipitch detection accuracy can exceed 90% [22], [23], 
making such systems appropriate for user-facing applications. 
Open work in this topic includes the creation of context-specif-
ic AMT systems for multiple instruments.

Non-Western music
As might be evident by surveying the AMT literature, the vast 
majority of approaches target only Western (or Eurogenetic) 
music. This allows several assumptions, regarding both the in-
struments used and also the way that music is represented and 
produced. Typical assumptions include octaves containing 12 
equally spaced pitches; two modes, major and minor; and a 
standard tuning frequency of 4 440A Hz.=  

However, these assumptions do not hold true for other music 
styles from around the world, where an octave is often divided 
into microtones (e.g., Arabic music theory is based on quarter-
tones) or where there are modes not used in Western music (e.g., 
classical Indian music recognizes hundreds of modes, called 
ragas). Therefore, automatically transcribing non-Western music 
still remains an open problem with several challenges, including 
the design of appropriate signal and music notation representa-
tions while avoiding a so-called Western bias [36]. Another major 
issue is the lack of annotated data sets for non-Western music, 
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rendering the application of data-intensive machine-learning 
methods difficult.

Expressive pitch and timing
Western notation conceptualizes music as sequences of un-
changing pitches being maintained for regular durations and 
has little scope for representing expressive use of microtonal-
ity and microtiming or for the detailed re-
cording of timbre and dynamics. Research 
on automatic transcription has followed this 
narrow view, describing notes in terms of 
discrete pitches plus onset and offset times. 
For example, no suitable notation exists for 
performed singing, the most universal form 
of music making. Likewise, for other instruments without 
fixed pitch or with other expressive techniques, better repre-
sentations are required. These richer representations can then 
be reduced to Western score notation, if required, by modeling 
musical knowledge and stylistic conventions.

Percussion and unpitched sounds
An active problem in the music signal processing literature is that 
of detecting and classifying nonpitched sounds in music signals 
[1, Ch. 5]. In most cases, this is expressed as the problem of drum 
transcription, since the vast majority of contemporary music con-
tains mixtures of pitched sounds and unpitched sounds produced 
by a drum set. Drum set components typically include the bass 
drum, snare drum, hi-hat, cymbals, and toms. The problem in 
this case is to detect and classify percussive sounds into one of the 
aforementioned sound classes. Elements of the drum transcrip-
tion problem that make it particularly challenging are the con-
current presence of several harmonic, inharmonic, and nonhar-
monic sounds in the music signal, as well as the requirement of 
an increased temporal resolution for drum transcription systems 
compared to typical multipitch detection systems. Approaches 
for pitched instrument transcription and drum transcription have 
largely been developed independently, and the creation of a ro-
bust music transcription system that supports both pitched and 
unpitched sounds still remains an open problem.

Evaluation metrics
Most AMT approaches are evaluated using the set of metrics 
proposed for the MIREX Multiple-F0 Estimation and Note 
Tracking public evaluation tasks (http://www.music-ir.org/ 
mirex/). Three types of metrics are included: frame based, note 
based, and stream based, mirroring the frame-level, note-lev-
el, and stream-level transcription categories presented in the 
“State of the Art” section. While the above sets of metrics all 
have their merits, it could be argued that they do not corre-
spond with human perception of music transcription accuracy, 
where, e.g., an extra note might be considered as a more severe 
error than a missed note, or where out-of-key note errors might 
be penalized more compared with in-key ones. Therefore, the 
creation of perceptually relevant evaluation metrics for AMT 
and the creation of evaluation metrics for notation-level tran-
scription remain open problems.

Conclusions
AMT has remained an active area of research in the fields of 
music signal processing and music information retrieval for 
several decades, with several potential benefits in other areas 
and fields extending beyond music. As outlined in this article, 
there remain several hurdles to be overcome, i.e., on model-
ing music signals and on the availability of data, as described 

in the “Key Challenges” section; with re-
spect to the limitations of state-of-the-art 
methodologies, as described in the section 
“A Comparison of NMF and NN-Models”; 
and, finally, on extensions beyond the cur-
rent area of existing tasks, as presented in 
the “Further Extensions and Future Work” 

section. We believe that addressing these challenges will lead 
toward the creation of a complete music transcription system 
and unlock the full potential of music signal processing tech-
nologies. Supplementary audio material related to this article 
can be found on the companion website (http://c4dm.eecs.qmul 
.ac.uk/spm-amt-overview/).
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