IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

Robust and Efficient Joint Alignment of Multiple
Musical Performances

Siying Wang, Student Member, IEEE, Sebastian Ewert, Member, IEEE, and Simon Dixon

Abstract—The goal of music alignment is to map each temporal
position in one version of a piece of music to the corresponding
positions in other versions of the same piece. Despite considerable
improvements in recent years, state-of-the-art methods still often
fail to identify a correct alignment if versions differ substantially
with respect to acoustic conditions or musical interpretation.
To increase the robustness for these cases, we exploit in this
work the availability of multiple versions of the piece to be
aligned. By processing these jointly, we can supply the alignment
process with additional examples of how a section might be
interpreted or which acoustic conditions may arise. This way,
we can use alignment information between two versions transi-
tively to stabilize the alignment with a third version. Extending
our previous work [1], we present two such joint alignment
methods, progressive alignment (PA) and probabilistic profile
(PP), and discuss their fundamental differences and similarities
on an algorithmic level. Our systematic experiments using 376
recordings of 9 pieces demonstrate that both methods can indeed
improve the alignment accuracy and robustness over comparable
pairwise methods. Further, we provide an in-depth analysis of
the behaviour of both joint alignment methods, studying the
influence of parameters such as the number of performances
available, comparing their computational costs, and investigating
further strategies to increase both their computational efficiency
and alignment accuracy.

Index Terms—Music synchronization, multiple sequence align-
ment, performance analysis, robust music alignment.

I. INTRODUCTION

URING the last decades alignment methods in various

forms have been of central importance for the analysis,
modelling and processing of digital music recordings. By
establishing links between similar sections across different
recordings or representations of music, alignment techniques
enable a multitude of applications, including automatic score
following and page turning [2], [3], facilitated navigation in
large collections [4], the identification of cover songs [5],
query-by-example retrieval [6] and the integration of prior
knowledge in audio source separation [7].

In this paper, we focus in particular on the task of music
alignment, or synchronisation, which is given a position in
one version of a piece of music, to locate the corresponding
position in another version. In this context, various alignment
methods have been proposed, including Dynamic Time Warp-
ing (DTW) [8], Hidden Markov and Semi-Markov Models
(HMM) [9], Conditional Random Fields (CRF) [10], general
graphical models [11], and Particle Filter / Monte-Carlo Sam-
pling (MCS) based methods [3], [12]. As shown in previous

The authors are with the Centre for Digital Music, School of Electrical
Engineering and Computer Science, Queen Mary University of London,
London, U.K. (e-mail: {siying.wang,s.ewert,s.e.dixon} @qmul.ac.uk.)

Manuscript received Dec 30, 2015; revised July 17, 2016.

studies, current methods based on such synchronization strate-
gies yield alignments of high accuracy in many cases [10],
[13], [14]. However, a musician can interpret a piece in diverse
ways, which can lead to significant local differences between
versions in terms of articulation and note lengths, ornamental
notes (grace notes, trills), or the relative loudness of notes
(balance). Additionally, substantial differences in the acoustic
environment, instrumentation and recording conditions can
reduce the alignment accuracy of state-of-the-art methods
drastically.

To improve the alignment accuracy for such difficult cases,
a recently presented concept exploits the fact that in many
cases not only two but multiple versions of a piece are
available [1]. This is the case, for example, in comparative
performance analysis [15]-[17] and expressivity studies [18],
in music production where corresponding audio takes need to
be aligned [19], when coordinating user-generated videos of a
concert [20] or generating ground-truth for large scale distance
learning [21]. If multiple versions are indeed available, the
idea is to align them in a joint way, which facilitates the
synchronization process as every additional version presents
another example of how a musician can realize a section
of a piece or which acoustic conditions might prevail in a
recording. Fig. 1 shows a real-world example of a pair-wise
method failing to compute a correct alignment between two
recordings of Chopin’s Op. 24 No. 2. Chroma features (see
[22], [23] for a detailed description) for both recordings shown
in Fig. 1b and c reveal acoustical (more noise in the C* and
D chroma bands in Fig. 1c) and musical differences (more
pronounced staccato on the E and G notes in Fig. 1b). Since
the piece shows a repetitive pattern on the chroma level,
such differences cause a pairwise method [13] to compute an
incorrect alignment between the two versions. The results are
shown in Fig. 1d as a gray alignment path, which encodes
corresponding positions between the two recordings as com-
puted by the method — note how the path deviates from the
correct positions between 57.5-61.5 seconds (in the timeline
of Luisada’s version). However, as we will see, including
several recordings in a joint alignment process can lead to
a considerable increase in overall robustness and alignment
accuracy. For now, we only indicate this improvement showing
two additional paths (dashed and dotted) in Fig. 1d that were
computed using our joint alignment methods.

In general, a joint synchronization of music recordings
can be considered as an instance of the multiple sequence
alignment problem, a task well-studied in bio-informatics
[24], [25]. In this context, the approach presented in [1]
belongs to the class of progressive alignment (PA) methods. A

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

second class used in bioinformatics is commonly referred to as
probabilistic profile (PP) methods. As discussed in more detail
below, methods from both classes typically share specific algo-
rithmic roots, with some conceptual differences in the internal
representation of the sequences to be aligned. In particular, PA
methods typically employ a more greedy, quickly converging
approach compared to PP methods, which often leads to a
considerably higher computational efficiency for the former.
However, as reported in [26], PP methods were found to yield
a higher alignment accuracy in some bioinformatics tasks.
Music recordings, however, have properties quite different
from protein sequences. First, we do not consider structural
differences between performances (e.g. a section being left
out in one version), which is in stark contrast to biological
sequences where such fundamental differences are common.
Second, music recordings change more slowly over time
leading to a high temporal correlation between neighboring
sequence elements, which again is quite different from protein
sequences. Due to these differences, it is interesting to test
whether a higher alignment accuracy can also be achieved in
a musical context using PP methods and how the two methods
differ in behavior in such a scenario.

As a first main contribution of this paper, we compare the
method presented in our previous work [1] with a PP method
we develop for application to music. We conduct systematic
experiments to identify their conceptual advantages and disad-
vantages in different scenarios. To increase the comparability
between the two approaches, we employ the same feature
types and configurations in both cases. As a second main
contribution, we provide additional insights into the behaviour
of each joint alignment method by illustrating the influence
of individual parameters with associated detailed experiments,
and describe extensions to accelerate the PP method and
improve the alignment accuracy of the PA method.

The paper is organized as follows. We discuss related work
in Section II. Technical details of the two proposed methods
are described in Section III, followed by a systematic compar-
ison in Section IV. In Section V, we report on the results of
our in-depth investigations of the two methods. Conclusions
and discussions of future work are given in Section VI.

II. RELATED WORK

Music synchronization has been an active research topic
for several decades. Early approaches [28], [29] are based
on string matching algorithms, that were used to align a
symbolic music representation, e.g. MIDI, with a given score.
Since the 1990s, the increase in computing power enabled the
processing of audio signals, and efforts have shifted towards
robust feature representations and suitable alignment methods
for aligning audio recordings. For the feature representation,
a major aim is to find an optimal, application-specific trade-
off between the level of detail preserved in a feature and its
robustness against noise and other musically irrelevant signal
properties. In this context, low-level spectral representations
have been used [30]-[32] as well as musically meaningful
representations, especially pitch and chroma features [27],
[33], [34]. More recently, it was found that accompanying

&

-

Richter
Time (sec),
. ')

\

57 58 59 61 62 63

60
Time (sec)
Luisada

@ 4 65 66
Time (sec)
Richter

Fig. 1. Alignment of two interpretations of Chopin Op. 24 No. 2, measures
52-57: (a) Score for the six measures. (b)/(c) CENS features (a variant
of chroma features proposed in [27]) for an interpretation by Luisada and
Richter, respectively. (d) Alignment results for the pairwise (blue), proposed
progressive alignment (black) and profile HMM (green); ground truth are
given as corresponding beat positions from the two versions (red).

such representations with features indicating onset positions
can be used to improve the alignment accuracy [10], [13].
Other more recent developments are adaptive or learnt feature
representations [21], [34]-[36].

Once a common feature representation is chosen, the feature
sequences are aligned using a suitable method. While there are
many possible ways to classify methods, the most distinctive
differences can be found between offline and online/realtime
methods. In particular, almost all offline methods are based on
dynamic programming (DP). For example, techniques based
on Dynamic Time Warping (DTW) aim at finding an alignment
minimizing the dissimilarity between features assigned to each
other — effectively a constrained optimization problem that can
be solved using DP [37], [38]. Early examples of such methods
exist which use low-level [30] and mid-level [33] features.

Interpreting the synchronization problem as a latent state
estimation problem leads to Hidden Markov Models (HMMs)
in their various forms [9], [32], [34], [39], [40]. Such models
have been particularly popular in score-to-audio alignment
tasks, as here each state intuitively corresponds to a note or a
constellation of concurrent notes as specified by the score,
while other assumptions about the music can be captured
in higher-leve]l HMM structures. For examples, high-level
states might encode the current tempo [11], or each note-
state can be subdivided into attack-decay-release sub-states (or
similar temporal evolutions). Such high level structures lead
to hierachical HMMs and semi-Markov graphical models, or
generalizations thereof such as Dynamic Bayesian Networks
(DBNs) [32], [41]. It should be noted that many of these
more advanced models can still be represented as a standard
HMM. Recently, conditional random fields (CRFs) have been
used for music synchronization [10]. As an advantage, CRFs
loosen several limitations of HMM-based methods in contrast
to more general DP methods, e.g. DTW. In particular, their
use of so-called feature-functions generalizes the notion of
observation probability and thus enables measuring distances
between features in a more general way than HMMs allow.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

Several strategies have been proposed to lower the compu-
tational costs for techniques based on dynamic programming.
In [42], [43], first a rough alignment is computed on a
low temporal resolution, which is then used to constrain the
alignment process at higher resolutions — effectively a path
pruning technique suitable for offline methods. Many other
techniques not only accelerate but enable a method to align
sequences online or in real-time. For example, the method pre-
sented in [14] employs a greedy, locally optimal forward path
estimation algorithm to constrain the alignment path, while
[44] employs a windowed variant of DTW integrating ideas of
the A* algorithm [45] to dynamic programming. Such methods
are combined in [2] with an indexing system to efficiently
establish a first, approximate score-to-audio positioning, which
is able to handle performances starting from arbitrary positions
in a piece. Conceptually quite different from the above are
state-space methods, where states such as position or tempo
are elements of a continuous space. Transitions between states
are modelled using transition functions that, applied to the
current state, yield the next one [12]. Depending on specific
properties of the sources of noise in the model, one typically
uses parameter estimation methods based on the Kalman filter,
particle filter or more general Monte-Carlo sampling methods.

Aligning multiple performances of a piece of music is a
relatively novel concept in music processing. A generative
note duration model is proposed in [46] by coupling the
tempo curve from different audio performances. The method
in [47] uses multiple performances to improve the accuracy in
an on-line score-following application by computing several
pairwise alignments in parallel. Further, in [48] the authors
align multiple symbolic sequences for harmonic and motivic
analysis.

In some sense, our idea of using multiple versions to
improve the performance of music alignment is similar to
the co-segmentation problem in computer vision, where the
segmentation accuracy can often be improved by supplying
the algorithm with additional images that share certain fore-
ground characteristics with a given image and segmenting
them jointly [49]. More directly relevant to our work, however,
are multiple sequence alignment methods, which have been of
central importance to many developments in bioinformatics.
For example, the MAFFT [50] and CLUSTAL [51] families
of algorithms have been in development for almost three
decades. While a lot of the functionality in such packages
is highly specific to the alignment of protein sequences, we
can extract some central ideas and adapt them suitably, taking
music specific properties into account. In the next section we
describe two such adapted methods: progressive and profile-
based alignment and discuss some conceptual differences
between them.

III. METHODS FOR JOINT MUSIC ALIGNMENT

In theory, it is straightforward to extend many dynamic
programming techniques to multiple dimensions so that several
sequences can be aligned jointly. For example, this has been
demonstrated in the context of gesture recognition [52] and
multi-modal speech recognition [53]. However, assuming that

each sequence to be aligned is roughly of length NV, the time
and memory requirement to align K versions is O(N),
which limits K to very small values in practice. Path pruning
techniques can be used to mitigate such problems for small
values of K [54], but in general for large K, it can be very
difficult to lower the computational costs enough to become
practically feasible and find accurate alignments at the same
time.

A different strategy is to successively build up a data struc-
ture representing an average sequence or central consensus
against which all given sequences can be aligned. By con-
structing this consensus form, we can incorporate information
from every single recording such that the overall alignment
becomes easier (as the influence of outlier information can be
reduced) and therefore becomes more accurate and robust. In
the following, we present two conceptually different methods
for computing such a central consensus in a music synchro-
nization scenario. The differences include how the central
consensus is represented (keeping all information in contrast
to averaging some) and how it is built up (early versus late
updates). Both of these affect the resulting alignment accuracy
and computational performance, as we discuss in more detail
below.

A. Progressive Alignment

Our first method can be regarded as a member of the
family of progressive alignment algorithms in the context
of bioinformatics [50]. As not all of its steps are directly
interpretable from a probabilistic point of view, we present the
method as a general dynamic programming approach. The idea
is, instead of simultaneously aligning all feature sequences, to
successively add the sequences to a data structure referred
to as the template. The template comprises a set of feature
sequences that are aligned to each other, stretched in length to
have the same size — as we will see, this enables efficient
access to aligned sequence elements. After computing an
alignment between a new sequence and the template at each
step, the sequence is added using the alignment information
to stretch both the template and the sequence to have the
same size. This is repeated until all sequences are contained
in the template, which allows for efficiently deriving pairwise
alignments between any two sequences.

To describe the alignment procedure in more detail, we
assume that we have K different versions of a piece and that
their feature sequences are denoted by X* = (z%,... ,mﬂcvk)
with k €[1: K] and zF € F, where F denotes a suitable
feature space. Further, we refer to our template data structure
as Z, which we initialize to X'!. As part of the alignment pro-
cess, we align the remaining feature sequences X?2,..., XX
successively to Z, updating Z after each step. To this end, let
X% denote the sequence to be aligned and Z = (24, ..., z)
the current template of length M. Each z,, € (F U {G})*~!
contains k — 1 feature vectors or gap symbols G, and we
denote the individual components by 2} ..., zF=1 ¢ FU{G}.
The idea behind the gap symbol will be discussed below.
Further, to simplify the notation later, we denote the sequence
(z7,...,25) by Z" forr € 1,...,k — 1.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

23 25
Time (sec)
Recording 5 d)

n 27 3 27 3
1 25 \ 25 25 ‘ ‘ ‘ 25 A
23 | 2 23 ‘ 2
\
08 21 \ 15 21 15
1ol 1 el 1
06 21 23 25 27 21 23 25 27
e) f)
27 327
0.4
25 |25 25
02 28 2 23
21 15 21 .
. 7

0o 19 119
21 23 25 27 21 23 25 27

Cost Matrices between
recording 5 & four template sequences

21 23 25 27
Time (sec)
Template

g

Time (sec)
Recording 5
I
@

9) h)
27

m=m alignment path
ground truth

alignment path /
ground truth 5

N
[

21

I]
= =Y N N
o ¢ o
Time (sec)
Recordina 5
N
N 8 > N

21 23 25 27 19 21T 2 25
Time (sec) ime (_sec)
Template Recording 4

Fig. 2. Aligning the fifth recording with the template of the first four recordings: we compare the feature sequence of the fifth recording (b) with each feature
sequence in the template (a: yellow blocks indicate the gaps) to obtain four cost matrices (c,d,e,f); we combine these cost matrices together into a single cost
matrix to compute the alignment (g: the ground truth onset position for the alignment between the fourth and the fifth recording is stretched according to
the gap inserted version of the fourth feature sequence, in order to be fitted onto the cost matrix between the template and the fifth recording). The resulting

alignment path between the fourth and fifth recordings is shown in (h).

An alignment between Z and X is defined as a sequence
p = (p1,...,pr) With pp = (myg,ng) € [1: M]x[1:Ny] for
¢ e [1:1] satisfying 1 =mq <mg < ... <my =M and
1=n; <ny <... <np = Ni (boundary and monotonicity
conditions), as well as p,y1 —p¢ € {(1,1),(1,0),(0,1)} (step
size condition). To compute an alignment p between Z and
X%, we first define a dissimilarity measure for individual
elements from Z and X*. More precisely, we compute a cost
matrix C" € RM*Nk comparing each pair of elements in Z”
and X, by:

r k T
C’T(m,n) _ C(’Zmaxn)v ZT f G7
C(;, Zm = G,

where ¢ : F X F — R is a suitable dissimilarity measure
between feature vectors and Cg > 0 is a constant referred
to as the gap penalty. By combining these individual cost
matrices C” to a merged cost matrix C € RM*Nk we obtain
a dissimilarity measure between every sequence element in Z
and X*. A simple yet effective combination is averaging:

k—1
1
C(m,n) = 1 ZC’T(m, n).
r=1

This process is illustrated with an example of aligning five
synthetic recordings in Fig. 2, where a template (Fig. 2a)
containing four sequences of chroma-based vectors (with
yellow entries indicating gap symbols) is aligned to a fifth
sequence (Fig. 2b). The resulting four cost matrices C'* to C*
are shown in Fig. 2c-f, using Cc = 3 and a cosine distance
c(z,x) =2 — % The resulting merged cost matrix C' is
shown in Fig. 2g.

Note that we also tried other combination strategies, in-
cluding weighting schemes, taking the minimum over the
individual cost matrices or more general order statistics in-
cluding the median and other percentiles. We also tested using
logistic regression to learn a dissimilarity measure based on
the individual cost matrices to optimize for overall alignment

accuracy. However, using the same experimental setup as
described in Section IV-A, replacing only the combination
strategies, none of these strategies yielded consistently better
results than the averaging described above.

Once a merged cost matrix is computed, we can apply
dynamic programming similar to DTW or Viterbi decoding
to derive an alignment between Z and X*. An alignment p
having minimal total cost among all possible alignments is
called an optimal alignment. To determine such an optimal
alignment, we recursively compute an accumulated cost matrix
D of size (M x Ny), where the matrix entry D(m,n) contains
the total cost of an optimal alignment between (21, ..., 2m)
and (z1,...,2,):

D(m—1,n—1) +w;C(m,n),
D(m,n) := min< D(m — 1,n) + wsC(m,n),
D(m,n — 1) + wsC(m,n),

for m,n > 1. Furthermore, D(m,1) := >_" woC(k,1)
for m > 1, D(1,n) := > p_, wsC(1,k) for n > 1, and
D(1,1) := C(1,1). The weights (w1, w2, ws) € R can be
used to adjust the preference over the three step sizes. By
tracking the choice for the minimum starting from D (M, N)
back to D(1,1), an optimal alignment can be derived in a
straightforward way [55], [56].

Once an alignment p is computed, we integrate X* into Z.
To this end, we use p to stretch Z and X k to the same length,
such that corresponding features are aligned and become part
of the same element of Z. There are several ways to define
this stretch. A first idea is to simply set

(irw... 2RL gk,

20 = »“my Uy,

where Z = (Z1,...,%1) denotes the updated template and
p = ((m1,n1),...,(mg,nr)). This simple solution, however,
introduces a temporal uncertainty: if the step size (1,0) or
(0,1) is used in p, an element in Z or X* is aligned to several
elements in the other sequence, respectively. Therefore, with

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

Begin > > End

M, —> >

Fig. 3. Topology of a Profile HMM [24]

this simple update rule some elements of Z or X * would occur
several times in Z causing a temporal uncertainty, as features
of the next sequence can equally well be aligned against the
original or a copied feature in a template sequence.

Due to these issues, we now introduce a rule that replaces
copies of elements with a gap symbol. To this end, we first
define the terms

E¥(m):= argmin C(m,n),
{nl(m,n)ep}
E%(n):= argmin C(m,n).

{ml(m.n)ep}

If an element in one sequence is aligned to several in the other
sequence, we can use F; and Fs to find the pair of elements
that has the lowest cost. With this we define our update rule
as follows:

(Z’IITL@’ ER) anzlﬂxﬁg)v if (me,ne) = Ef(mf) = Eg(nf)
Ze =94 (zh,, -, 21 Q). if (me,ng) # ES(ng)
(G,...,G,l’ﬁz), if (mg,?’l@) #E{)(mf)

Intuitively, for the case that p aligns an element m of one
sequence to multiple elements of the second sequence, this
update rule uses C' to select the best of these multiple elements
to align with m, and then the remaining elements are aligned
to new gap symbols. This contrasts with the simple rule where
the multiple elements would be aligned to copies of m. We will
investigate the importance of the gap symbol in Section V-B.
Also, the order in which feature sequences are aligned is
crucial to PA method, which will be discussed in Section V-C.

B. Probabilistic Profile

Another central class of multiple sequence alignment meth-
ods are probabilistic profile methods. For these methods, the
central consensus data structure takes the form of a Hidden
Markov Model (HMM), in a specific configuration. In the
following, we describe such a profile HMM which we adapt for
the music synchronization scenario, see also [24] for similar
concepts as used in bio-informatics.

The topology of our profile HMM is illustrated in Fig. 3.
Overall, the model contains three different types of states:
Match states (M), Insert states (I) and Delete states (D).
Intuitively, the series of match states will encode the core of

a consensus sequence representing the commonalities among
different recordings, while the insert and delete states are used
to model the temporal diversity. To find meaningful parameters
for the various probability distributions involved, each given
sequence is interpreted as a noisy observation of the consensus
sequence with insertions and deletions, and thus can be used
to train the model using a Baum-Welch procedure. Interpreted
in this way, it should be noted that the match states do not
necessarily correspond to musically meaningful events like
specific chords or note constellations as specified by a score.

To describe the model in more detail, we use the same
notation as above and assume K different versions of a
piece with corresponding feature sequences denoted by X* =
(z§,... 2k,) for k €[1: K], where each z¥ € F. Further, we
assume a general familiarity with HMMs and refer for details
to [56]. To define the structure of the profile HMM, we first
choose the length L of model: The number of M and D states
is L, respectively, while there are L + 1 I-states, compare
Fig. 3. While L could simply be a constant (as often used in
bio-informatics), we obtained the best results by adapting L
to the length of the given feature sequences. More precisely,
we set L = median(Ny,..., Ng), which fixes the overall
topology, compare Fig. 3. Other choices we tested include the
minimum, maximum and twice the maximum instead of the
median, but those led to a lower overall alignment accuracy
in our experiments. From a generative point of view, we start
from a non-emitting Begin state. From there we can enter the
first match state and draw a feature vector according to the cor-
responding observation probability. Since match states do not
have self-transitions, we either enter the second match state,
enter the first insert state or the second delete state. Insert states
have self transitions and thus can generate an arbitrary number
of feature vectors according to their observation probability —
useful for modelling observation sequences that locally have
a lower tempo compared to the consensus sequence. Delete
states are non-emitting states and, since transitions between
them are allowed, can be used to skip an arbitrary number
of match states — useful for modelling observation sequences
with a higher local tempo. Note that by allowing direct jumps
from a match state to subsequent, non-neighbouring match
states, one could also model deletions in a different way. The
separate delete states, however, are introduced to avoid the
problem of specifying a maximal length for such jumps and
deletions. The possible transitions are shown in Fig. 3.

To represent the observation probabilities of the match and
insert states, we use multinomial Gaussian distributions with
means ué‘/f , Né and covariance matrices O’é\/[, O’l{ . A benefit
of using a Gaussian distribution is that the parameters have
a straightforward interpretation. In particular, the means are
elements of the feature space F and thus the sequence
p, o u} can be interpreted as encoding our consensus
feature sequence, while the insert state means pf,... ul
encode typical features we additionally observe for recordings
with a slow tempo. For the covariances we use diagonal
matrices, as otherwise we would need to estimate a number of
parameters for each state equal to the square of the dimension
of the feature space [56], and we typically do not have enough
feature sequences as training material to do so reliably. Also,

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

a)
g
88
S0
” £
£ c)
a]
25 | /
oo
23 25 27 29
Time (sec) 5 L 23
Observations - Recording 4 g
b) : gF
21
/ jmmm alignment path
19 ground truth 1
21 23 25 27
— Time (sec)
") 2 Recording 4
g8
S0
» E
£

-300

19 21 23 25 27

Time (sec)
Observations - Recording 5

Fig. 4. Emission probability matrices for match states with alignment path
(blue) between states and observations of (a) the fourth recording and (b)
the fifth recording. The values on color bar are in log scale. Note that the
extremely low probabilities (white area) on the top left and the bottom right
corner result from the path constraint described in Section III-C; (c) The
resulting alignment path between the fourth and fifth recordings.

it is reasonable to assume that the dimensions in the feature
vector are roughly decorrelated in the given data, and if
not this could be done as a pre-processing step. Note that
instead of generating the observation model artificially from
the score as the audio-score alignment task [32], we learn our
consensus feature sequence from the feature sequences of all
the performances. Regarding the transition probabilities, we
only need to estimate a low number of parameters due to the
sparsely connected structure of the profile HMM: three for
each state (compare Fig. 3). Instead of fixing them to specific
values, we found that estimating them from data improved the
overall alignment accuracy. In particular, learnt from data, the
transition probabilities encode how likely the sequences are
to deviate from the consensus sequence locally, thus provide
additional guidance during the alignment process.

Parameters of the model are estimated using expectation-
maximization (EM), i.e. the multiple sequence variant of the
Baum-Welch algorithm [56]. As in a music synchronization
scenario the number of available sequences is typically sev-
eral orders of magnitude smaller than in bioinformatics, the
initialization strategy is crucial to avoid running into poor
local maxima of the objective, i.e. the likelihood function
we try to maximize using EM. We obtained the highest
alignment accuracies as follows. We initialized the match and
insert means using the feature vectors of a sequence having
length L (as chosen above). Excluding that sequence from
the training procedure enabled the model to properly account
for the other sequences without overfitting the initializing
sequence. Other strategies to obtain a proper initialization
led to lower alignment accuracies. For example, we tried

random initializations as well as resampling all sequences
to the same length (corresponding to a linear stretch), fol-
lowed by averaging. The covariance matrices were uniformly
initialized to a fixed, relatively high value as a measure to
overcome over-fitting. Additionally, to avoid the collapsing-
Gaussian problem, we constrained the estimated variances
to a reasonable minimum [24]. The transition probabilities
were initialized uniformly, with the exception for match-match
and delete-insert transitions: the former are encouraged and
the latter discouraged. After training the profile HMM, we
compute alignments between the model and each sequence
using the Viterbi algorithm. Pairwise alignments between any
two sequences can be derived using the model as a central
intermediary. This last step is illustrated with an example of
aligning the same recordings also used in Fig. 2. We show
the observation probabilities (log-scaled) in Fig. 4a and b for
two sequences against a number of match states based on
the trained profile HMM. The optimal state sequence found
via Viterbi decoding for each sequence is illustrated as an
alignment path in white (alignments against non-match states
are not directly visible in the figure and the path is interpolated
accordingly). Based on the first alignment we can align a
given feature vector in the first sequence to states in the
profile HMM, which then can be aligned to feature vectors in
the second sequence using the other alignment. The resulting
pairwise alignment between the given feature sequences is
illustrated in Fig. 4c. We refer for more details on the training
and decoding process to [24], [56].

C. Accelerating Alignments Using Multi-Scale Dynamic Pro-
gramming

To obtain alignments of high accuracy, it is necessary to
use features with a high temporal resolution. The resulting
increase in length of the feature sequences compared to lower
resolutions, however, also leads to a considerable increase of
the computational costs for the alignment methods described
above. In particular, assuming that all sequences are roughly of
length N, the time and memory requirements of the dynamic
programming technique presented in Section III-A as well as
of the Baum-Welch (in each iteration) and Viterbi algorithms
used in Section III-B are quadratic in N. Therefore, for large
N, the alignment problem can easily become computationally
impractical or even infeasible.

To increase the computational efficiency for both joint align-
ment methods, we adapted the multi-scale alignment strategy
proposed in the context of DTW in [42], [43]. The general
idea is to recursively project a path obtained on a coarse
feature resolution level to a next higher resolution and to refine
the projected alignment on that level. This way, only entries
(corresponding to aligned positions in progressive alignment,
or feature-state combinations in the profile HMM) around
the projected path in a matrix need evaluating. As shown in
[42], this strategy is particularly useful for music due to the
high temporal correlation between neighboring feature vectors,
i.e. the temporal feature resolution can be decreased without
losing the information necessary to find the correct path on
the coarser level. Since progressive alignment and the Baum-
Welch/Viterbi algorithms share common algorithmic roots, we

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

can adopt the multi-scale strategy for both methods. More
precisely, similar to [13], [42], we use a total of four different
feature resolutions, with the lower three ones obtained from
the highest using low-pass filtering (smoothing) and down-
sampling. The resulting temporal resolutions are 1 sec, 0.5
sec, 0.1 sec and 0.02 sec. After computing an alignment (or
a Baum-Welch iteration) on a coarsest level, we project the
path to the next finer resolution and constrain alignments to
run in a neighbourhood of the projected path. The size of the
neighbourhood was defined as in [13], [42]. This is illustrated
in Fig. 4a and b for the profile HMM: An alignment path
computed on a coarse level was projected to the final feature
resolution, where it is used to constrain which entries in the
observation probability matrix are computed. Entries outside
the constraint region are formally given an extremely low
probability (white entries). Similar constraint regions are also
applied during the computation of the observation and poste-
rior probability matrices used in the Baum-Welch algorithm.
During our experiments, we observed similar speed-ups as
reported in [42], i.e. the resulting methods were typically faster
by a factor of 40-100 depending on the length of the recordings
used — without a decrease in alignment accuracy.

IV. COMPARING PAIRWISE, PROGRESSIVE AND
PROFILE-HMM BASED ALIGNMENT

The two methods described in Section III differ considerably
on a formal level, with one being described as an optimization
and the other as a probabilistic inference problem. On the
algorithmic level, however, there are many similarities. In
particular, under certain conditions, DTW is equivalent to
a negative log-likelihood implementation of an HMM using
multinomial Gaussian distributions for the observations, an
implementation type highly advisable for HMMs due to its
numerical stability [56]. This is the case if we limit ourselves
to using a Euclidean distance to compare features and use
additive instead of multiplicative weights for different step
sizes. With these limitations, the application of a logarithm
transforms the HMM-likelihood from a product of probabil-
ities to a sum of log-probabilities, which for the case of a
Gaussian takes the form of a Euclidean distance. One can show
that the result is equivalent to DTW by interpreting the features
of one DTW sequence as HMM states, using the features as
the mean of the corresponding Gaussians and adding some
non-emitting states to model certain step sizes — see [56], [57]
for some discussion.

Given these algorithmic similarities between general DTW
and HMM, it is interesting to note where the central con-
ceptual differences between our two approaches are and how
they could affect the alignment results. A first difference is
adaptability in size. Our progressive method retains every
feature sequence it encounters, gradually adapting the size of
the template as needed. Our profile HMM has a fixed size and
topology once the parameter L is set during the initialization.
A second difference is early vs late merging. Here, the
progressive method merges information from features only
at the distance level (computing the cost matrix C'), which
could be called late-merging. In contrast, the profile HMM

learns a consensus in the form of a sequence of means for the
match states: for a given match state, the mean is computed
during the maximization step in Baum-Welch as a weighted
sum of feature vectors (where the weights correspond to the
posterior probabilities computed using the forward-backward
procedure). Therefore, the averaging of information is already
done at the feature level, which could be called early-merging.
A third difference is the distance measure. In a progressive
method one is free to choose or design a distance measure to
compare feature vectors. In a profile HMM, distances corre-
spond to observation probabilities and as such one typically
has to choose from specific families of distributions (like the
Gaussian family). While this is a limitation on the one hand,
it enables the learning of parameters. In our case, we can
learn and adapt the covariance matrices, which conceptually
can be regarded as local feature distances adapted to the
sequences. A fourth difference is the greediness of updates. To
process a single sequence, the progressive method computes an
alignment with the current template and updates the template
before the next sequence is processed. The profile HMM
employs the forward-backward procedure as part of Baum-
Welch to compute the posterior, which conceptually can be
interpreted as computing a soft alignment between each given
feature sequence and the states in the profile HMM. Interpreted
this way, in each iteration of Baum-Welch the profile HMM
first computes an alignment for every single sequence before it
updates its parameters. In this respect, the progressive method
is more greedy compared to the profile HMM.

Overall, it is difficult to argue whether, for example, the
increase in flexibility resulting from adaptability in size could
give our progressive method an advantage over our profile
HMM, or whether the greedy updates of the progressive
method not only lower the computational costs but also reduce
its alignment accuracy (as the profile HMM updates might be
more robust due to taking all feature sequences into account).
Therefore, we conduct in this section a series of experiments
to assess the alignment quality of both methods under real-
world conditions. To maximize the comparability, we use the
same features for both methods and choose the best parameter
configuration we could identify, i.e. the set of parameters
maximizing the alignment accuracy, as described below. Fur-
thermore, to identify whether our methods indeed have benefits
over standard synchronization methods, we include the results
for two widely-used pairwise methods [13], [14]. While the
method presented in [14] uses a different set of features,
the method presented in [13] is directly comparable to our
methods as the same types of features are being used.

A. Dataset and Settings

1) Dataset: For our evaluation, we use a dataset consisting
of 288 recordings for five of Chopin’s Mazurkas, with 30-80
individual performances per piece, see Table I. The dataset
is highly useful in our context for several reasons. First,
interpretations of Mazurkas are often quite expressive leading
to considerable differences in terms of timing, dynamics,
balance, articulation and playing style. Second, the recordings
were made in a time span ranging from 1931 to 2002 across a

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

TABLE I
CHOPIN MAZURKAS AND THEIR IDENTIFIERS USED IN OUR
EXPERIMENTS. THE LAST TWO COLUMNS INDICATE THE NUMBER OF
PERFORMANCES AVAILABLE FOR THE RESPECTIVE PIECE AND THE
NUMBER OF EVALUATED UNIQUE PAIRS.

ID Piece No. Rec. No. Pairs
M17-4 Opus 17 No. 4 62 1891
M24-2 Opus 24 No. 2 62 1891
M30-2 Opus 30 No. 2 34 561
M63-3 Opus 63 No. 3 81 3240
M68-3 Opus 68 No. 3 49 1176

wide range of venues, often resulting in extensive differences
regarding the noise level, reverberation and room acoustics,
acoustical properties of the instrument in use, recording equip-
ment and audio quality as well as stylistic choices typical
for a specific time period. Overall, these differences present
substantial challenges to an automatic alignment method.

To evaluate our methods, we can exploit another unique
property of the dataset. In particular, corresponding positions
across different performances were manually annotated on the
beat level as part of the Mazurka project!, which enables a
straightforward evaluation of automatic alignment methods as
described next. Since handling structural differences is out of
our scope, we exclude performances with structural differences
(such as additional repetitions of a part of a piece) from our
experiments.

2) Evaluation Measure: We use the manually annotated
beat positions as follows to evaluate the alignment accuracy:
given an alignment path between two versions of a piece,
we locate for each annotated beat position in the one version
the corresponding position in the other version. The absolute
differences between the manually annotated beat positions and
those obtained from the alignment are computed and averaged
for all beats. The average (in milli-seconds) is employed as
the evaluation measure, which is referred to as the average
beat deviation (ABD) in the following. It is measured for
each Mazurka and each pair of recordings in our experiments.
Note that the number of pairs for one Mazurka is a binomial
coefficient, for example, for M17-4 our setup contains 62
recordings, which results in (%) = 1891 unique pairs and
corresponding ABD values, see Table 1. Further, to increase the
interpretability of the evaluation results, we include in Table II
the results for a baseline method that simply linearly stretches
the shorter to the longer recording to obtain an alignment.

3) Features and Parameters: For the pairwise method [13]
and our two joint alignment methods, we use a combination
of CENS [27], which is a type of chroma feature with uniform
energy distribution, and DLNCO features [13], which estimate
onset positions separately for each chroma, both with a 20ms
temporal resolution. For the pairwise method and progressive
alignment, we use the cosine distance for CENS and the
Euclidean distance for DLNCO, as proposed in [13]. Further,
we set the weights (wq,ws,ws) = (2,1.5,1.5) for both
methods, use a gap penalty Cc = 3.6 and sort the feature
sequences to be aligned according to their length from short
to long. (We investigate the influence of these parameters in

Uhttp://www.mazurka.org.uk

TABLE II
ALIGNMENT ERROR (MEAN AND STANDARD DEVIATION OF AVERAGE
BEAT DEVIATION, IN MILLISECONDS) FOR THREE TYPES OF ALIGNMENT
METHODS AND A RANDOM BASELINE

Pairwise Pairwise Profile Progressive
1[14] I [13] HMM Alignment Baseline
D mean std | mean std | mean std | mean std | mean = std
M17-4 | 116 638 68 19 | 62 12| 59 12 | 3997 1908
M24-2 | 79 35 39 20| 33 9 31 6 | 2726 2485
M30-2 | 69 121 30 8 32 7 30 5 | 2403 1401
M63-3 | 181 1332 | 46 32| 39 11| 40 11 | 2874 1846
M68-3 | 212 1444 | 58 23| 51 19 | 46 13 | 1947 1177

more detail in Section V). The pairwise method described in
[14] employs spectrogram-based features and the Euclidean
distance to compare them. We use the default settings provided
with the method.

B. Comparison Between the Pairwise and Joint Alignments

Before we begin our more detailed investigation of individ-
ual components in our methods, we start with a more general
comparison of the alignment accuracy of the pairwise and
joint alignment methods. The distribution of the average beat
deviation (ABD) values for all pairs is summarized for each
of the five Mazurkas separately in Table II as well as in the
boxplots?, shown in Fig. 5. As a reference, we additionally
include in Table II the results of another widely used pairwise
method, referred to as method I [14], and the baseline method,
which uses a linear stretch as discussed in Section IV-A2.

As shown in Table II, both joint alignment methods reduce
the mean ABD compared to the pairwise method II [13],
for most pieces. For example, the mean ABD for M68-3
drops from 58ms using pairwise alignment, to 51ms with the
profile HMM alignment (decrease by 12%), and even lower
to 46ms with the progressive alignment (decrease by 21%).
On average, the mean ABD drops by 12% using the profile
HMM and by 15% using progressive alignment. However,
a more considerable improvement resulting from the joint
alignment methods is a higher robustness. As can be seen
from Fig. 5, the inter-quartile range is smaller for all five
pieces using either of the two joint alignment methods, and
the number of large-value outliers is drastically reduced. We
can also measure this improvement by the decrease of the
standard deviation (std), which for M68-3 is 17% using the
profile HMM (drops from 23ms to 19ms) and 43% using
progressive alignment (from 23ms to 13ms). This decrease
is even greater for other Mazurkas (M24-2 and M63-3). On
average, the standard deviation of ABD is reduced by 51%
using the profile HMM and 58% using progressive alignment.

Overall, the two joint alignment methods are more stable
compared to pairwise alignment, as both of them provide a
higher robustness against large alignment errors, which also
leads to an increase in alignment accuracy. As an exception,
the improvement on M30-2 is limited, as the mean ABD using

2We use standard boxplots: the box gives the 25th and 75th percentiles
(p2s and p7s), where the center bar indicates the median. The whiskers extend
to the smallest data point greater than pas - 1.5(p7s - p25) and the largest data
point less than pr7s + 1.5(p7s - p25s), and the outliers are plotted as red crosses.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

M17-4 M24-2
W 1024 1024
E
g 512 512 A : Progressive
B 25 256 ¥ ——
- i +
S
& s & 128 i B : Profile HMM
- | —
© 64 I_J':l 64
el ;1
o 2} + * + 32 é * i] C : Pairwise
o ——
S ! N 16 % * +
H + + + t
>
< 8 8
A B c A B c
M30-2 M63-3 M68-3
1024 1024 + 41024
512 512 * s
256 256 256
128 128 128 - f
1
1 b
64 + 64 i * 64
il =jMl=
2y =3 |J__| 32 $ * 1 %2 !
T 1 ¥ L 1L 1
16 + Lo]et ¥ 1 % 6] + . i
+
+
st + M 8 8
A c A B c A B c

Fig. 5. Comparison of the pairwise alignment method [13] with our proposed
progressive alignment method and profile HMM method. The boxplots illus-
trate the distribution of the average beat deviation values for each Mazurka
separately on a logarithmic scale.

the progressive alignment is the same as using pairwise align-
ment, while the profile HMM is a bit worse, and the std drops
only slightly (from 8ms to 7ms using profile HMM and to
Sms using progressive alignment). However, the experimental
results indicate that this piece is relatively easy to align, since
the mean ABD using pairwise alignment is 30ms (which is
already low compared to the feature resolution level of 20ms)
and the outliers are few and not as extreme as in other pieces.
In this case, there is less room for the joint alignment methods
to improve. This result matches the main effect we observe
from the joint alignment, which is a gain in robustness against
strongly incorrect alignments.

To test this hypothesis further, we conducted another ex-
periment to show which error level is improved the most by
our methods. To this end, we show in Fig. 6 a histogram
of the deviation for all individual beats using all alignment
pairs without averaging (corresponding to around 2.5 million
evaluated beats). It shows that both joint alignment methods
reduce the number of alignment errors clearly in the range of
100ms - 1000ms beat deviation.

We illustrate the superior robustness of our joint alignment
methods over pairwise methods, with an example aligning
performances of Op. 24 No. 2 by Luisada and Richter. Figure 1
shows an excerpt of the alignment which is problematic for
pairwise method II [13]. As shown in the corresponding score,
the six measures are mainly composed of repeated notes or
chords with expressive markings. In addition to differences
in balance (the relative loudness), as we can see from the
CENS features, the two performers also play differently with
regard to the timing. Furthermore, the two recordings contain
different degrees of noise. In the presence of the above

[|Pairwise
S [|Progressive
~ Profile HMM

£ Nﬂm o
10! , Wé;‘:l i, 1

2000 3000 5000700010000

wn, I I L [I I I [I
50 70 100 200 300 500 700 1000

Beat Deviation (ms)

Fig. 6. Histograms of beat deviation using the pairwise alignment method,
the progressive alignment and profile HMM method.

differences, the pairwise method fails to identify the correct
alignment, see the solid path in Fig. 1, compared to the
annotated beat positions (red dots). The other two alignments,
which are shown as dashed and dotted paths in Fig. 1, result
from our two joint alignment methods. In computing them,
we include five other recordings, whose information helps
to stabilise the alignment. As a consequence, we see that
these two paths coincide almost always with the ground truth
annotations.

C. Comparison of the Two Joint Alignment Methods

As shown in Table II and Fig. 5, the two joint alignment
methods have a similar alignment accuracy and robustness,
with the profile HMM having a slightly higher mean and
std ABD for some pieces. To find out whether these small
differences are statistically significant, we conducted a t-test
to compare ABD values for all alignment pairs using the
PA and PP methods. It indicates that there is a statistically
significant difference in the ABD value using PA method
(M = 42,SD = 14) and PP method (M = 44,5D = 16);
t(8758) = 20.4, p = le — 90. However, despite the signifi-
cance, the difference between the two is relatively small in this
experiment, which is also reflected by Cohen’s measure for ef-
fect size: ds = 0.1, indicates that the statistical significance is
mainly reached due to the fairly large sample size. Therefore,
in the next section, we will conduct a series of experiments
on both joint alignment methods, to better understand their
behaviour in other scenarios, to give an in-depth analysis of the
influence of their parameters and to show possible extensions
to further improve their performance.

V. FURTHER INVESTIGATIONS OF THE JOINT ALIGNMENT
METHOD

In this section, we conduct six groups of additional ex-
periments to further understand the behaviour of our joint
alignment methods. We start with investigating the effect
the number of available performances has on our methods.
Next, we study the influence of the gap concept and the
gap penalty parameter on the progressive alignment method,
followed by an analysis of the influence of the order in
which recordings are aligned. After that, we implement Viterbi
training as an alternative model training method to the Baum-
Welch process, in order to further accelerate the profile HMM.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

140 T T T T T T T T

X Pairwise
% Progessive ~
& Profile HMM

-

)

o
T

=
=5
=

Average Beat Deviation (ms)
B -3 3
o o o
T T
i ——i
—e—

Number of Performances

Fig. 7. Comparison between the pairwise alignment [13] and two joint
alignment methods for subset Experiments.

As a reverse idea, we also introduce an iterative extension
to our progressive alignment method and study whether it
can be used to exchange computation time for an increase
in alignment robustness. Finally, we provide the evaluation
results for new pieces with highly precise ground truth to
further test how our methods behave under clean recording
conditions (compared to the highly varied accoustic scenarios
available in the Mazurka dataset).

A. Subset Experiments

In the previous experiments, we used large numbers (30
to 80) of performances of each piece to perform joint align-
ments. However, there is not always such a large number
of different versions available for the same piece. Therefore,
in this experiment, we investigate how many recordings we
need to observe an improvement in robustness using the joint
alignment methods compared to a pairwise method.

We perform experiments with subsets of different sizes
ranging from 3 to 10 recordings. For each size, we randomly
choose 10 sets from all the recordings of a given piece.
Numerical results for the pairwise alignment method [13] are
compared with both PA and PP methods in Fig. 7. As shown,
the progressive alignment method decreases the mean and
std ABD for subsets of all sizes steadily, compared to the
pairwise method. The difference when there are only three
recordings available is relatively small but still measurable,
and it becomes more pronounced when more recordings are
included in the alignment procedure. The results indicate that
progressive alignment can improve the alignment accuracy and
robustness even with a small set of recordings, i.e. it is not
necessary to have a large number of versions in order to benefit
from our method.

On the other hand, the Profile HMM method is worse in
terms of mean and std ABD than both pairwise and progressive
alignment methods when only a few recordings are available.
The main reason here is that the profile HMM employs
training data to adjust the internal sequence representation to
the given data, and with so little training data this capability
simply cannot yet unfold its advantages. Its performance
improves with larger subsets, as more data is available in the
model training. This behaviour could indicate that the increase
in alignment accuracy for profile HMM based methods as
reported in some bio-informatics-related publications might
only be achievable if a similar number of training sequences
is available. Since there are often several thousand sequences

T

x M17-4

x M24-2
M30-2 -

N-
5

N,
3
T

x M63-3
x M68-3

IfF x}ﬁ HofE Iiﬁ XIII]

@
2N
T T

|

o
T

Average Beat Deviation (ms)

>

Gap-less 1.2 2.4 3.6
Gap Penalty

Pairwise

Fig. 8. Average beat deviation (ABD) values for five Mazurka pieces with
progressive alignment using a gap-less variant and different values of gap
penalty, compared with the pairwise alignment method [13]. The cross markers
represent the mean ABD and the error bars show the standard deviation.

available in bio-informatics [58], the situation is quite different
to music processing where such a high number cannot be
expected.

B. Gap Penalty

To avoid a possible temporal uncertainty caused by copying
features, we insert a special gap symbol when updating the
template (Section III-A). We study the influence of these gaps
on the alignment accuracy by experimenting with different
values of the gap penalty parameter and a gap-less variant.

For the gap-less variant we use the simple strategy described
in Section II-A and set z, = (z},,...,25, ! «k). Com-
paring the results for this gap-less variant with the baseline
pairwise method in Fig. 8, we can see that the gap-less
version leads to small improvements, mostly with respect to
robustness as indicated by the decrease in dispersion. However,
these improvements are more pronounced using the proposed
progressive method with a gap penalty value of 3.6. Further,
the gap-less variant does not reduce the mean ABD compared
to the pairwise alignment. This behaviour could indicate that
copying the features to stretch the newly aligned sequence,
as done in the gap-less variant, indeed leads to a temporal
uncertainty in the features causing the loss of alignment
accuracy compared to the gap-variant.

However, from Fig. 8 we can also see that the value of
the gap penalty needs to be sufficiently large, at least larger
than the maximum value of the local cost measure (which is
3.0 in our case), to ensure every gap is sufficiently penalised.
On the other hand, if the value is too large, features in the
new sequence z¥, , are not likely to get aligned to the z; if
it contains a gap which can lead to a loss of accuracy as
well. We found 3.6 a suitable value for the gap penalty during
the development of the method using only M17-4. As seen
in Fig. 8, this value yields the best results for the remaining
Mazurkas as well. Furthermore, it works well with additional
pieces in Section V-F.

C. Alignment Order

As described in Section III-A, the template Z in our pro-
gressive method is built up gradually by successively aligning
the feature sequences X', ..., X*. The order in which they
are aligned should be chosen with care for two reasons. Firstly,
feature sequences at the beginning have less information from
other versions to stabilise the alignment. Secondly, errors made

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

©
S

N @
S o
T
X
==
83|
R
0
L

@
=]
T

@ B
S S
T

IRTRIRraty

| ! ! ! |
DESC.Length ASC.Length Cost ASC.Length+lter Cost+lter

Variants on Alignment Order and Ilterative Alignment

Average Beat Deviation (ms)
8 g
T T
L

S

Pairwise

Fig. 9. Average beat deviation(ABD) values for five Mazurka pieces with
progressive alignment using different alignment orders and the iterative
extension, compared with the pairwise alignment method [13].

at an early stage may propagate to the following alignments.
Therefore, we compare four different ordering strategies in
our next experiments: The first strategy is ordering versions
randomly. Next, we use two length-based ordering strategies,
where versions are sorted by their duration in ascending or
descending order. For the last strategy, we try to find an order
for the sequences such that each sequence being aligned is
the easiest to be aligned among all remaining sequences, in
some sense. More precisely, we first compute for each pair of
recordings an alignment and a corresponding total cost using
the baseline pairwise method [13]. We normalize each cost
by dividing it by the length of the corresponding alignment
path. The pair with the smallest normalized cost defines the
first two feature sequences to be aligned, i.e. X' and X2
Next, we set X3 to the feature sequence where the sum of
its normalized costs to X! and X? is the smallest among all
remaining sequences. We continue choosing the next version
that has the lowest sum of normalized costs between itself and
each one of the previously placed versions. This procedure is
repeated until all recordings are sorted. Note that this strategy
is considerably more computationally expensive than the first
three.

Results are shown in Fig. 9, where we excluded the random
order strategy as the resulting error was relatively high and
would have occluded the nuances in the other strategies.
As indicated by the results, the alignment order is indeed
important in progressive alignment. The progressive alignment
with a descending length-based order shows improvements in
both accuracy and robustness over the pairwise method for
most pieces. The ascending length-based order leads to an even
better result. The possible reason could be that the template
monotonically grows in length with each sequence being
aligned: with a descending length based order, the difference
in length between the template and the sequence to be aligned
will become large when aligning the last several sequences,
much larger than for the ascending length-based order where
the template length grows slowly with the sequences being
aligned. That may lead to a slight alignment accuracy drop
when aligning shorter sequences at the end as the DTW
weights in use have a slight bias in favour of the main
diagonal direction, ie. (w; < ws + ws) (Section IV-A).
Both the ascending length-based and the cost-based order
strategy decrease the mean ABD and the standard deviation
without any significant differences between them. Due to the
considerable difference in computational costs between these
two strategies, we propose the use of the ascending length-

~=M17-4-Baum-Welch
= ~M17-4-Viterbi Training
£ 160 -=-M68-3-Baum-Welch
E™ —~M68-3-Viterbi Training
M63-3-Baum-Welch
M63-3-Viterbi Training
~-M24-2-Baum-Welch
—+M24-2-Viterbi Training
-=-M30-2-Baum-Welch
—+ M30-2-Viterbi Training

Q100

Average Beat

20 1 1 1 1 1 L1
9 10 12 15 20 30

1 2 3 4 5 6 7 8
Number of Iterations

Fig. 10. The convergence of average beat deviation with increasing number
of iterations for two model learning methods.

based order.

D. Viterbi Training

Since the progressive alignment and the profile HMM have
comparable alignment accuracies on larger datasets (Section
IV), we compare their computational complexities to see
whether other factors contribute to choosing one approach
over the other when many versions of a piece are available.
Therefore, we now inspect the computational complexity of
both methods. To this end, let K be the number of recordings,
each having about N features. To align the k-th recording
to the template, the progressive alignment method computes
k —1 cost matrices each with a time and memory requirement
of O(N?) (the acceleration technique described in III.C with
a fixed number of feature resolutions does not change the
complexity level for this step). Since we repeat this step K
times, we compute KE-D cost matrices, thus the method is
in O(K2N?) (just as standard pairwise methods). In a single
Baum-Welch iteration of the profile HMM, we compute K
forward matrices and K backward matrices of size 3/N? (since
we have three states per feature in the profile HMM). If we
set the number of Baum-Welch iterations to a fixed value
independent of the number of available recordings, the overall
complexity is in O(KN?). Therefore, for a high number
of recordings, the profile will eventually be the preferable
approach, as the complexity is lower and with a high number
of recordings the difference in alignment accuracy between
the PA and PP method vanishes as well. In practice, with 10
Baum-Welch iterations, the runtime for the profile HMM will
be lower for more than ~ 120 recordings, as in this case K
becomes higher than the ratio of constant factors influencing
the absolute runtime of the profile HMM to that of progressive
alignment (assuming similar runtime costs for the observation
probabilities and the local cost measure).

The number of iterations we need, however, depends on
the convergence behaviour of the method. Therefore, we
conducted an experiment to investigate this behaviour. More
precisely, Fig. 10 shows the average beat deviation for each
piece after each Baum-Welch iteration. As we can see, the
method typically converges rather quickly, with only little
change after the first five to ten iterations (which motivated
us to limit the number of iterations to 10 in the initial
experiment).

A further technique often used in large scale procedures
in speech processing to accelerate the training is Viterbi
Training [24]. Here the idea is to replace the forward-backward

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

procedure with a simple Viterbi decoding. This way, instead
of a soft value encoding the probability of being in a certain
state at a certain time frame, the Viterbi decoding makes a
hard choice and sets the probability of the state-time pair to
1 if it is on the most probable path, and to 0 otherwise. The
parameter update remains conceptually identical. In practice,
Viterbi training often converges faster than Baum-Welch in
terms of the number of iterations but is more prone to local
minima of the likelihood function due to the hard decision
made during the decoding. Further, a single iteration with
Viterbi training is about twice as fast as one iteration of Baum-
Welch as the backward procedure becomes unnecessary.

We implemented Viterbi training for our profile HMM and
include the convergence results in Fig. 10. As we can see,
while each iteration is indeed more efficient with Viterbi train-
ing, the number of iterations necessary to reach convergence
is about the same. Further, with Viterbi training, there is a
slight but consistent loss of alignment accuracy caused by not
maximizing the likelihood function as Baum-Welch does [24],
which makes Viterbi training more likely to get stuck in a local
optimum. Therefore, Viterbi Training could be most useful as
an alternative to Baum-Welch process, to accelerate the model
training if the number of available recordings is very high,
however, at the cost of a slight drop in alignment accuracy.

E. Iterative Alignment

As mentioned in Section IV, progressive alignment is greed-
ier regarding the updating process. Intuitively, this greediness
may lead to an accuracy drop, as reported in some bio-
informatics tasks. In particular, the first alignments need to be
more reliable as they have less information available and, at
the same time, will influence the alignment with all remaining
sequences. To circumvent this potential problem, we now
introduce an iterative extension to our progressive alignment
that can be used to further refine the template. The basic idea
is to remove individual versions from the template and re-
align them to the remaining template. Specifically, we take
out one version at a time, starting from the first one, and
perform the alignment between this version and the template
of the remaining versions. We evaluate the resulting template
after re-alignment using a score value, defined as the sum of
the alignment costs between all pairs in this template (which
can easily be extracted from the template). If the alignment
score decreases, we keep the updated template, otherwise, we
restore the previous template. This process of re-alignment is
continued until no further improvement can be achieved.

We test the iterative refinement process with both ascending
length based order and cost based order. As shown in Fig. 9,
the iterative process does not lead to a substantial improvement
for any of the five Mazurka pieces. Overall, in our experiments,
we found that our progressive alignment is able to deliver
alignments of both high accuracy and robustness with a single
pass using a suitable alignment order.

E. Further evaluation

Although the Mazurka data is highly varied in terms of
acoustic conditions and expressive local tempo variations

TABLE III
COMPARING THE PAIRWISE ALIGNMENT, PROFILE HMM AND
PROGRESSIVE ALIGNMENT METHOD IN TERMS OF AVERAGE NOTE ONSET
DEVIATION (IN MILLISECONDS)

Pairwise II [13] | Progessive | Profile HMM

Piece mean std mean std | mean std
KV331 21 4 21 4 20 4
D783 27 7 24 4 27 8
Etude 26 6 24 3 24 3
Ballade 30 8 29 5 31 8

(Section IV-A), the pieces are all of the same style and
by one composer. Therefore, we now conduct on additional
experiment using a set of four excerpts compiled in [59]
from: Mozart Piano Sonata No. 11 in A major, KV331 first
movement, Schubert German Dance D.783, No. 15, Chopin
Etude in E major, Op. 10, No.3, and Chopin Ballade in F
major, Op. 38. Each excerpt has 22 performances by skilled
pianists recorded on a Bosendorfer computer-monitored piano.
Compared to the Mazurka dataset, there are several major
differences. First, all recordings were made using the same
instrument under the same recording conditions and at the
same time, such that the acoustic conditions do not differ
much within the dataset. Second, the recording quality is very
high and contains only little reverberation. Third, compared to
the Mazurka pieces with manually annotated beat positions,
this dataset contains precise onset annotations for each note.
To account for the higher quality annotations, we change the
evaluation measure from average beat deviation (ABD) to
average note onset deviation in this section.

By providing cleaner acoustic conditions, we can use this
dataset to test whether our methods also improve the alignment
accuracy in less difficult scenarios, or whether a pairwise
method can translate the clean conditions into higher accura-
cies than our proposed methods. The results for the pairwise
alignment [13] and the two joint alignment methods are shown
in Table III, where we used the same settings as described in
Section IV-A3. First, we can see that the results reflect the
recording quality in this dataset, with relatively low alignment
errors for all three methods. Further, we can see that also using
this dataset our joint alignment methods slightly improve the
mean of the alignment error, with the progressive alignment
slightly ahead of the profile HMM. More importantly, we
observe a similar behaviour regarding the robustness of the
alignments as before, with a considerably lower standard
deviation for the joint methods: compared to the pairwise
method, our progressive alignment again lowers the standard
deviation by between 38% and 50% — despite the higher audio
quality. These results demonstrate that our method indeed can
be used to remove many outlier alignments, where the pairwise
method fails to compute an accurate alignment.

VI. CONCLUSION

In this paper, we introduced two methods for the joint
alignment of multiple performances of a piece of music: a
progressive alignment (PA) and a probabilistic profile (PP)
method. As demonstrated by our experiments using recordings

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

of Chopin Mazurkas, both methods can be used to improve
the alignment accuracy and robustness over state-of-the-art
pairwise methods. An increase in accuracy using a method
from the PP family over a member of the PA family as
reported in bioinformatics could not be observed in our mu-
sic synchronization scenario, but the superior computational
complexity of our PP method makes it an interesting option if
the number of available recordings is a hundred or higher. We
conducted additional experiments to investigate the behaviour
of our joint alignment methods by testing the influence of
various parameters and analyzed the performance of vari-
ous extensions aiming to increase their alignment accuracy
and computational efficiency. In particular, experiments with
smaller datasets showed that our method can outperform
state-of-the-art pairwise methods even if only a small set of
recordings is available.

ACKNOWLEDGMENT

This work was partly funded by the China Scholar-
ship Council (CSC) and EPSRC Grant EP/J010375/1 and
EP/LO19981/1.

REFERENCES

[1] S. Wang, S. Ewert, and S. Dixon, “Robust joint alignment of multiple
versions of a piece of music,” in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan,
2014, pp. 83-88.

[2] A. Arzt, S. Bock, S. Flossmann, H. Frostel, M. Gasser, and G. Widmer,
“The complete classical music companion v0.9,” in Proceedings of the
AES International Conference on Semantic Audio, London, UK, 18-20
2014, pp. 133-137.

[3] N. Montecchio and A. Cont, “A unified approach to real time audio-to-
score and audio-to-audio alignment using sequential Montecarlo infer-
ence techniques,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech
Republic, 2011, pp. 193-196.

[4] M. Miiller, M. Clausen, V. Konz, S. Ewert, and C. Fremerey, “A
multimodal way of experiencing and exploring music,” Interdisciplinary
Science Reviews (ISR), vol. 35, no. 2, pp. 138-153, 2010.

[5] J. Serra, E. Gémez, P. Herrera, and X. Serra, “Chroma binary simi-
larity and local alignment applied to cover song identification,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 16, pp.
1138-1151, 2008.

[6] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and
M. Slaney, “Content-based music information retrieval: Current direc-
tions and future challenges,” Proceedings of the IEEE, vol. 96, no. 4,
pp. 668-696, 2008.

[71 S. Ewert, B. Pardo, M. Miiller, and M. D. Plumbley, “Score-informed
source separation for musical audio recordings: An overview,” IEEE
Signal Processing Magazine, vol. 31, no. 3, pp. 116-124, May 2014.

[8] N. Hu, R. B. Dannenberg, and G. Tzanetakis, ‘“Polyphonic audio
matching and alignment for music retrieval,” in Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, USA, 2003.

[9] N. Orio and F. Déchelle, “Score following using spectral analysis and
Hidden Markov Models,” in Proceedings of the International Computer
Music Conference (ICMC), 2001, pp. 125-129.

[10] C. Joder, S. Essid, and G. Richard, “A conditional random field
framework for robust and scalable audio-to-score matching,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 8,
pp. 2385-2397, 2011.

[11] C. Raphael, “A hybrid graphical model for aligning polyphonic audio
with musical scores,” in Proceedings of the International Conference
on Music Information Retrieval (ISMIR), Barcelona, Spain, 2004, pp.
387-394.

[12] Z. Duan and B. Pardo, “A state space model for online polyphonic audio-

score alignment,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech
Republic, 2011, pp. 197-200.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

S. Ewert, M. Miiller, and P. Grosche, “High resolution audio syn-
chronization using chroma onset features,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Taipei, Taiwan, 2009, pp. 1869-1872.

S. Dixon and G. Widmer, “MATCH: A music alignment tool chest,”
in Proceedings of the International Conference on Music Information
Retrieval (ISMIR), London, GB, 2005, pp. 492-497.

G. Widmer, S. Dixon, W. Goebl, E. Pampalk, and A. Tobudic, “In search
of the Horowitz factor,” AI Magazine, vol. 24, no. 3, pp. 111-130, 2003.
C. S. Sapp, “Comparative analysis of multiple musical performances,”
in Proceedings of the International Conference on Music Information
Retrieval (ISMIR), Vienna, Austria, 2007, pp. 497-500.

M. Miiller, V. Konz, A. Scharfstein, S. Ewert, and M. Clausen, “Towards
automated extraction of tempo parameters from expressive music record-
ings,” in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Kobe, Japan, 2009, pp. 69-74.

C. C. Liem and A. Hanjalic, “Expressive timing from cross-performance
and audio-based alignment patterns: An extended case study,” in Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Miami, USA, 2011, pp. 519-524.

N. Montecchio and A. Cont, “Accelerating the mixing phase in studio
recording productions by automatic audio alignment,” in Proceedings
of the International Society for Music Information Retrieval Conference
(ISMIR), Miami, Florida, United States, 2011.

D. Baaran, A. T. Cemgil, and E. Anarm, “A probabilistic model-
based approach for aligning multiple audio sequences,” IEEE/ACM
Transactions on Audio, Speech and Language Processing, vol. 23, no. 7,
pp. 1160-1171, 2015.

C. Raffel and D. P. W. Ellis, “Large-scale content-based matching of
MIDI and audio files,” in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), 2015.

G. H. Wakefield, “Mathematical representation of joint time-chroma
distributions,” in Proceedings of the SPIE International Symposium on
Optical Science, Engineering, and Instrumentation, 1999, pp. 637-645.
E. Gémez, “Tonal description of music audio signals,” Ph.D. dissertation,
UPF Barcelona, 2006.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis : Probabilistic Models of Proteins and Nucleic Acids. New
York, USA: Cambridge University Press, 1999.

D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. New York, NY, USA: Cambridge
University Press, 1997.

F. S.-M. Pais, P. de Cassia Ruy, G. Oliveira, and R. S. Coimbra,
“Assessing the efficiency of multiple sequence alignment programs,”
Algorithms for Molecular Biology, vol. 9, no. 1, pp. 1-8, 2014.

M. Miiller, F. Kurth, and M. Clausen, “Audio matching via chroma-based
statistical features,” in Proceedings of the International Conference on
Music Information Retrieval (ISMIR), 2005, pp. 288-295.

R. B. Dannenberg, “An on-line algorithm for real-time accompani-
ment,” in Proceedings of the International Computer Music Conference
(ICMC), 1984, pp. 193-198.

B. Vercoe, “The synthetic performer in the context of live performance,”
in Proc. International Computer Music Conference (ICMC), 1984, pp.
199-200.

N. Orio and D. Schwarz, “Alignment of monophonic and polyphonic
music to a score,” in Proceedings of the 2001 International Computer
Music Conference, 2001, pp. 155-158.

R. J. Turetsky and D. P. Ellis, “Ground-truth transcriptions of real music
from force-aligned MIDI syntheses,” in Proceedings of the International
Conference on Music Information Retrieval (ISMIR), Baltimore, USA,
2003, pp. 135-141.

A. Cont, “A coupled duration-focused architecture for real-time music-
to-score alignment,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 32, no. 6, pp. 974-987, 2010.

R. B. Dannenberg and N. Hu, “Polyphonic audio matching for score
following and intelligent audio editors,” in Proceedings of the Interna-
tional Computer Music Conference (ICMC), San Francisco, USA, 2003,
pp. 27-34.

A. Cont, “Realtime audio to score alignment for polyphonic mu-
sic instruments using sparse non-negative constraints and hierarchical
HMMs,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 5, Toulouse,
France, 2006.

B. Niedermayer, “Towards audio to score alignment in the symbolic
domain,” in Proceedings of the Sound and Music Computing Conference
(SMC), Porto, Portugal, 2009, pp. 77-82.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

C. Joder, S. Essid, and G. Richard, “Learning optimal features for
polyphonic audio-to-score alignment,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 10, pp. 2118-2128, 2013.
F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 23, no. 1, pp. 67-72, 1975.

L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Prentice Hall Signal Processing Series, 1993.

C. Raphael, “Automatic segmentation of acoustic musical signals using
Hidden Markov Models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, pp. 360-370, 1998.

R. Miotto, N. Montecchio, and N. Orio, “Statistical music modeling
aimed at identification and alignment,” in Advances in Music Information
Retrieval. Springer, 2010, pp. 187-212.

A. Maezawa, K. Itoyama, Y. Kazuyoshi, and H. G. Okuno, “Bayesian
audio alignment based on a unified model of music composition and
performance,” Proceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), pp. 233-238, 2014.

M. Miiller, H. Mattes, and F. Kurth, “An efficient multiscale approach to
audio synchronization,” in Proceedings of the International Conference
on Music Information Retrieval (ISMIR), Victoria, Canada, 2006, pp.
192-197.

S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic time
warping in linear time and space,” in Proceedings of the KDD Workshop
on Mining Temporal and Sequential Data, 2004.

R. Macrae and S. Dixon, “Accurate real-time windowed time warping,”
in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Utrecht, Netherlands, 2010, pp. 423-428.
P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100-107, 1968.
A. Maezawa, K. Itoyama, K. Yoshii, and H. G. Okuno, “Unified inter-
and intra-recording duration model for multiple music audio alignment,”
in Applications of Signal Processing to Audio and Acoustics (WASPAA),
2015 IEEE Workshop on, Oct 2015, pp. 1-5.

A. Arzt and G. Widmer, “Real-time music tracking using multiple
performances as a reference,” in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), Malaga, Spain,
2015.

M. G. Bergomi, “Dynamical and topological tools for (modern) music
analysis,” Ph.D. dissertation, Université Pierre et Marie Curie-Paris VI,
2015.

C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation
of image pairs by histogram matching-incorporating a global constraint
into mrfs,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 1. 1EEE, 2006, pp. 993-1000.
K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment
software version 7: improvements in performance and usability,” Molec-
ular biology and evolution, vol. 30, no. 4, pp. 772-780, 2013.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,
R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson,
and D. G. Higgins, “Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega,” Molecular Systems
Biology, vol. 7, no. 1, 2011.

G. ten Holt, M. Reinders, and E. Hendriks, “Multi-dimensional dynamic
time warping for gesture recognition,” in Proceedings of the Advanced
School for Computing and Imaging, 2007.

M. Wollmer, M. Al-Hames, F. Eyben, B. Schuller, and G. Rigoll, “A
multidimensional dynamic time warping algorithm for efficient multi-
modal fusion of asynchronous data streams,” Neurocomputing, vol. 73,
pp. 366-380, 2009.

S. Wang, S. Ewert, and S. Dixon, “Compensating for asynchronies be-
tween musical voices in score-performance alignment,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Brisbane, Australia, 2015, pp. 589-593.

R. B. Dannenberg and C. Raphael, “Music score alignment and computer
accompaniment,” Communications of the ACM, Special Issue: Music
Information Retrieval, vol. 49, no. 8, pp. 38—43, 2006.

L. R. Rabiner, “A tutorial on Hidden Markov Models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

S. J. Cox, “Hidden Markov models for automatic speech recognition:
Theory and application,” in Speech and Language Processing, C. Whed-
don and R. Linggard, Eds. London, UK: Chapman & Hall, 1990, pp.
209-230.

J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, “Balibase 3.0: latest
developments of the multiple sequence alignment benchmark,” Proteins:

Structure, Function, and Bioinformatics, vol. 61, no. 1, pp. 127-136,
2005.

[59] W. Goebl, “Numerisch-klassifikatorische Interpretationsanalyse mit dem
’Bosendorfer Computerfliigel’,” Master’s thesis, Universitdt Wien, 1999.

Siying Wang received the BSc(Eng) degree in
telecommunication engineering from Beijing Uni-
versity of Posts and Telecommunications in 2009.
She is currently pursuing her doctoral degree at the
Centre for Digital Music, Queen Mary University
of London (United Kingdom). Her research interests
include audio signal processing, music information
retrieval and musical performance study.

Sebastian Ewert received the M.Sc./Diplom and
Ph.D. degrees (summa cum laude) in computer
science from the University of Bonn (svd. Max-
Planck-Institute for Informatics), Germany, in 2007
and 2012, respectively. After a postdoc at the Cen-
tre for Digital Music, Queen Mary University of
London (United Kingdom), he became lecturer for
signal processing in the centre in 2015. Currently,
he is additionally holding a research position in
the EPSRC programme Fusing Audio and Semantic
Technologies (FAST) and is one of the leaders of
the Machine Listening Lab.

Simon Dixon is a Reader (Assoc. Prof.), Director
of Graduate Studies and Deputy Director of the
Centre for Digital Music at Queen Mary University
of London. He has a PhD in Computer Science
(Sydney) and LMusA diploma in Classical Guitar.
His research interests include high-level music sig-
nal analysis, computational modelling of musical
knowledge, and the study of musical performance.
Particular areas of focus include automatic music
transcription, beat tracking, audio alignment and
analysis of intonation and temperament. He was
President (2014-15) of the International Society for Music Information Re-
trieval (ISMIR), is member of the Editorial Board of the Journal of New
Music Research (since 2011), and has published over 150 refereed papers in
the area of music informatics.

