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ABSTRACT

We model expressive timing for a phrase in performed clas-
sical music as being dependent on two factors: the expres-
sive timing in the previous phrase and the position of the
phrase within the piece. We present a model selection test
for evaluating candidate models that assert different de-
pendencies for deciding the Cluster of Expressive Timing
(CET) for a phrase. We use cross entropy and Kullback
Leibler (KL) divergence to evaluate the resulting models:
with these criteria we find that both the expressive timing
in the previous phrase and the position of the phrase in the
music score affect expressive timing in a phrase. The re-
sults show that the expressive timing in the previous phrase
has a greater effect on timing choices than the position of
the phrase, as the phrase position only impacts the choice
of expressive timing in combination with the choice of ex-
pressive timing in the previous phrase.

1. INTRODUCTION

In classical music, performers vary the lengths of beats
throughout a performance while keeping the overall beat
rate. Such small variations of beat timing are known as ex-
pressive timing. Expressive timing contributes to the for-
mation of expressiveness in classical music. Research into
expressive timing shows that the expressive timing within a
phrase is not randomly distributed but similar timing pro-
files are used across different phrases. There are various
investigations about how such similar timing profiles can
be found and how such common timing profiles are used
by performers.

It is common in the literature to cluster the expressive
timing in performed classical piano music into different
types, with various temporal units used. For example, Repp
[1] uses principal component analysis to analyse the com-
monalities and differences in performances of a Chopin
Etude. Spiro et al. [2] use a self-organising map to cluster
the expressive timing within a bar and investigate how the
clusters of expressive timing are distributed. With model
selection tests, Li et al. [3] demonstrate that clustering the
expressive timing within a phrase is helpful for analysing
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expressive timing. Moreover, Li et al. [3] also introduce a
method to cluster the expressive timing within a phrase by
using a Gaussian mixture model. In this paper, we make
use of model selection tests to show how the choice of
Cluster of Expressive Timing (CET) is possibly affected.

There have been a few attempts to determine how ex-
pressive timing varies in a segment of performance. In
[4] and [5], Widmer et al. discuss how expression in per-
formed music is formed when the musical score is given.
Their basic idea for expressiveness synthesis is to render
each phrase using expressive gestures extracted from per-
formances of similar phrases in a training database. In [4],
the authors suggest that a dynamic Bayesian network may
be used for expressiveness synthesis, in which case, the ex-
pressive timing in the previous parts of performance may
affect the expressive timing in later parts. Similarly, in [6],
Todd points out that parabolic curves can be used for fitting
tempo variations across different levels of music structure.
This suggests that tempo variations within a phrase can be
affected by expressive timing in previous parts. Moreover,
in the rule based system from KTH [7], the expressive tim-
ing is affected by both the music score and the sequence of
expressive timing. As a summary of the works mentioned
above, the music score and expressive timing in previous
parts may affect the current choice of expressive timing.

In this paper, we examine two possible factors affecting
the choice of CET for a phrase: the position of the phrase
and the CET used in the previous phrase. In particular, we
use model selection tests to demonstrate how the CET in
a phrase is affected by both the CET used in the previous
phrase and the position of the phrase in the musical score.
We propose four Bayesian graphical models that assert dif-
ferent relationships between the CET used in a particular
phrase, the CET used in the previous phrase and the posi-
tion of the phrase. Then we design a model selection test
to evaluate how well the candidate models predict the use
of CETs. As the candidate models have different struc-
tures, we use cross entropy and Kullback Leibler (KL) di-
vergence to evaluate the resulting models. Cross entropy
and KL divergence are both derived from information the-
ory and can evaluate models in different model spaces.

To obtain the CET distribution in this analysis, we fol-
low the procedure developed in previous work [3], and use
the same database: two Chopin Mazurkas (Op.24/2 and
Op.30/2) and Islamey by Mily Balakirev [8]. In each candi-
date piece, the phrase lengths are identical throughout the
piece. In addition, the beat timing for the two Mazurkas
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is provided in the Mazurka database, which is used in var-
ious works [2, 9] by the CHARM group. The number of
CETs varies from piece to piece according to our published
methodology [3].

This paper is organised in the following way: we firstly
introduce how the expressive timing patterns within a phrase
are clustered. Then we observe how the CETs are dis-
tributed across different performers throughout a piece of
music. Next we introduce the candidate models in this pa-
per. Then we present the evaluation of the candidate mod-
els, followed by a discussion and conclusion.

2. CLUSTERING OF EXPRESSIVE TIMING

In this section, we describe how expressive timing is clus-
tered in this work. For two Chopin Mazurkas, the tempo
data is provided by the database. For Islamey, only beat
timing is provided. We now introduce how we convert beat
timing to tempo data for Islamey database. If we use ¢; to
represent the beat timing of the ith beat, for a piece of mu-
sic that has n beats, the beat timing can be represented as
t1,t2,...,tn, tny1 Where t, 11 represents the ending time
of the last beat in the piece. We use the reciprocal of
the inter beat interval to represent tempo at the beat level
(e 7, = tlﬂ;—tl) As mentioned above, the candidate
pieces have constant phrase lengths throughout the piece,
thus the expressive timing within the ¢th phrase that has
w beats can be represented as T; = (71, 72,...,Tw). By
the expectation maximisation method, we can fit the distri-
bution of expressive timing within a phrase to a Gaussian
mixture model such that:

A
p(Ti> = ZWGN(T’i|Ma7 Eéu”)a (1
a=1

where there are A clusters available, each with mean p,,
covariance X/ and weight 7, for index a. If we use T}
to represent the CET that the expressive timing in phrase ¢
belongs to, we have:

T; = arg, max o N (7| ptq, 2. 2)

(2

As discussed in previous work [3], the optimum number
of CETs for a phrase differs from piece to piece. Using
cross validation tests, the optimum number of CETs for the
candidate pieces was found to be 2 clusters for Islamey, 8
clusters for Mazurka Op.24/2 and 4 clusters for Mazurka
Op.30/2 [3].

Suppose that there are n phrases in a candidate piece
of music and there are m performances in the database.
If we use a vector to represent the clusters of expressive
timing used for each phrase in performance j, we have
Py = (17;, 135, ..., T;;). Thus we can use a matrix P*
whose row is P} for performer j to represent the clusters
of expressive timing used in each phrase for all perform-
ers. For easier observation, we convert matrix P* to a dia-
gram so that each element in P* is represented by a colour
block according to the cluster of expressive timing used.
This type of diagram is called a Tempo Variegation Map
(TVM) [10]. In Figure 1, we give a TVM for Mazurka

Tempo Variegation Map
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Figure 1: An example of a Tempo Variegation Map
(TVM) for Mazurka Op.24/2.

Op.24/2 as an example. In this diagram, each row repre-
sents a performance of the Mazurka and each column rep-
resents a phrase. Each colour block represents a CET used
in a phrase. The colours of blocks are selected according to
the centroids of the CETs, with similar colours represent-
ing those clusters whose centroids are similar. By observ-
ing the distribution of the CETs, we propose the candidate
models in this work.

The Use of Clusters for Different Phrases

Count of the Use of Clusters

15 20
Phrase Index

Figure 2: The distribution of CET used by all the per-
formers for each phrase in Mazurka Op.24/2. The colours
match those in Figure 1.

3. CANDIDATE MODELS

In this section, we introduce the four candidate models we
propose according to our observations of the TVMs. To il-
lustrate the observations for the candidate models, we use
Figure 1 as an example. Then we introduce some regulari-
ties of the distribution of CETs and give the mathematical
descriptions of the candidate models.

In Figure 1, we can see that for some phrases, the use
of CET agrees across different performers. If we count
the frequency of each CET for each phrase in a perfor-
mance, we obtain Figure 2. In this figure, we see how the
frequency of CETs differs from phrase to phrase, thus we
propose the positional model (PM), which asserts that the
position of the phrase in the music score affects the choice
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Figure 3: The relative frequency of CETs used by all
the performers after a specific cluster is used in Mazurka
Op.24/2. The colours match those in Figure 1.

of CET for a phrase.

Furthermore, if we observe Figure 1 again, we can see
that some CETs are likely to be followed by a particular
CET. For example, in Figure 1, cluster 5 is likely to be fol-
lowed by cluster 6. If we visualise the relative frequency
of each CET that appeared after another CET, we obtain
Figure 3 that visualises the different distribution of CETs
after a particular CET is used in the previous phrase. As
a result, we propose the sequential model (SM), which as-
serts that the choice of CET for a phrase is affected by the
CET used in the previous phrase.

Beside the positional model and the sequential model, we
propose two other candidate models: a joint model and an
independent model. The joint model (JM) asserts that the
choice of CET for a phrase is affected by both the position
of phrase and the CET used in the previous phrase. The in-
dependent model (IM) is a reference model which asserts
that neither the position of phrase nor the CET in the pre-
vious phrase have any effect on the choice of CET for the
next phrase.

In the candidate models, there are three variable param-
eters: the CET used in a particular phrase (1), the posi-
tion of the phrase (5) and the CET used in the previous
phrase (7}"_;). All candidate models are Bayesian graphi-
cal models that can be extended to a joint probability distri-
bution of the parameters in the candidate models (namely
p(T7_ 1, T}, ). In the model selection test we use a cross-
validation method to randomly select rows in P* to form a
testing dataset, with the remaining data in P* forming the
training dataset. We use five-fold cross validation to eval-
uate the candidate models. To remove the possible effects
of the random train/test split, we repeat the five-fold cross
validation tests several times.

Each training dataset is trained for finding p(T}* ,, T}, )
in the testing dataset. Then we evaluate how successfully
p(T7_, T;, 8) from the testing dataset is predicted accord-
ing to the training dataset. The results derived from dif-
ferent formations of testing and training datasets are aver-
aged. In some cases, certain combinations of (T* ,, T, 8)
may be absent in the training datasets but appear in the
testing datasets. This will cause a problem of zero prob-

ability [11, Ch.17]. We use Bayesian estimation to learn
the parameters in the candidate models to prevent the zero
probability problem, which adds a small count to all prob-
abilities [11, Ch.17]. For example, if there are x; samples
such that X = 1 in a database that has x samples, the prob-
ability of X = 1 is defined by Bayesian estimation as:

1+ %

z+1°
With the rule of multiplication for probability (if event
A and event B are independent, p(A4, B) = p(A)p(B)),
Equations (4), (5), (6), and (7) define how p(T; ,, T}, 5)
is calculated according to the Independent Model (IM),
Positional Model (PM), Sequential Model (SM) and Joint
Model (JM) respectively.

pX=1)=

3

po(T7 1, T, B) = p(T7—q) x p(T") x p(B)  (4)

pem(T7 1, T3, B) = p(T71) x p(T|B) (5)

psm(T; 1, T, B) = p(T74|T}") x p(B) (6)

Count(T} |, T;,3) + +
pJM( 1544 aﬁ) 1N1+ ]:L N (7)

where NV is the number of samples.

4. MODEL EVALUATION

The parameters in the candidate models are trained with
the training datasets. Then we design a set of model se-
lection tests to evaluate the candidate models to investigate
how CETs are affected. In previous work [3] we demon-
strated that model selection tests can be used for expres-
sive timing analysis, using the Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion (BIC).
However, the AIC and BIC are designed to compare can-
didate models in the same model space [12, Ch.2-3], so in
this paper, we use a more general method that compares
the joint probability of (T ,, T, 3) in both training and
testing datasets. The parameters used for model evaluation
include cross entropy and KL divergence.

To distinguish the joint probability distribution in the train-
ing datasets and the testing datasets, we use q(7;"_, T}, 5)
to represent the joint probability in the training dataset and

p(T7_, T}, ) to represent the joint probability distribu-
tion in the testing dataset. For simplicity, we have ¢; =
Qeim = (T, = k,T7 = 1,8 = m) and p; = prim =
p(T;r =k Tr=108=m).

The cross entropy between P and () measures how many
bits on average are required to code a symbol in P if we
have a coding system whose probability distribution of sym-
bols is given by @. The cross entropy [13] for a distribution
of n symbols is defined as:

Heross (P, Q) = sz 10g(4:)- ®)



KL divergence, or relative entropy, is an indicator of how
different a probability distribution () is when compared to
probability distribution P. The KL divergence is not a
strict distance measurement, due to the fact that it is not
symmetric (KLp;, (P, Q) # KLp;,(Q, P)). The KL di-
vergence is equivalent to the difference between cross en-
tropy and the entropy of the testing dataset, as Equation
(9) shows. In other words, KL. divergence measures how
efficient the coding system optimised for Q is for coding P.

n
Gi
KLpiw(P,Q) =Y pi 10%2(271_)
i=1 ¢

n )
= Z{pi logy (i) — pilogy(pi)}
i=1

= HCross(P’ Q) - H(P)

5. RESULTS

In this section, we use two model selection criteria: cross
entropy (defined in Equation (8)) and KL divergence (de-
fined in Equation (9)). The model selection tests are ap-
plied with three candidate pieces: Islamey and two Chopin
Mazurkas (Op.24/2 and Op.30/2). Following the method
of Li et al. [3], the numbers of CETs used for analysis are 2,
8 and 4 for Islamey, Chopin Mazurka Op.24/2 and Op.30/2
respectively.

T Model | v 1 pym | sMm | M
Criterion

Cross Entropy 725 | 7.71 | 7.12 | 6.88
KL Divergence 1.00 | 1.46 | 0.88 | 0.63

(a) Islamey

- Model | yvi | pyv | sM | 1M
Criterion

Cross Entropy 10.63 | 13.31 | 9.69 | 7.74

KL Divergence 422 | 690 | 3.24 | 1.36

(b) Chopin Mazurka, Op.24/2
- Model | i | pm | sm | M
Criterion

Cross Entropy 5.80 | 6.60 | 5.60 | 4.92
KL Divergence 1.69 | 249 | 149 | 0.81

(c) Chopin Mazurka, Op.30/2

Table 1: Model evaluation of the candidate models that
assert different dependencies on the CET used in a phrase.
Both model selection criteria use a smaller value to indi-
cate better model performance. The IM, PM, SM and JM
are defined in Section 3. The bold value indicates the best
performance of the candidate models.

For all candidate pieces, we use five-fold cross-validation
to test the candidate models. For a single experiment, we
select the data from 20% of performances in our database
randomly to form the testing dataset and the remaining
80% of performances forms the training dataset. The
experiment is repeated 100 times to mitigate the possi-
ble effects of randomness in forming testing and training

- Model | vl v | sm | oM
Criterion

Cross Entropy 747 | 9.07 | 7.27 | 9.05
KL Divergence 0.92 | 2.56 | 0.77 | 2.52

(a) Islamey

T Model | i | pm | sM | 1M
Criterion

Cross Entropy 11.07 | 13.72 | 11.01 | 11.06

KL Divergence 426 | 690 | 415 | 4.39

(b) Chopin Mazurka, Op.24/2
Model

. IM | PM | SM | ]M
Criterion

Cross Entropy 6.11 | 6.60 | 6.29 | 6.56
KL Divergence 1.80 | 2.22 | 1.96 | 2.13

(c) Chopin Mazurka, Op.30/2

Table 2: Average model selection criteria for a training
dataset of only one performance. The IM, PM, SM and IM
are defined in Section 3. The bold value indicates the best
performance of the candidate models.

datasets. The results of the model selection criteria for
evaluating how well the testing datasets are predicted are
then averaged to obtain the final results.

In Table 1, we present how well the candidate models
predict the testing dataset on average. According to the
cross entropy and the KL divergence, the joint model is the
best model among the candidate models. The sequential
model is the second best model. The positional model is
even worse than the independent model.

Data-size robustness means how much the model perfor-
mance drops when a very limited amount of training data
is available. The data-size robustness is a property of the
candidate model. In this paper we compare the results ob-
tained using 80% of performances for training (Table 1)
with those obtained using only one performance for train-
ing (Table 2).

From Table 2, we notice that the data-size robustness of
candidate models varies for different candidate pieces. For
Islamey and Mazurka Op.24/2, the best model in terms of
data-size robustness is the sequential model. For Mazurka
Op.30/2, which has a training dataset of only 7 phrases,
compared with 39 and 29 phrases for Islamey and Mazurka
Op.24/2 respectively, no model performs better than the
baseline independent model. Between the sequential model
and the joint model, which have the lowest cross entropy
and KL divergence in the model selection tests, the sequen-
tial model is more data-size robust.

In summary, the joint model is the best model when a
reasonable amount of data is available for training. When
the amount of training data is limited, the sequential model
is preferred as it is more data-size robust with acceptable
results. Based on the model selection tests, we demonstrate
that both the position of phrase in music score and the CET
used in the previous phrase affect the decision of CET for
a phrase. The CET in the previous phrase has a greater
effect than the position of the phrase, which only affects



the choice of CET for a phrase jointly with the CET used
in the previous phrase.

6. DISCUSSION
6.1 Comparison of model selection criteria

The results for training with 80% of performances (Table
1) are in some cases worse than those obtained by train-
ing on only one performance (Table 2). This fact suggests
that using only 1 performance for training results in a bet-
ter model than using 80% of performances for training in
these cases, which conflicts with the intuition that having
more data for training usually results in a better model. As
a result, we investigate the data-size robustness in more
detail.

In Figure 4, we show how cross entropy and KL diver-
gence of candidate models vary with the proportion of per-
formances used for training. Because of the page limita-
tion, we show results only for Chopin Mazurka Op.30/2
as an example in Figure 4. The other pieces give similar
results.
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Figure 4: Model evaluation as a function of the percent-
age of performances used for training. The test piece is
Chopin Mazurka Op.30/2. A larger number indicates a
poorer model.

Observing Figure 4b, the KL divergence start to increase
when more than about 70% of performances are used for

training. This leads to a higher KL divergence for train-
ing sets of 80% of performances than for only one perfor-
mance for training (compare Tables 1 and 2). In addition,
the distribution of testing data can be heavily biased such
that even a good model may have a high KL divergence. As
a result, model selection tests with KL divergence may be
affected by the bias of the testing dataset, whereas the cross
entropy test is less affected by bias in the testing dataset.

Usually, if there are more data available for training, we
expect the resulting model to be better. However, in Figure
4, the curves of KL divergence and cross entropy are not as
monotonic as we expect. If we calculate the first order dif-
ference of the cross entropy and KL divergence changes,
we find KL divergence has a lower zero-crossing rate than
the cross entropy (p = 0.0161). In other words, the curves
of KL divergence are “smoother” (mathematically speak-
ing, more monotonic) than the curves of cross entropy. The
non-monotonic changes in both KL divergence curves and
cross entropy curves may be caused by the randomness of
the dataset as we have only tried 100 out of the possible
10'° formations of the training dataset in this experiment.

Comparing the two model selection criteria used, KL di-
vergence appears to be less sensitive to the randomness of
testing data but more sensitive to bias in the testing data,
whereas cross entropy is sensitive to the randomness of
testing data but is less sensitive to bias. As both model
selection criteria agree on the ranking of results, the con-
clusions in this paper should be robust against the effects
of both the randomness and bias of the testing datasets.

6.2 Model complexity

Despite our results showing the rank of candidate model
as joint model, sequential model, independent model and
positional model, the model complexity of the candidate
models do not follow the same order. As there are 2, 8
and 4 CETs chosen in the analysis for Islamey, Chopin
Mazurka Op.24/2 and Op.30/2 respectively, the number
of parameters to be trained in candidate models are listed
in Table 3. The number of parameters are decided by the
number of phrases in the pieces as well, which is also listed
in Table 3. We find that despite the high complexity, the
joint model outperforms the other models. The sequential
model is more data-size robust due to lower complexity.
The results of the model selection tests presented in this pa-
per support the claim that the choice of CET in a phrase is
primarily affected by the CET used in the previous phrase.
Moreover, the position of phrase in the score only affects
the CET in a phrase jointly with the CET used in the pre-
vious phrase. Further investigations are required to under-
stand why the positional model alone performs worse than
the baseline independent model.

6.3 Future work

In this paper, we present a model selection test that investi-
gates how the CET used in a phrase is affected by the CET
used in the previous phrase and the position of a phrase.
However, with the same methodology, we can demonstrate
how other musical features affect the choice of CETs. The



Pieces | #of phrase | IM | PM | SM | IM
Islamey 40 2 80 4 160
Op.24/2 30 8 | 240 | 64 | 1920
Op.30/2 8 4 | 32 | 16 | 128

Table 3: Number of parameters learnt in candidate models.
Abbreviations of models are defined in Section 3.

position of phrase is a simplistic concept which gives lit-
tle insight into the reasons for expressive choices. There
are multiple features in a phrase related to the melody, har-
mony and rhythm which are likely to influence the per-
former’s choices. For both expressiveness synthesis and
musicology research, it would be interesting to investigate
further which factors derived from the musical score affect
the choice of CET.

Likewise, the exclusive use of the previous CET is a sim-
plification of possible longer term temporal dependencies
which may exist between expressive choices, including even
non-causal (i.e. planned) relationships with future choices.
While the local context is likely to have the largest influ-
ence on immediate choices, it would be naive to assume
that expert musician’s timing choices can be modelled by
a simple first-order process.

This research is based on a clustering method proposed
in previous work [3]. This method has strong restrictions:
the phrase length throughout the candidate piece must be
constant, and the number of CETs used varies according to
the candidate piece. These restrictions prevent the imme-
diate application of the proposed method to a wider range
of performances and a larger dataset using the current clus-
tering algorithm. Further research is required to extend the
methods to more general scenarios. Finally, applying the
experiments in this paper with generalised model selection
methods, such as AIC and BIC, may demonstrate how the
model complexity affects the model selection process.

7. CONCLUSIONS

In this paper, we presented a model selection test that in-
vestigates how the Cluster of Expressive Timing (CET) is
chosen according to the position of the phrase and the CET
used in the previous phrase.

We proposed four candidate models that assert different
dependencies of the CET used for a particular phrase. We
evaluated the four candidate models with KL divergence
and cross entropy. The results of the model selection showed
that the joint model is the most reasonable model for se-
lecting the cluster of expressive timing for a phrase. How-
ever, if there are only very limited data available, the se-
quential model should be used, owing to its lower com-
plexity.

Hence we have shown that both the CET used in the pre-
vious phrase and the position of the phrase affect the se-
lection of CET for a phrase. The sequence of clusters has
a greater effect than the position of phrases for selecting
the cluster of expressive timing for a phrase. The position
of the phrase, on the other hand, only affects the choice in
combination with the CET sequences.

8. REFERENCES

[1] B. H. Repp, “A microcosm of musical expression. I.
Quantitave analysis of pianists’ timing in the initial
measures of Chopin’s Etude in E major,” The Journal
of Acoustical Society of America, vol. 104, pp. 1085 —
1100, 1998.

[2] N. Spiro, N. Gold, and J. Rink, “The form of perfor-
mance: Analyzing pattern distribution in select record-
ings of Chopin’s Mazurka op. 24 no. 2,” Musicae Sci-
entiae, vol. 14, no. 2, pp. 23-55, 2010.

[3] S. Li, D. A. A. Black, and M. D. Plumbley, “Model
analysis for intra-phrase tempo variations in classical
piano performances,”’ in Proceedings of Computer Mu-
sic Multidisciplinary Research (CMMR’15), 2015.

[4] G. Widmer, S. Flossmann, and M. Grachten, “YQX
plays Chopin,” Al Magazine, vol. 31, no. 3, pp. 23-34,
2010.

[5] A. Tobudic and G. Widmer, “Relational IBL in music
with a new structural similarity measure,” in Proceed-
ings of the 13th International Conference on Inductive
Logic Programming (ILP’03).  Springer, 2003, pp.
365-382.

[6] N.P. M. Todd, “The dynamics of dynamics: A model
of musical expression,” Journal of Acoustical Society
of America, vol. 91, pp. 3540-3550, 1992.

[7] A. Friberg, R. Bresin, and J. Sundberg, “Overview of
the KTH rule system for musical performance,” Ad-
vances in Cognitive Psychology, vol. 2, pp. 145-161,

2006.
[8] M. Balakirev, Islamey, Op. 18. Hamburg: D.
Rahter, 1902. [Online]. Available: http://imslp.org/

wiki/Islamey, _Op.18_(Balakirev, Mily)

[9] C. Sapp, “Hybrid numeric/rank similarity metrics for
musical performance analysis,” in Proceedings of the
International Conference on Music Information Re-
trieval (ISMIR), 2008, pp. 501-506.

[10] S. Li, D. A. A. Black, E. Chew, and M. D. Plumb-
ley, “Evidence that phrase-level tempo variation may
be represented using a limited dictionary,” in Proceed-
ings of International Conference on Music Perception

and Cognition (ICMPC’14), 2014.

[11] D. Koller and N. Friedman, Probabilistic Graphical
Models: Principles and Techniques. The MIT Press,

2009.

[12] G. Claeskens and N. L. Hjort, Model selection and

Model Averaging. Cambridge University Press, 2008.

[13] J. E. Shore and R. W. Johnson, “Axiomatic derivation
of the principle of maximum entropy and the princi-
ple of minimum cross-entropy,” IEEE Transactions on

Information Theory, vol. 26, pp. 26 — 37, 1980.


http://imslp.org/wiki/Islamey,_Op.18_(Balakirev,_Mily)
http://imslp.org/wiki/Islamey,_Op.18_(Balakirev,_Mily)

	 1. Introduction
	 2. Clustering of Expressive Timing
	 3. Candidate Models
	 4. Model Evaluation
	 5. Results
	 6. Discussion
	6.1 Comparison of model selection criteria
	6.2 Model complexity
	6.3 Future work

	 7. Conclusions
	 8. References

