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Abstract—Chord labels provide a concise description of
musical harmony. In pop and jazz music, a sequence of
chord labels is often the only written record of a song,
and forms the basis of so-called lead sheets. We devise a
fully automatic method to simultaneously estimate from an
audio waveform the chord sequence including bass notes,
the metric positions of chords, and the key. The core of the
method is a 6-layered dynamic Bayesian network, in which
the four hidden source layers jointly model metric position,
key, chord, and bass pitch class, while the two observed
layers model low-level audio features corresponding to
bass and treble tonal content. Using 109 different chords
our method provides substantially more harmonic detail
than previous approaches while maintaining a high level
of accuracy. We show that with 71% correctly classified
chords our method significantly exceeds the state of the
art when tested against manually annotated ground truth
transcriptions on the 176 audio tracks from the MIREX
2008 Chord Detection Task. We introduce a measure
of segmentation quality and show that bass and meter
modelling are especially beneficial for obtaining the correct
level of granularity.

Index Terms—chord transcription, music signal process-
ing, dynamic Bayesian networks (DBN)

EDICs Category: AUD-ANSY

I. INTRODUCTION

A chord is defined as the simultaneous sounding of
two or more different notes. Accompaniment of jazz
and popular music is based on progressions of chords
and is rarely written out as complete sheet music. In-
stead, musicians usually rely on lead sheets [1]. A lead
sheet typically contains the melody written on traditional
staves with time and key signature, along with chord
symbols over the staves and the nominal bass note for
the chord (if different from the root note), as illustrated
in Figure 1. The chords found in lead sheets are an
abstraction of what is actually played in a performance of
the song, since often a precise replication of the original
is unnecessary, or even unwanted. In recent years, the

popularity of lead sheets has been underpinned by the
success of the commercial software Band in a Box1 and
its non-commercial contender MMA2, both designed to
generate musical accompaniment from a representation
very similar to a traditional lead sheet.

The underlying motivation of our research is to use
automatic chord recognition to produce lead sheets. In
the remainder of this section we motivate our design
choices derived from this aim, and provide a summary
of previous approaches. Figure 2 shows an overview
of our system, and the details of the method are given
in the two following sections: Section II explains how
we extract bass and treble chroma features from audio,
while Section III details the topology and parameter
settings of the novel dynamic Bayesian network. Section
IV provides comparative evaluations of our methods,
followed in Section V by conclusions and a discussion.

A. Objectives of this Work

Our aim is that eventually musicians will be able to
use automatically generated lead sheets in the same way
as they have been using the traditional, hand-annotated
variant. The first requirement derived from this motiva-
tion is to provide transcriptions of the musical parameters
chord, key, bass, and metric position. Secondly, similar
to human music listening, the interdependence of these
musical parameters should be modelled, and inference on
them should be simultaneous. For example, chords are
interpreted according to the key, while at the same time
the key can be understood as a product of the chords.
Raphael calls this the “chicken and egg problem” [3, p.
659], and strongly argues for the simultaneous estimation
of parameters for cases in which such interdependence

1http://www.pgmusic.com/
2http://www.mellowood.ca/mma/



Fig. 1. Pop music lead-sheet: Excerpt of Friends Will Be Friends (Deacon/Mercury) taken from [2]. Chords are represented both by chord
labels and the corresponding guitar fingering. The number in a box denotes the physical time. The bass is represented only implicitly in the
chord labels.
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Fig. 2. A schematic overview of our method (see Sections II and III).
White boxes represent the chroma extraction sub-methods.

arises. Finally, to do justice to the actual complexity of
music, more specific chord labels are needed than have
been used in previous automatic chord transcriptions.
The choice of level of detail is difficult. On the one hand,
the MIREX Chord Detection task [4] features only the
two chord types major and minor. On the other hand,
the chords actually used in pop songs are often much
more complex (the software MMA has more than 100
chord types, i.e. 1200 chords). Our choice of 109 chords
as detailed in Section III is by no means definitive, but
much broader than has previously been attempted.

B. Previous Work

The foundation for a large majority of current methods
for chord extraction is a low-level feature called the
chroma vector (also, pitch class profile). The chroma
vector is a twelve-dimensional vector of real numbers
representing the energy or salience of the twelve pitch
classes (C, . . . ,B), which amounts to considering pitch
while suppressing the height dimension [5, p. 159].
Much like a spectrogram describes the spectral content
of a signal over time, the chromagram is a sequence of
chroma vectors that describes the pitch class content of
an audio signal over time. Since its first use for chord
extraction [6] the chromagram has also been used for
other applications including key finding [7] and audio-
to-score synchronisation [8]. There are many ways to
calculate chromagrams, for an introductory overview see
[9]. For chord estimation, the quality of the chromagram
has been improved by (automatic) tuning to the reference
frequency [10] and median smoothing [11], removal of
harmonics [12], and noise attenuation [13]. We combine
some of these approaches in our own chromagram ex-
traction algorithm (§II-A).

To robustly infer chords from a chromagram, several
temporal smoothing algorithms have been proposed to
suppress short-term deviations from the chord. Examples
are median filtering [10], hypothesis search [14], and
hidden Markov models (HMMs) [15].

Statistical time series modelling in the music comput-
ing community has often been restricted to HMMs. Other
approaches include graphical modelling for chord tran-
scription from symbolic data [16], and conditional ran-
dom fields [17]. There are numerous examples in which
HMMs have been used to model and estimate the context
of chords. Lee and Slaney [18] perform several HMM
inference runs with different, key-dependent chord tran-
sition probabilities to implicitly determine the key of
the piece in addition to the chords. A different HMM
for key estimation from existing chord progressions has
been proposed by Noland and Sandler [19]. Previously
we integrated bass features into an HMM [20]. In pieces
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of music for which a beat-segmentation is known, an
HMM can be used to perform a simultaneous estimation
of the metric position of the beats and chords [21].

For more semantic flexibility than HMMs natively
model (i.e. one hidden random variable and one observed
random variable per time step), Leistikov [22] proposed
the use of dynamic Bayesian networks as a way of
modelling notes and their context in symbolic data. This
allows for a more intuitive modelling process and an
increase in inference efficiency. In the audio domain
however DBNs have been used only in melody-tracking
[23]; we are not aware of any previous applications of
DBNs for the estimation of higher-level features such as
chords.

The mentioned chord detection papers have in com-
mon the use of a very limited number of different chord
types. For example, Lee and Slaney [18] choose to model
three chord types (major, minor, diminished), leading to
36 different chords.

The novelty of the present work is that it integrates
in a single graphical model pieces of musical context
that had previously been assessed only separately. Keys,
chords, metric position and bass pitch class can now
be estimated simultaneously using the efficient inference
techniques available for DBNs. We also increase the
amount of output detail with respect to existing models,
in particular, we increase the number of output chord
types.

II. CHROMAGRAM CALCULATION

The aim of low-level processing in our case is to
transform the audio input data into a representation
which the high-level “musical” model can process. This
representation consists of two different beat-synchronous
chromagrams, one for the bass frequencies, and one for
the treble frequencies, motivated by the importance of
the bass note in harmony (see also Section III-D). In
this section we explain how we obtain a note salience
representation (or approximate transcription), how it is
tuned and wrapped to chromagrams, and how it is finally
averaged over beats.

A. Note Salience

Since the desired robust note transcription from com-
plex audio remains an unsolved problem, we attempt an
“approximate” transcription, which we refer to as note
salience. The input files are monophonic wave files, low-
pass filtered and downsampled to fs = 11025 Hz. We
calculate the amplitude spectra χ of the wave using a
Hamming window (length 2048 samples, i.e. ≈ 0.19
seconds) with a hop size of ∆h = 0.05 seconds.

The salience representation is based on a dictionary
of complex tones covering the notes D1 (MIDI note
25, f0 ≈ 37 Hz) to C6 (MIDI note 84, f0 ≈ 1047
Hz) in 1/3 semitone steps. We synthesise the mth tone
with frequency fm0 as the weighted sum of its first four
harmonics

ym(t) =
4∑
k=1

rk−1 sin
(

2π · t
fs
· kfm0

)
,

t = 1, . . . , 2048.

(1)

We adopted a harmonic roll-off parameter r = 0.6 in (1)
from Gomez [7]. The amplitude spectra M c

m· of these
complex tones are obtained from ym(t) in the same way
as those of the input files and appear as rows in the
pattern matrix M c. If χj denotes the amplitude spectrum
of frame j, the product

Scj =M c · χj , (2)

can be interpreted as the salience of the complex tones
at frame j. In order to attenuate the salience at subhar-
monics introduced by using the complex tone pattern
approach, we require that the energy at the fundamental
frequency of the mth tone be high. To that end we
calculate a second dictionary matrix Ms of simple tones
using only the first term in the sum (1). The corre-
sponding salience matrix Ss is obtained analogously to
Sc in Equation (2) and subsequently convolved with a
Laplacian kernel (−1,−1, 4,−1,−1) to amplify spectral
peaks. Negative values are set to zero. The element-wise
product

S = Sc ⊗ Ss (3)

combines the two matrices and yields a salience descrip-
tion for every note at every time frame.

B. Tuning and Chroma Mapping

Having three note salience values per semitone en-
ables us to detect the tuning of a song. This is relevant
because songs are not always recorded in standard 440
Hz tuning. We assume that the tuning frequency remains
the same throughout each song. We use a tuning tech-
nique similar to the one used by Dressler and Streich
[24]. The tuning is interpreted as an angle τ ∈ (−π, π],
which corresponds to a tuning of

2τ/(12·2π) · 440 Hz .

Hence, the three salience values pertaining to each
semitone represent tunings

τk =
2πk

3
, k ∈ {−1, 0, 1}.
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Fig. 3. Treble (solid line) and bass (dashed) templates g. These
are used in (7) when calculating chromagrams from the note salience
values.

We add the respective salience values over time, and over
the note range,

Ek =
T∑
j=1

∑
(m−k) mod 3=0

Smj , k ∈ {−1, 0, 1}, (4)

and retrieve an estimate of the tuning by calculating the
angle

τ̂ = ∠

(
1∑

k=−1

Ek · exp
{
τk
√
−1
})

. (5)

We update S by linear interpolation so that the centre
bin of a semitone corresponds to τ̂ and then sum the
three tone saliences pertaining to the same semitone to
obtain the semitone-spaced salience matrix

Ss
kj =

∑
dm/3e=k

Smj . (6)

The matrix Ss is subsequently median-filtered [11] in
the time direction with a filter length of 9 frames (0.45
seconds). To obtain the treble chromagram x∗, the note
salience Ss is “wrapped”, i.e. note saliences that belong
to the same pitch class are summed,

x∗ij =
∑

(k−i) mod 12=0

Ss
kj · gk, i = 1, . . . , 12, (7)

weighted by the template g illustrated in Figure 3,
which discards bass and very high treble notes. The
bass chromagram is analogously obtained using different
weights g to discard notes in the treble range.

C. Averaging over Beats and Normalisation

Beat, or “tactus”, represents the main regular pulse in a
piece of music [25, p. 71]. In order to segment the audio
into musically meaningful chunks we use an automatic
beat-tracking algorithm [26]. The system extracts beat

Fig. 4. Example treble and bass chromagrams generated from the
song Let It Be (Lennon/McCartney).

times 0 < t0 < . . . < tN . We take the median (over
time) of the chromagram frames within each beat,

xij = median
tj≤(j′·∆h)<tj+1

x∗ij′ . (8)

A measure of chroma flatness is computed to express the
salience of “no bass note” and becomes a 13th dimension
to the bass chromagram,

x13,j =

(
12 ·max

i
Sij

/
12∑
i′=1

Si′j

)−2

∈
[

1
144

, 1
]
.

(9)

Both beat-quantised chromagrams—including the addi-
tional bass bin—are subsequently normalised according
to the maximum norm [7, p. 79], i.e. every bin value is
given relative to the most salient bin of the same frame,
see Figure 4.

III. NETWORK MODEL

A Bayesian network (BN) is a joint distribution of
several random variables. It is called a “network” be-
cause its dependency structure can be represented using
a directed acyclic graph. Every node represents one
random variable3. A directed edge represents a direct
dependency; it points at the node that directly depends on
the node from which the edge originates. This duality of
the graph and the joint distribution allows very intuitive
modelling as detailed in this section. The requirement of
the graph to be acyclic means that there is no dependency

3We will use the two expressions node and random variable inter-
changeably.
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Fig. 5. Our network model topology, represented as a 2-TBN with
two slices and six layers. The clear nodes represent random variables,
while the observed ones are shaded grey. The directed edges represent
the dependency structure. Intra-slice dependency edges are drawn solid,
inter-slice dependency edges are dashed.

“short circuit”, so a random variable is never its own
descendent.

To model time series with BNs, dynamic Bayesian
networks (DBNs) are used [27]. A DBN can be thought
of as a succession of simple BNs. The succession is
assumed to be Markovian, and time-invariant, i.e. the
model can be described recursively by defining only two
slices [28]: one “initial state” slice and one “recursive”
slice. Such models are also called 2-slice temporal
Bayesian networks (2-TBN). Note that any DBN could
equivalently be modelled as an HMM, comprising the
different state variables of the DBN in a single (very
large) state variable. As a result, modelling of the ade-
quate HMM is less intuitive and inference can be much
slower [27].

In the DBN topology as shown in Figure 5 discrete
nodes model the states of metric position, key, chord,
and bass pitch class, and continuous nodes model bass
and treble chroma. Our DBN is a generative model,
i.e. some state configuration sequence of the hidden
source nodes is assumed to have generated the observed
data (chromagrams). This assumption allows us to use

Bayesian reasoning to infer the state sequence from
the data [22, p. 96]. We use the Bayes Net Toolbox
[29], which implements diverse inference and learning
methods, to model the data and perform the inference.

To complete the definition of the network the con-
ditional probability distributions (CPD) of the random
variables need to be specified, providing a good approx-
imation of how beats, keys, chords and bass interact.
Since we do not have any preconception of the initial
metric position, key, chord or bass pitch class of a
piece, all initial nodes are set to a uniform distribution.
The following subsections will detail the CPDs of the
recursive nodes on the right hand side of the 2-TBN
depicted in Figure 5. Like Leistikow [22] we choose
to map expert musical knowledge onto a probabilis-
tic framework, rather than learning parameters from
a specific data set. In a complex model such as the
one presented in this section, the decisions regarding
parameter binding during learning, and even the choice
of the parameters to be learned pose challenging research
questions, which we plan to address in future work,
while focusing here on the definition and evaluation of
the expert model.

A. Metric Position

Western music is usually grouped in bars, each con-
taining a number of beats. In much popular music, there
are four beats per bar throughout a piece, and our model
assumes this case. The first beat (metric position 1) in
a bar is followed by the second (metric position 2),
and so on, until after the fourth the next bar starts on
metric position 1. Hence, the node Mi has four states
to represent the metric position of the current beat. We
use pieces of music in which occasional beat tracking
errors or compositional irregularities in the music are
frequent, hence we have to allow for the small probabil-
ity ε = 0.05 of deviation from the normal succession of
beats. Since node Mi depends only on node Mi−1, the
conditional distribution P (Mi|Mi−1) can be represented
as a transition matrix with two dimensions,


ε/2 1− ε ε/2 0
0 ε/2 1− ε ε/2
ε/2 0 ε/2 1− ε

1− ε ε/2 0 ε/2

 .

Each row represents a state of Mi−1, every column a
state of Mi. The same information can be written as a
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C C# D E! E F F# G A! A B! B

1

Fig. 6. Key: C major/A minor key. Pitch classes in shaded squares
are the ones belonging to the key. To obtain the other keys, the pitch
classes are “rolled” accordingly (circular shift).

conditional probability distribution,

P (mi|mi−1) =

 1− ε if (mi −mi−1) mod 4 = 1,
ε/2 if (mi −mi−1) mod 4 ∈ {0, 2},
0 otherwise.

(10)

B. Key

The node Ki represents the key state. The knowledge
of the key and key changes can have two benefits: im-
proving the stability of the chord estimation by making
off-key chords less probable, and providing a means
of setting the key signature in a score. We choose
to model 12 keys, each of which corresponds to a
major/relative minor key pair, which is enough to cover
all key signatures, since any major and the corresponding
relative minor key share a key signature. Relative to the
root pitch class, every key has a diatonic profile; an
example is depicted in Figure 6. To model the key we
only need to express that the key is expected to remain
the same with a high probability of 0.98, i.e. we assume
that at any beat the key changes with a probability of
0.02 :

P (ki|ki−1) =
{

0.98 if ki−1 = ki,
(1− 0.98)/11 otherwise. (11)

The behaviour of the key node only describes the rate
of change of keys. The way in which the key acts upon
the chord is coded into the chord CPD as detailed in the
following subsection.

C. Chord and Treble Chroma

The chord nodes Ci−1 and Ci together with the
respective treble chroma nodes Xi and Xi−1, take a
central place in our model. We use a pool of NC = 109
chords:
• 7 × 12 in root position: major (shorthand4: maj),

minor (min), major 7th (maj7), major with a mi-
nor 7th (7), major 6th (maj6), diminished (dim),
augmented (aug),

• 2 × 12 major chords in first and second inversion
(maj/3 and maj/5), and

• 1 “no chord” (N).

4We use the shorthand notation as proposed in [30], but omit the
colon as in C:maj7.

C C# D E! E F F# G A! A B! B

C C# D E! E F F# G A! A B! B

1

Fig. 7. Chord examples: Cmaj7 and Cmin chords. The shaded
squares denote the pitch classes belonging to the chord. To obtain the
same chord type with a different root, the chord is “rolled” (circular
shift).

To keep calculations feasible and prevent overspecifica-
tion we have refrained from including yet more chords,
for example sus4 and min7. However we believe that
this choice, in particular the 7 chord (suggesting a
functional difference to maj), and the inversions offer
a great increase of information when compared to a
smaller set of maj, min, dim, and aug chords.

First, let us consider the treble chroma node Xi

(Figure 5). Following Harte’s chord definitions [30], the
quality of a chord is expressed by the pitch classes it
contains (see Figure 7). This should be reflected in the
treble chroma the chord generates. As has been explained
in Section II, the chroma features xi ∈ [0, 1] are
normalised by the maximum norm, so high values will
be close to one, and—ideally—low values close to zero.
The probability density P (Xi|ci) of the chroma node
given a chord should monotonically increase with any
of the chord pitch class saliences increasing. It should
monotonically decrease with any of the non-chord pitch
class saliences increasing. We model this behaviour as a
12-dimensional Gaussian random variable in which the
mean vector has zeros at the elements representing non-
chord pitch classes and ones at elements representing the
chord pitch classes, see Figure 8. We choose a diagonal
covariance matrix in which all diagonal elements are
set to σ2 = 0.2. A rigorous estmimation of variance
values is left to future work. Note that due to the chroma
normalisation, a flat chroma vector will contain only
ones. Therefore, we define N (no chord) as including
all pitch classes.

We have described the treble chroma node, which
depends only on the chord node. The chord node itself,
Ci, depends on the previous chord node Ci−1 as well as
the current metric position node Mi and the current key
node Ki. This configuration allows us to model that

• a chord change is likely at the beginning of a bar
(metric position 1), less likely in the middle of a bar
(position 3), and even less likely at the remaining
metric positions 2 and 4,

• a chord is more likely the fewer non-key pitch
classes it contains.
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Fig. 8. Treble chroma node: distribution of single elements of the 12-
dimensional Gaussian, monotonically increasing curve for chord pitch
classes, monotonically decreasing curve (dashed) for non-chord pitch
classes.

Accordingly, we factorise the probability as

P (ci|ci−1,mi, ki) = P (ci|ci−1,mi) · P (ci|ki), (12)

in which the first factor describes the dependency of a
chord change on the metric position. Let the vector

a = (0.5, 0.1, 0.4, 0.1) (13)

contain the probabilities of a chord change at metric
positions 1 to 4, then

P (ci|ci−1,mi) =
{
ami

/(NC − 1) if ci−1 6= ci,
(1− ami

) otherwise,
(14)

where NC is the number of chords. The second factor
in (12) describes how likely a chord is, conditional on
the key. Perceptual chord ratings in a key context are
available for maj, min, and dim chords [31], but not
for the more complex chords we consider. We introduce
an expert function

f(ci, ki) =
1

#{non-key chord notes}+ c
(15)

that can express a rating for any kind of chord. To deter-
mine the smoothing parameter c we use as a reference
the maj chord subset of the mentioned chord ratings
(Figure 9), interpreted as probabilities [19]. To obtain a
function f that approximates the ratings best, we min-
imize with respect to c the Jensen-Shannon divergence
between the chord ratings and the corresponding ones
obtained from the function f . The resulting value of
c = 4.83 is then used for all chords. For instance, the
Cmaj7 chord depicted in Figure 7, in the key of C major
has f(Cmaj7,C major) = 1

0+c ≈ 0.21, whereas for the
Cmin chord in the same figure, f(Cmin|C major) =

1
1+c ≈ 0.17 because E[ is not part of the C major key.
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Fig. 9. Our f chord-context ratings (denoted by �) for major chords
in a C major key context, compared to the Krumhansl profiles (◦),
both normalised by the L1 norm.

The f values are then normalised by a constant κ such
that

P (ci|ki) = κ · f(ci, ki) (16)

is a conditional probability distribution, i.e. for a fixed
ki the probabilities sum to unity.

D. Bass Pitch Class and Bass Chroma

The bass pitch class plays a crucial role in the recog-
nition of chords. Being at the bottom of the frequency
range, it “anchors” the chord and makes the rest of the
notes more easily interpretable. For instance, knowing
whether the bass note is C or E can help disambiguate
the chords Cmaj7 and Emin, which have very similar
pitch class sets (namely, C,E,G,B and E,G,B).

A bass pitch class can be determined for every chord
on a lead sheet. In chords written without further bass
information, the bass pitch class is the same as the root
note, otherwise the slash notation of the bass pitch class
determines the bass pitch class. In Harte’s syntax [30],
an Fmaj chord has the bass note F, but the bass pitch
class of its first inversion Fmaj/3 is A, where /3 means
that the bass note is the third above the root.

The bass chroma is modelled in much the same way
as the treble chroma, by a Gaussian vector. Its number
of dimensions is 13 = 12 + 1, with 12 dimensions
representing the bass pitch classes C through B, and the
thirteenth representing “no bass note”. Since the bass
is defined by just one note, every profile has only one
element for which the mean value is set to 1 (rather than
3 or 4 in the case of chords), while the others are set to 0.
Usually only one bass note is played at any time, which
implies that the pitch class played will more often have a
normalised salience of 1, and the other pitch classes will
have saliences close to zero. Accordingly, we choose a
lower variance value of σ = 0.1.

Bass lines tend to include many different consecutive
notes and pitch classes. The role of the chord bass
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pitch class becomes clear if one observes that in popular
music the bass note is almost always present on the
first beat of a chord. One popular bass player tutorial
[32] confirms this: among the 207 example bass patterns
covering styles Blues & R’n’B, Soul, Motown/Atlantic
Records, Funk, and Rock only 20 do not start with the
bass pitch class. Allowing for some more variation than
given in these examples, we estimate that the played
and the chord bass note coincide on the first beat of the
chord 80% of the time. To model this behaviour, we set
the probabilities to

P (bi|ci−1 6= ci) =
{

0.8 if bass is chord bass,
0.2/12 otherwise.

(17)

As the chord continues, we still expect the “nominal”
bass pitch class as the most likely option, but other pitch
classes may be used as a bass note too, so we set the
probabilities as follows:

P (bi|ci−1 = ci) =
{

0.4 if bass is chord bass,
0.6/12 otherwise.

(18)

Note that while modelling essential properties of popular
music in 4/4 time, the CPDs described in this section do
not explicitly suppress or encourage particular key, chord
or bass note transitions.

IV. EVALUATION

Since chord labelling is not a well-defined classifi-
cation task even for human musicians, the evaluation
of automatic chord transcription is difficult. It has been
common practice to use the relative correct overlap with
respect to a ground truth annotation as an accuracy
measure [4]. We would also like to stress that chord
extraction from audio is a segmentation task as much as a
classification task, and the similarity of ground truth and
automatic segmentation should be taken into account.
Both kinds of measures will be explained in this section,
followed by the corresponding results.

A. Performance Measures

A segmentation of a song is a vector B of one or more
contiguous, non-overlapping intervals B1, . . . , BNB

such
that

⋃
Bi covers the whole song, and T = |

⋃
Bi| is

the length of the song, where vertical lines | · | denote
the length of an interval. Let B0 = (B0

1 , . . . , B
0
N0

)
be the given (ground truth) segmentation, and B that
obtained from an automatic algorithm. Similarly, let
L0 = (l01, . . . , l

0
N0

) be the ground truth class labels
corresponding to B0, and L = (l1, . . . , lN ) those cor-
responding to B.

1) Relative Correct Overlap and MIREX Score:
Rather than dealing with thousands of possible chords
directly we break up the chords into classes, resulting
in a partition L. If the chord labels l1 and l2 are in
the same class, they are called L-equivalent, l1 ∼ l2.
In the MIREX task, the chord labels are partitioned
into |L| = 25 different classes: 12 min classes (each
class comprises the chords whose labels contain min
and which have identical roots, for example, Fmin ∼
Fmin7), and 12 maj classes (each class comprises the
chords whose labels do not contain min or N and which
have identical roots), as well as the “no chord” class N.
We use the Iverson bracket as follows:

[l1 ∼ l2] =
{

1 if l1, l2 are L-equivalent
0 otherwise (19)

The relative correct overlap for one song is then defined
as

OL =
1
T

N0∑
i=1

N∑
j=1

|B0
i ∩Bj | × [l0i ∼ lj ]. (20)

The MIREX score is the mean of OL over all songs. The
choice of MIREX chord classes is very coarse, and for
the further results we use a different L to differentiate
the |L| = 109 chord classes that map most closely to
the chords in the DBN.

The measure described above is necessarily biased
towards the chord type that occupies most of the duration
in a song or collection. In the case of the Beatles’ music
this is the maj chord type. To assess the method’s
performance on a specific chord subset S ⊂ L the
formula (20) changes to

∑
l0i∈S

N∑
j=1

|B0
i ∩Bj | × [l0i ∼ lj ]

/∑
l0i∈S

|B0
i |. (21)

2) Segmentation Quality: The segmentation quality of
a transcription with respect to the ground truth can be
evaluated without taking chord labels into account. This
is desirable because such a measure is less likely to suffer
from the necessarily subjective chord interpretation of
the ground truth annotator.

The measure we propose is based on the directional
Hamming divergence5, which has been used in the
context of image segmentation [33] and musical song
segmentation [34]. For each interval in a segmentation,
the directional Hamming divergence measures how much
of it is not overlapped by the maximally overlapping
segment of the other segmentation. Then the values
over all intervals are summed. In mathematical terms,

5also called directional Hamming distance
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given two segmentations B0, B we define the directional
Hamming divergence as

h(B||B0) =
NB∑
i=1

(
|B0
i | −max

j
|B0
i ∩Bj |

)
. (22)

It describes how fragmented B is with respect to B0.
If we swap the two segmentations in equation (22),
we obtain what has been called the inverse directional
Hamming distance, a measure of how fragmented B0

is with respect to B. The arithmetic mean of both,
normalised by the length of the song is a symmetric
measure for the dissimilarity of the two segmentations.

H(B,B0) =
h(B||B0) + h(B0||B)

2T
(23)

It is desirable that an automatic transcription B have low
H(B,B0) against a ground truth segmentation B0.

B. Results

We use Beatles chord transcriptions [30] as ground
truth, and extract chromagrams from the corresponding
original Beatles recordings. Several experiments are con-
ducted to investigate the influence of choice of chord set,
metric position, bass note, and key in our model. We
choose among three different chord sets, namely

full the full chord set, consisting of all 109
chords introduced in Section III-C,

maj-min only the two chord classes maj and min,
and the N class (25 chords), and

inv the set which extends the maj-min set by
adding the first and second inversion major
chords maj/3 and maj/5 (49 chords).

We also consider four different DBN configurations by
enabling only specific nodes.

plain In the plain model, the metric position, key,
and bass pitch class modelling is disabled,
chord duration is modelled as a negative bi-
nomial distribution6 [20] with shape parame-
ter 2, and scale parameter 1/3, corresponding
to an expected chord duration of 4 beats.

M In the metric model (M), metric position is
fully modelled as described in III; bass and
key are disabled.

MB In the metric-bass model (MB), the bass
pitch class node is additionaly enabled.

MBK The metric-bass-key model (MBK) is the
entire model as described in III.

We infer the most likely state sequence for the enabled
discrete nodes using the Viterbi algorithm. Inference in

6the discrete analogue of a gamma distribution

MIREX score
chord set plain M MB MBK

maj-min 0.663 0.674 0.703 0.709
inv n/a n/a 0.716 0.712
full 0.654 0.662 0.704 0.709

BP MIREX 0.661

TABLE I
MIREX O SCORE RESULTS: MEAN RELATIVE CORRECT OVERLAP,

AVERAGED OVER THE 176 SONGS USED IN THE 2008 MIREX
TASK. FOR SIGNIFICANCE TESTS SEE SECTION IV-B1. BP MIREX

[15] IS THE BEST PERFORMING ALGORITHM IN THE ORIGINAL
TASK.

the most complex model, the MBK model with full chord
set, is very memory-intensive, since the chord node
would have to deal with 109× 4× 12× 109 = 570288
states. We perform a preprocessing step to discard the
59 chords that appear least often among the locally best-
fitting 10 chords at every beat, leaving us with 50 chords,
which are still fully connected. Processing time does not
exceed the song play time, for example, inference on
the Beatles song You Won’t See Me (Lennon/McCartney)
with a play time of 202 seconds takes 104 seconds using
the full-MBK model.

1) MIREX-Style Results: The MIREX score as de-
fined in (20) is a good benchmark for comparing our al-
gorithm to others’, since the song-wise original MIREX
task results are freely available7. To comply with the
MIREX format, we have to map all our chords to
the 24 maj and min labels, plus one N label. All
chords with a major third degree are mapped to the
respective maj chord, all chords with a minor third
degree to the respective min chord. Several versions
of our algorithm (Table I) have a mean relative correct
overlap of over 0.70, i.e. they perform better than the
best performances in the 2008 MIREX pretrained Audio
Chord Detection task (Bello and Pickens [15] scored
0.66). To assess if the MIREX score difference between
our best-performing model, inv-MBK, and Bello and
Pickens’s model are significant, we perform a one-way
ANOVA analysis. The resulting p-value of 0.006 is very
low, and hence we can be confident that our inv-MBK
model performs significantly better. A further Tukey-
Kramer multiple comparison test between all our models
and Bello and Pickens’s at 95% confidence level based
on the Friedman analysis of variance (see, e.g. [35])
confirms that the MBK models all perform significantly
better than Bello and Pickens’s. To assess which of the
variants of our model have a significant influence on the

7http://www.music-ir.org/mirex/2008/results/chord/task1 results/
ACD.task1.results.overlapScores.csv
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plain M MB MBK
0.186 0.176 0.167 0.166

TABLE II
MEAN SEGMENTATION DIVERGENCE (EQUATION 23) OF

DIFFERENT MODELS, USING full CHORDS. LOWER VALUES ARE
BETTER. IMPROVEMENTS FROM plain TO M AND FROM M TO MB

ARE SIGNIFICANT (SEE IV-B2).

MIREX score, we consider only the full chords versions
and perform a Tukey-Kramer multiple comparison based
on the Friedman analysis of variance. We find that with
95% confidence, each additionally added node achieves
a significant improvement. We conclude that meter, bass,
and key modelling all significantly contribute to better
chord labelling in our model.

2) Segmentation Quality: We evaluate the segmen-
tation quality according to the H measure given in
Equation (23) on all full chord versions (see Table
II). The more complex models yield lower, i.e. better,
segmentation scores. In fact, according to the Tukey-
Kramer multiple comparison with a confidence level
of 95%, segmentation significantly improves by adding
meter modelling to the plain model. Additionally adding
bass modelling to the M model brings about another sig-
nificant improvement. Meter and bass modelling provide
means of finding chord change positions at a level of
granularity more closely related to manual annotations.

3) Chord Confusion: For the rest of our evaluation we
will consider the full-MBK model as described in Section
III and confine the analysis to 155 Beatles songs that
do not explicitly violate the time signature assumption
we made in our model. To investigate the method’s
performance on less common chords we use 109 specific
chord classes (instead of the coarser MIREX classes),
12 for each of the chord types used in the model (see
§III-C), as well as N.

Figure 10 shows that the mean relative overlap score
remains at a high overall level of 0.62 even with the
much finer class partitioning. The maj and min chords
are recognised most reliably, followed by “no chord”
and aug and dim chords. The worse performance of
maj7, 7, and maj6 chords is not surprising, since these
are maj chords with added notes. For instance, taking
a closer look at the 7 chord reveals that the 7 chord
is most frequently classified as the ordinary maj chord
on the same root (Figure 10 (b)). Since reversely very
few maj chords are incorrectly recognised as 7 chords
(relative overlap is 0.026), the successfully recognised 7
chords add a new level of detail to chord recognition.
The other three among the top five confusions in Figure
10 (b) are easily explained too, since they all share two
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Fig. 10. Full chords MBK: relative correct overlap scores for different
chord types. Chords are considered correct if root note and chord class
match, inversions of the same chord are considered equivalent. (a)
shows chord type overlap, (b) details the most common matches for
chord class 7, with the correct chord itself ranking second.
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Fig. 11. Full chords MBK: maj chord relative correct overlap (root
note, chord class, and bass note match) for the different inversions.

or three pitch classes with the 7 chord.
The inversions of maj chords are of particular interest,

since they show the impact of the bass note. Figure 11
shows that maj chords in root position score highest.
Chords in first inversion are recognised as such only 15%
of the time, but can still provide information that was not
available with previous approaches, e.g. see Figure 12.
Second inversion chords have an overlap score of 29%.

4) Key Signature: We model only the key signature,
i.e. 12 different major/minor pairs. For a given piece,
we retrieve the main key signature (see §III-B) that is
active most frequently. Our method correctly recognises
63% of the main keys signatures, which is not very high
compared to state of the art key extraction algorithms
[36], but acceptable since we do not explicitly model
minor keys. Since the additional key information does
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Fig. 12. Excerpt of an automatic output of our algorithm using the
inv-MBK model for Friends Will be Friends (compare to Figure 1),
music engraving by LilyPond. Physical time is displayed in the box.
In the second bar, the Dmaj chord is correctly identified as being in
first inversion. The key signature of G major is also correct. The notes
in the staves represent the bass pitch class.

Fig. 13. Excerpt of Something (Lennon/McCartney), displayed in the
free software Sonic Visualiser. The first (black) line of chords is the
ground truth transcription, the lines below (grey chord symbols) are
our automatic transcription, using full chords, metric position, bass,
and key.

provide an increased performance in the MIREX score
(see §IV-B1), we expect that future work on key mod-
elling will result in further improvements.

5) Examples: Our system automatically generates
LilyPond8 source files and Sonic Visualiser9 XML files.
The lead sheet depicted in Figure 12 is compiled from a
LilyPond source file. Key, chord inversion, and the met-
ric information provide a detailed notation that matches
the official version from [2] depicted in Figure 1.

In Figure 13 an excerpt of the song Something
(Lennon/McCartney), is displayed as loaded from an
automatically created XML file into Sonic Visualiser
(grey). For comparison we have additionally loaded the
ground truth annotations (black). Note that while the
ground truth correctly annotates the first two full bars of
the example as C7, our method switches back to Cmaj in
the second bar. This happens because in the second bar
the flat seventh that turns a Cmaj chord into a C7 is not
present, but still assumed to continue by the annotator.
This gives a qualitative explanation for the confusion of
the 7 chord discussed in §IV-B3.

8http://lilypond.org/web/
9http://www.sonicvisualiser.org/

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a musically-informed dynamic
Bayesian network for the automatic extraction of chord
transcriptions from musical audio. The main novelty
of this approach is simultaneous inference of metric
position, key, chord, and bass pitch class, which reflects
the natural inter-dependence of these entities. With 109
chord classes, the model provides a higher level of detail
than previous approaches.

The method presented achieves a mean correct overlap
score of 71%, and significantly outperforms all systems
tested in the 2008 MIREX task for pretrained chord
detection. We compared 10 different variants of our
algorithm and show that each additional musical param-
eter significantly improves the method’s performance.
The greatest enhancement is achieved by additional bass
modelling. While aiding the correct identification of
chords, the key estimation itself has performed slightly
worse than anticipated. The high number of chords
provides new musical information, without decreasing
the performance of the method.

As a complement to the correct overlap evaluation
method, we have introduced a measure of chord seg-
mentation quality which provides a measure of how well
the locations and granularity of chord changes resemble
those of the ground truth. Our results show a significant
improvement in segmentation quality due to modelling
of metric position and bass.

Taking the present expert system as a point of de-
parture, we believe that careful probabilistic learning
could yield even better results, despite inevitably being
specific to the music collection on which it is trained.
A model with parameters learned from data could shed
light on the flaws of the present key model as well
as making the chroma models easily adapt to changes
in the audio front-end. This may be especially useful
when applying the basic model structure in different
domains, e.g. chord extraction from MIDI, or figured
bass extraction from Baroque recordings. We would like
to extend our approach further and work towards a more
complete model of music listening which includes beat
detection, form, melody, and time signature.
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