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Abstract—Researchers have proposed methods to explain neu-
ral network predictions by building explanations either in terms
of input components (e.g., pixels in an image) or in terms of
input regions (e.g., the area containing the face of a Labrador).
Such methods aim to determine the trustworthiness of a model,
as well as to guide its improvement. In this paper, we argue that
explanations in terms of input regions are useful for analysing
machine listening systems. We introduce a novel method based
on feature inversion to identify a region in an input time-
frequency representation that is most influential to a prediction.
We demonstrate it for a state-of-the-art singing voice detection
model. We evaluate the quality of the generated explanations on
two public benchmark datasets. The results demonstrate that the
presented method often identifies a region of an input instance
that has a decisive effect on the classification.

Index Terms—Deep neural networks, visualisation, inter-
pretable machine learning, machine listening

I. INTRODUCTION

Deep neural networks (DNNs) have recently demonstrated
remarkable success in several pattern recognition use cases
[1]. Although highly accurate, these models are “black-boxes”,
as theoretically and empirically we know little about their
inner functioning. As DNNs are susceptible to adversarial
perturbations [2], understanding their behaviour is crucial to
gain trust in their predictions. Moreover, such an analysis may
also assist in refining model architectures [3].

Researchers have proposed several post-hoc model visual-
isation methods to understand how a DNN model forms its
decisions [4]. One category of methods focuses on analysing
the global behaviour of the model. For example, Activation-
Maximisation, a widely used method for global analysis,
involves generating patterns in the input space (e.g., image) to
maximally activate a specific neuron or a layer in the network
[5]. Such an analysis is useful, but often for deeper layers, the
generated patterns are difficult to interpret due to the multi-
faceted nature of neurons [6].

In another direction, there are methods that limit the
analysis to individual examples (local analysis) and focus
on understanding the input dimensions that contribute to a
prediction. The vast majority of such methods use variants
of sensitivity analysis to capture the effect of modifying a
dimension or a group of dimensions on the final prediction. For
example, the methods using gradient-based sensitivity analysis
[7] produce attribution (or saliency) maps that highlight the
relevance of each dimension towards a prediction. On the other

hand, explanations generated using occlusion [3] or model
approximation [8] identify the input regions in favour of (or
against) a prediction.

In this work, we consider the problem of local analysis
for deep machine listening systems that classify input audio
excerpts (or frames) into pre-defined categories. Previous
efforts in this direction explain a prediction by assigning a
relevance score either to the individual bins [9] or to the input
regions (a collection of bins) [10]. We argue that highlighting
relevant input bins can be less interpretable than identifying
influential regions due to three key reasons: (1) saliency maps
are noisy [11] and often need special methods to generate
cleaner visualisations [12], which may not always be possible;
(2) some saliency methods generate inconsistent explanations
[13]; and (3) the lack of context around individual bins makes
the attribution maps non-audible.

We introduce a novel method to automatically discover a
region (a group of bins) in an input excerpt that contributes
maximally towards a prediction. An existing method for local
analysis with region-level granularity [10] requires information
about the number of interpretable components and a segmenta-
tion methodology (e.g., uniformly segment input into N time-
frequency blocks). The generated explanations may highlight
non-contiguous components, which sometimes makes the in-
terpretation of the explanation difficult. Our method does not
need any auxiliary information and will generate contiguous
regions as explanations.1 Moreover, our method generates an
explanation significantly more quickly than the one discussed
in [10].

We evaluate the method we propose for a state-of-the-
art singing voice detection (SVD) model that classifies an
input mel spectrogram excerpt into predefined categories (in-
strumental music with and without singing voice) [14]. The
empirical results suggest that the presented method assists
in localising the influential input region to a fair degree of
accuracy. Classification using only the identified regions is
unchanged from the original classification in more than 80%
of cases randomly selected from two benchmark singing voice
detection datasets. The experimental code and results are
available online.2

1Ribeiro et al. [8] earlier proposed homologous “super-pixel” based expla-
nations for images.

2https://github.com/saum25/EUSIPCO-2018



II. PROPOSED APPROACH

Our method uses feature inversion to generate a local
explanation for any prediction. Feature inversion [15], [16] in-
volves methods to invert feature vectors, either handcrafted or
extracted by a deep discriminator model D (e.g., convolutional
neural network (CNN)). In this work, we focus on inverting
features a deep model extracts at any layer. During discrimi-
native learning, each hidden layer of D combines lower-level
features to build higher-level representations and in the process
retains only the features relevant to the discrimination task.
Thus, inverting a feature vector extracted at a layer l will assist
in visualising and understanding the features D preserves at
that layer. For example, Dosovitskiy et al. [16] show that
AlexNet [17] preserves the colour and approximate location
of an object in its last fully connected layer.

We employ this idea of feature inversion to locate a region
in an input time-frequency representation that contributes the
most to a prediction. It is conceivable that a model predicts by
using features preserved in its deepest layer (just before the
Softmax layer). A model learns such features automatically,
but if we invert a feature vector extracted at the deepest layer,
then the inverted representation will highlight the correspond-
ing region in the input space that a model considers important
for the task. This may suggest that the discriminative features
a model uses for classification are the most prominent in the
highlighted region of an input. For example, in an image
recognition model [17], if a model classifies an image to the
‘Cat’ class by looking at the face of the cat (assumption),
then an inverted representation should highlight the cat’s face
more prominently (explanation) than other image components.
Thus, in order to explain a prediction, we propose to invert
the feature vector at the last hidden layer of D and convert the
generated representation to a binary mask that masks the input.
The unmasked section in the input will highlight the region
that maximally influences a model’s prediction. The method
we propose consists of two steps.

• Step 1 involves training an inversion model G : Rd →
Rn. Thus, given an ith audio excerpt xi ∈ Rn and a
pre-learned representation function Φ : Rn → Rd, G
maps the d-dimensional feature vector Φ(xi) (from the
last hidden layer) to an inverted representation x∗

i ∈ Rn.
• Step 2 involves using G to explain why D classified xi

to a category C. This step firstly generates an inverted
representation x∗

i using G, and later uses the explanation
generator E and x∗

i to generate an explanation xexp
i .

A. Step 1: Training an Inversion Model

Recently, researchers have proposed two methods to invert
deep feature vectors. Mahendran et al. [15] introduced a
method that performs inversion by iteratively optimising a
randomly sampled input x̃i ∈ Rn. The objective function
minimises the squared L2 distance between a given feature
vector Φ(xi) and its current version Φ(x̃i). Such an uncon-
strained optimisation often leads to fooling examples [18].
Thus, they also proposed hand-crafted regularisers (α-norm,
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Fig. 1. The functional diagram to depict the explanation generation step of
the proposed method. Task 1 involves using an inversion model G to invert
a feature vector Φ(xi). Task 2 involves using an explanation generator E
and the inverted representation x∗

i to generate the explanation xexp
i for the

categorisation of the input xi.

total variation) to keep the generated input realistic. Formally,
the method generates an inverted representation x∗

i by

x∗
i = arg min

x̃i

‖Φ(xi)− Φ(x̃i)‖2 + λΩ(x̃i) (1)

where Ω : Rn → R is the regularisation function. This method
although useful has some challenges, one being the hand-
crafting of the regularisation function. It is hard to define the
composition of a naturally occurring input (e.g., image, audio).
In order to avoid this, we use the approach from Dosovitskiy
et al. [16]. Their method trains a separate deep neural network
to invert each layer of D. They claim that the trained model
automatically learns a data prior during training. Moreover,
their method is computationally expensive only at the training
time. Once the network is trained, feature inversion happens in
near real time. On the other hand, the method by Mahendran
et al. [15] needs to solve Eq. 1 to invert each Φ(xi).

Formally, our method trains an inversion model G3 that
maps a feature vector Φ(xi) to an expected pre-input x∗

i

(weighted average of all the inputs that the forward pass maps
to Φ(xi)). The method learns the weights w∗ of the inversion
model G(Φ(xi);w) by

w∗ = arg min
w

∑
i

‖xi −G(Φ(xi);w)‖2 (2)

B. Step 2: Explanation Generation

Fig. 1 depicts the tasks involved in the explanation genera-
tion step. In order to explain a prediction, task 1 of this step
first inverts a feature vector Φ(xi) by

x∗
i = G(Φ(xi);w

∗) (3)

Later, the task 2 involves feeding the input excerpt xi

and its inverted representation x∗
i to an explanation generator

E module that generates an explanation. This module firstly

3We can think of G as an approximate inverse of Φ. Φ is a many-to-one
function, as several inputs can have the same feature representation. This
prevents Φ from having a unique inverse.
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Fig. 2. Model architecture for inverting the FC8 layer of SVDNet [14]. The
dotted box encloses the ‘Conv3’ convolutional layer and its output activation
map. Due to space restrictions, we show only one Conv layer.

normalises x∗
i to the range [0, 1] and then thresholds the nor-

malised output using a thresholding constant αth
4 generating a

binary mask xb
i ∈ {0, 1}n. Later, E generates the explanation

xexp
i for a prediction by masking the input xi.

xexp
i = xi � xb

i (4)

The non-zero (unmasked) bins in xexp
i highlight the input

region maximally influencing the prediction.

III. EXPERIMENTS

We now demonstrate the proposed method for the singing
voice detection (SVD) model introduced in [14]. This model
(we refer to as ‘SVDNet’) classifies an audio excerpt into
two categories: instrumental music with and without singing
voice. There exist several methods to design efficient SVD
models [19], [20]. We choose the method from [14] as the
trained model is open-sourced5 and is state-of-the-art on public
benchmark datasets. The model is an eight-layered CNN
whose architecture is inspired by VGGNet [21]. The deepest
hidden layer in the network is a fully connected layer with 64
neurons (we refer to as ‘FC8’). The model uses log-scaled mel
spectrogram excerpts of about 1.6sec (115 frames) duration to
train its parameters. For more details please refer to [14].

A. Architecture and Training of the Inversion Model

We train an inversion model G to invert the feature vectors
from the FC8 layer of SVDNet. The architecture of G is a
scaled-down version of the model proposed in [16]. G inverts
a 64-dimensional feature vector by systematically upsampling
(unpooling) it. We can consider unpooling as an approximate
inverse of the pooling operation performed by SVDNet. The
network uses “upconvolutional layers” (UConv) [22] to per-
form unpooling and strided convolution. We also add one con-
volutional layer (Conv) after every UConv layer as suggested
in [23]. This increases the model capacity and generates better
visualisations. The network uses batch normalisation layers to
force the input to each network layer to follow a standard

4If a normalised bin value is less than αth then set it to 0 else set it to 1.
We use this thresholding method as it seems reasonable to assume that the
magnitude of a bin in the inverted representation (expected pre-input) relates
to its importance in the discrimination task.

5https://github.com/f0k/ismir2015
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Fig. 3. Local explanation for an excerpt from “03 - Say me Good Bye.mp3”
(time index = 10sec) in the Jamendo test dataset. (A) input mel spectrogram,
(B) inverted representation, (C) binary mask, and (D) local explanation. All
visualisations are in the range [0, 1].

normal distribution. The network employs Exponential Linear
Unit (ELU) non-linearities (y(x) = (x > 0)?x : ex − 1) to
process the output of each neuron. G generates an output of
128 × 128 spatial size and later crops it to 115 × 80. Fig. 2
depicts an overview of the inversion model architecture and
Appendix A provides additional details.

We train G by using 64-dimensional feature vectors ex-
tracted from FC8. SVDNet extracts one feature vector per
audio excerpt (log-scaled mel spectrogram of about 1.6 sec).
We generate audio excerpts from the Jamendo training dataset
of 61 pop music songs [24] using a hop size of 10 frames (140
ms). We do not use any of the data augmentation methods
from [14]. We train G on a dataset size of about 100k feature
vectors. In order to prevent overfitting, we use L2 weight
decay and run the optimisation to a fixed number of weight
updates (30 epochs). We initialise the model weights using
He normal initialisation [25]. For a mini-batch of 32 randomly
selected excerpts, the training objective minimises the squared
Euclidean distance between the input and its reconstruction
and updates the weights using ADAM [26]. Training starts
with an initial learning rate of 0.001. If the loss doesn’t change
for 2 consecutive epochs, the method scales it down by 50%.

B. Local Explanations for SVDNet

We now use the trained inversion model G to explain
the predictions of SVDNet as discussed in section II-B. Fig.
3 shows visualisations from the explanation generation step
for an excerpt from the Jamendo test dataset. SVDNet cor-
rectly classifies this excerpt to ‘instrumental music’ class with
95.16% confidence. We use G to identify the input region that
maximally influences this prediction. Our method normalises
and thresholds the inverted representation to generate a binary
mask (αth = 0.6). Later, it generates an explanation by
applying the mask to the input mel spectrogram. It seems the
information in the lower frequency region (till about 900 Hz)
maximally influences the prediction of the selected excerpt.

We can use local explanations to verify the trustworthiness
of a model. For example, consider the instance shown in Fig.
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Fig. 4. Local explanation for an excerpt from “03 - Say me Good Bye.mp3”
(time index = 34sec) in the Jamendo test dataset with the ‘singing voice’
and ‘instrumental music’ classes as separate temporal segments. (Top) input
mel spectrogram, and (Bottom) local explanation. All visualisations are in the
range [0, 1].

4 that has the singing voice and instrumental music sections
located in non-overlapping temporal segments (about 0.9 sec
vocals followed by about 0.7 sec instrumental music). SVDNet
classifies this instance to the ‘singing voice’ class with 80%
confidence. The local explanation for this prediction shows
that frequencies in the range 300 Hz - 1500 Hz in the first
one second of the excerpt contribute most to the classifier’s
prediction. In other words, the model is using information
from the vocal segment to categorise the input to the ‘singing
voice’ class. Such an understanding assists in gaining trust in
a model’s predictions.

C. Quantitative Evaluation of the Proposed Method

Researchers often verify their explanation methods using
qualitative approaches (e.g., a method ‘A’ is better than ‘B’
if the former has less noisy attribution maps). But, recent
works have stressed the importance of quantitative evaluation
[27], [28]. In this section, we report the results of quantitative
evaluation of our explanation method. To evaluate our method,
we adapt the region perturbation method from [27] to suit
our region-based explanations. We argue that if an explanation
method accurately identifies the influential region in an input,
then masking the remaining input should not affect the pre-
diction.6 Thus, for each input excerpt, our evaluation method
feeds the masked representation xexp

i to SVDNet and records
the prediction label.

Formally, for a set of N input excerpts, we consider the
initial class labels assigned by SVDNet as the ground truth.
We then calculate the number of excerpts (NE) for which
the model prediction changes after input modification.7 The

% explanation loss is given by Eloss = (
NE

N
) ∗ 100. For

example, say for N = 4 excerpts the SVDNet predictions are
{0, 1, 1, 0}, where 0 and 1 correspond to the ‘instrumental
music’ and ‘singing voice’ classes, respectively. If after the
input modification, the new set of predictions from SVDNet
are {0, 0, 1, 0}. Then, NE = 1 and Eloss = 25%.

6We mean that the prediction probability might change, but the prediction
label should remain the same

7We consider initial model predictions irrespective of their class (e.g.,
singing voice) or their prediction type (e.g., true positive).
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Fig. 5. Quantitative evaluation of the proposed method on a set of randomly
selected instances from the Jamendo and RWC datasets. (Top) depicts the
change in explanation loss as the input varies from an unmasked version to
a fully masked version. (Bottom) shows variations in the relative area of an
explanation as we increase the masking threshold αth.

Fig. 5(Top) reports the quantitative evaluation results for
a subset of about 3000 randomly chosen excerpts from the
Jamendo test dataset of 16 audio files. The plot depicts change
in the average Eloss with uniform variations in the masking
threshold. We evaluate our explanation method for two cases:
M1 Jamendo and M2 Jamendo. In M1 Jamendo, the input to
SVDNet is the masked representation xexp

i . In M2 Jamendo,
we post-process xexp

i by normalising the masked bins. We
normalise a bin using its corresponding mean and standard
deviation over the training data. Fig. 5(Top) suggests that both
methods report similar explanation loss, especially at higher
threshold values. Eloss starts at 0% (no input masking) and
increases to 60% (full input masking).

Fig. 5(Top) shows that the choice of masking threshold in-
fluences the loss resulting from an explanation. Higher values
of αth (> 0.7) result in finer but less accurate explanations
while lower values of αth (< 0.3) generate highly accurate but
coarse explanations. In order to decide an appropriate value
of αth we propose to use the relative area of an explanation
as an additional constraint. We define the relative area of an
explanation as the ratio of the number of unmasked bins to the
total number of bins. In Fig. 5(Bottom) we plot the variation in
average relative area (for the same excerpts) as αth changes
uniformly. We use this information to select a suitable αth.
In the above experiment αth = 0.6 seems a good choice as
it provides finer (% relative area is about 45%) and fairly
accurate explanations (% explanation loss is about 20%).

We also extend the evaluation of our explanation method to
the RWC dataset [29], which is a public benchmark dataset for
SVD. The RWC dataset contains 100 pop music songs and is
not pre-split into a separate test set. Thus, we create a test set
by randomly sampling 20 audio files and later we randomly
sample about 3500 excerpts from the test set we create. We
aim to see if the evaluation results from Jamendo generalise
to RWC. Fig. 5(Top) depicts the evaluation result for the
RWC dataset (using the case 1 approach from Jamendo). For
lower values of αth (≤ 0.6), the explanation method performs



similary on RWC, but for higher values of αth average Eloss

increases by about 10%. We argue that it is due to the training
of both the discriminator and inversion models only on the
Jamendo dataset. This makes the reconstruction error between
an input and its inverted representation more for RWC leading
to less accurate explanations. Thus, an accurate inversion
model is crucial to achieving low explanation loss.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel method to explain predic-
tions of deep machine listening systems. Our method uses the
idea of feature inversion to generate local explanations. The
method inverts a feature vector from the deepest layer of a
model and uses the inverted representation to generate a binary
mask to mask the input time-frequency representation. The
unmasked portion of the input highlights the region most influ-
ential to a prediction. We demonstrated the proposed method
for a state-of-the-art SVD model. We used the explanations to
analyse the trustworthiness of the model. Finally, we evaluated
the loss associated the explanation method. The evaluation
results for two benchmark datasets suggested that explanations
from the proposed method highlighted the most influential
region in about 82% of the randomly chosen inputs.

In the future, we plan to apply our method to a multi-class
classification task (e.g., sound event detection). We also plan to
compare our method’s performance against other region-based
explanation methods. Moreover, we also plan to experiment
with other thresholding techniques (e.g., using reconstruction
error values) to understand the effect of a thresholding tech-
nique on the performance of the method.
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APPENDIX

TABLE I
THE ARCHITECTURE OF THE INVERSION MODEL TO INVERT THE FC8
LAYER OF SVDNET. INPUT AND OUTPUT SHAPES ARE ORDERED AS:

NUMBER OF CHANNELS × TIME × FREQUENCY. FILTERS IN THE UCONV
AND CONV LAYERS ARE OF SHAPES 4 × 4 AND 3 × 3, RESPECTIVELY.

STRIDE SIZE FOR CONVOLUTIONS IN UCONV AND CONV LAYERS IS 2 × 2
AND 1 × 1, RESPECTIVELY. THE NUMBER OF LEARNABLE PARAMETERS

FOR THIS NETWORK IS 31887.

Layer Input Shape Number of Filters Output Shape
FC1 64 × 1 64 64 × 1
FC2 64 × 1 256 256 × 1

Reshape 256 × 1 - 16 × 4 × 4
UConv3 16 × 4 × 4 16 16 × 8 × 8
Conv3 16 × 8 × 8 16 16 × 8 × 8

UConv4 16 × 8 × 8 8 8 × 16 × 16
Conv4 8 × 16 × 16 8 8 × 16 × 16

UConv5 8 × 16 × 16 4 4 × 32 × 32
Conv5 4 × 32 × 32 4 4 × 32 × 32

UConv6 4 × 32 × 32 2 2 × 64 × 64
Conv6 2 × 64 × 64 2 2 × 64 × 64

UConv7 2 × 64 × 64 1 1 × 128 × 128


