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Abstract

This paper proposes a system for multiple fundamental fre-
guency estimation of piano sounds using pitch candidagesel
tion rules which employ spectral structure and temporaltevo
tion. As a time-frequency representation, the ResonatoeTi
Frequency Image of the input signal is employed, a noise sup-
pression model is used, and a spectral whitening procedure i
performed. In addition, a spectral flux-based onset detésto
employed in order to select the steady-state region of the pr
duced sound. In the multiple-FO0 estimation stage, tunimtj@n
harmonicity parameters are extracted and a pitch saliemze f
tion is proposed. Pitch presence tests are performedingliz
information from the spectral structure of pitch candidasem-

ing to suppress errors occurring at multiples and sub-piati

of the true pitches. A novel feature for the estimation of har
monically related pitches is proposed, based on the common
amplitude modulation assumption. Experiments are peddrm
on the MAPS database using 8784 piano samples of classical,
jazz, and random chords with polyphony levels between 1 and
6. The proposed system is computationally inexpensive, be-
ing able to perform multiple-FO estimation experimentsdalf
time. Experimental results indicate that the proposedesyst
outperforms state-of-the-art approaches for the aforéoresd

task in a statistically significant manner.

Index Terms: multiple-FO estimation, resonator time-
frequency image, common amplitude modulation

1. Introduction

Multiple-FO estimation in polyphonic music signals reféos
the accurate detection of concurrent notes over a short time
segment. It is the core problem in the development of auto-
matic transcription systems, which have applications in mu
sic information retrieval, interactive computer systears] au-
tomated musicological analysis [1,9]. While the problem of
pitch estimation for monophonic music signals is considere
to be solved, the creation of a system able to accuratelydete
harmonically-related FOs [16] without setting restrioamn the
degree of polyphony and the instrument type still remains an
open problem. For an overview on state-of-the-art muliifle
estimation systems the reader is referred to [4, 9].

There are several approaches for multiple-FO estimation of
music signals related to the current work. In [8], an iteati
spectral subtraction method with polyphony inference & pr
posed, based on the principle that the envelope of harmonic

sounds tends to be smooth. A magnitude-warped power spec-
trum is used as a data representation and a moving average fil-

ter is employed for noise suppression. The system is able to

handle inharmonicity and experiments were performed on ran
domly mixed samples from 30 musical instruments compiled
from 4 different sources. In [16], a method for jointly evating
multiple-FO hypotheses is presented, which employs haicnon
ity, spectral smoothness, and synchronicity assumptidhg -
latter is based on the deviation of partials from their terapo
centroid. A score function combining the aforementionetéer
ria is created and its parameters are optimized using am-evol
tionary algorithm. Experiments were performed with mixsir
originating from the same sources as in [8].

A real-time polyphonic transcription system is proposed
in [17], which uses a first-order complex resonator filtekban
as a time-frequency representation, called the Resonat@-T
Frequency Image (RTFI). FO candidates are selected aogprdi
to their pitch energy spectrum value and a set of rules is uti-
lized in order to cancel extra estimated pitches. These are
based on the number of harmonic components detected for each
pitch and the spectral irregularity measure, which measiire
concentrated energy around possibly overlapped partiais f
harmonically-related FOs. Finally, a method for multigie-
estimation of piano sounds is developed in [5], which mod-
els the spectral envelope of pitches using a smooth autsegr
sive model constrained by the spectral smoothness prencipl
and models the noise using a moving average model. A pitch
salience function that is able to handle tuning and inhaimon
ity is proposed for initial candidate selection and the odaues
are refined using a likelihood function which is dependent on
the estimated spectral envelope and noise parametersriExpe
ments were performed on a database called MAPS, which con-
tains real or synthesized recordings of isolated notesjaalus
or random chords, as well as music pieces, which were pro-
duced by several piano types or using different recording co
ditions. Results, compared with the method in [8], indidhtt
the proposed system is particularly able to yield good score
when harmonically-related FOs are present.

In this work, a system for multiple-FO estimation of iso-
lated piano sounds which uses candidate selection andasever
rule-based refinement steps is proposed. The RTFl is used as a
data representation [17], and preprocessing steps foe 8ais-
pression, spectral whitening, and onset detection arizediin
order to make the estimation system robust to noise anddecor
ing conditions. A pitch salience function that is able todun
tion in the log-frequency domain and utilizes tuning and in-
harmonicity estimation procedures is proposed and pitch ca
didates are selected according to their salience valuesdathaf
candidates is refined using rules regarding the harmont@par
sequence of the selected pitches and the temporal evoloition
the patrtials, in order to minimize errors occurring at nplés



and sub-multiples of the actual FOs. For the spectral strect
rules, a more robust formulation of the spectral irregtyariea-
sure [17] is proposed, taking into account overlappingigiart
For the temporal evolution rules, a novel feature based en th
common amplitude modulation (CAM) assumption [11] is pro-
posed in order to suppress estimation errors in harmowpicall
related FO candidates. Experiments were performed on the
MAPS database [5] using over 8000 classical, jazz, and rando
piano chords, produced by 9 different piano types and récgrd
conditions. Results indicate that the proposed systemeoutp
forms the state-of-the-art approaches developed in [5][@hd
for the same experiment.

The remainder of the paper is as follows. In Section 2, the
preprocessing steps used in the proposed system are @elscrib
The multiple frequency estimation system is detailed irtiac
3. In Section 4 the employed dataset is presented, the experi
mental procedure is described, and results are discussed. C
cluding remarks are drawn and future directions are poioted
in Section 5.

2. Preprocessing

In this section, the preprocessing steps employed by the pro
posed multiple-FO estimation system are described. Theps s
can also be seen in a diagram for the proposed system, which is
displayed in Figure 1.

2.1. Resonator Time-Frequency Image

Firstly, the overall loudness of the time-domain input sign
z[n] is normalized to 70dB level. As a time-frequency repre-
sentation, the RTFI was used [17]. The RTFI selects a first-
order complex resonator filter bank to implement a frequency
dependent time-frequency analysis. It can be formulated as

RTFI(t,w) = s(t) *x Ir(t,w) 1)

where
IR(LQ)) = r(w)e(*r(w)+]w)t. @)

s(t) stands for the input signalz (¢, w) is the impulse response
of the first-order complex resonator filter with oscillatife-
quencyw andr(w) is a decay factor which additionally sets the
frequency resolution.

For the specific experiments, a RTFI with constant-Q res-
olution is selected for the time-frequency analysis, du@go
suitability for music signal processing techniques, bseahe
inter-harmonic spacing is the same for all pitches. The time
interval between two successive frames is set to 40ms, which
is typical for multiple-FO estimation approaches [9]. A sam
pling rate of 44100Hz is considered for the input samples and
the centre frequency difference between two neighbouring fi
ters is set to 10 cents (the number of bins per octergeset to
120). The frequency range is set from 27.5Hz (A0) to 12.5kHz
(which reaches up to the 3rd harmonic of C8). The employed
absolute value of the RTFI will be denoted_&$n, k|, wheren
is the time frame and the frequency bin.

2.2. Spectral Whitening and Noise Suppression

Spectral whitening is employed in order to flatten the dyrami
range of the RTFI bins. Here, a modified version of the real-
time adaptive whitening method proposed in [14] is applied.
Each band is scaled, taking into account the temporal éoalut
of the signal, while the scaling factor is dependent only astp

frame values and the peak scaling value is exponentiallgydec
ing. The following iterative algorithm is applied:

_ max(|X[n, k]|, c,aY[n—1,k]), n>0
Yin, k] {max(|X[n,k]|,c), n=0
XK« % €)

wherea is the peak scaling value aids a floor parameter.

In addition, a noise suppression approach similar to the one
in [10] was employed, due to its computational efficiency. A
half-octave span (60 bins) moving median filter is computed
for X|[n, k], resulting in noise estimat®[n, k]. Afterwards,
an additional moving median filteN’[n, k] of the same span
is applied, but only including the RTFI bins whose amplitude
is less than the respective amplitude ¥fn, k]. This results
in making the noise estimaf¥’ [n, k] robust in the presence of
spectral peaks that could affect the noise estimé&e, k.

2.3. Onset Detection

In order to select the steady-state area of the producedshote

a spectral flux-based onset detection procedure is applieel.
spectral fluxneasures the magnitude changes in each frequency
bin which indicate the attack parts of new notes [2]. It can be
used effectively for onset detection of notes produced by pe
cussive instruments such as the piano, but its performagce d
creases for the detection of soft onsets [1]. For the RFH, th
spectral flux using the L1 norm can be defined as:

SFln] =) HW(IX[n k]| —|X[n— LK) (@)

where HW (z) = ”‘—J;‘ﬂ is a half-wave rectifier. The resulting
onset strength signal is smoothed using a median filter with a
sample span (120ms length), in order to remove spuriousspeak
Onsets are subsequently selected fi§A{n] by a selection of
local maxima, with a minimum peak distance of 120ms. Af-
terwards, the frames located between 100-300ms after the on
set are selected as the steady-state region of the signarand
averaged over time, in order to produce a robust spectregrep
sentation of the produced notes.

3. Proposed System

The algorithm that was created for multiple-FO estimatign e
periments is described in this section. A diagram showirmg th
stages of the proposed system is displayed in Figure 1.

3.1. Salience Function Generation

In the linear frequency domain, considering a pitcbf a pi-
ano sound with fundamental frequengy, and inharmonicity
coefficient3,, partials are located at frequencies:

fhp = thP Vv 1+ (h2 - 1)517 (5)

whereh > 1 is the partial index [9, 13]. Consequently in the
log-frequency domain, considering a pitptat bin ko, over-
tones are located at bins:

k)hp = k?()p + ’Vb . IOgQ(h) + glOgQ (1 + (h2 - 1)5P)J (6)

whereb = 120 refers to the number of bins per octave.
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Figure 1: Diagram for the proposed multiple fundamentajdiency estimation system.

A pitch salience function[p, d,,, 8] operating in the log-
frequency domain is proposed, which indicates the streofjth
pitch candidates:

olpsdp, ] = Zmax{ o+ dper]} 0

h=1

where

Zlk,mp] = \/X {k + {bmh + = b log, (1 + (h? — 1)B)H
8)

and my; specifies a search range around overtone posi-
tions, belonging to the intervadmh, mY), where m} =
’—logz(h 1)+(]M 1)log2(h)J ’—(1\/1 l)logz(lz)+log2(lz+l)J

M is a factor controlling the W|dth of the interval, which for
the current experiments was set to 60. The salience function
is applied to the averaged steady-state representatiomnsino
Section 2.3.

While the employed salience functions in the linear fre-
guency domain (ie. [10]) used a constant search space fbr eac
overtone, the proposed log-frequency salience functitsitbe
search space to be inversely proportional to the partiaxnd
The number of considered overtongkis set to 11 at maxi-
mum. Tuning is also considered [15], with a tuning deviation
dp € [—4,...,4] for each pitch (thus having a tuning search
space of 80 cents around the ideal tuning frequency). Thgeran
of the inharmonicity coefficiens, is set betweef and5-10~*
which is typical for piano notes [13].

In order to accurately estimate the tuning factor and the
inharmonicity coefficient for each pitch, a two-dimensibna
maximization procedure using exhaustive search is appiied
slp, dp, Bp] for each pitchp € [21,...,108] in the MIDI scale
with ko, = 10(p — 21) + 1 (corresponding to a note range
of AD-C8). This results in a pitch salience function estienat
s'[p], a tuning deviation vector and an inharmonicity coefficient
vector. Using the information extracted from the tuning and
inharmonicity estimation,, a harmonic partial sequeVide, h]
for each candidate pitch and its harmonics (which contdias t
RTFI values at certain bin) is also stored for further preges

3.2. Spectral Structure Rules

A set of rules examining the harmonic partial sequencetrec
of each pitch candidate is applied, which is inspired by work
from [1, 17]. These rules aim to suppress peaks in the saienc
function that occur at multiples and sub-multiples of theiat
fundamental frequencies. In the semitone space, theses peak
occur at+{12,19, 24, 28, . . .} semitones from the actual pitch.

A first rule for suppressing salience function peaks is set-
ting a minimum number for partial detection'¥p, 1], similar
to [1,17]. Ifp < 47, at least three partials out of the first six
need to be present in the harmonic partial sequence (siace th
may be a missing fundamental). gf > 47, at least four par-
tials out of the first six should be detected. A second rule con
cerns the salience value, which expresses the sum of theesqua
root of the partial sequence amplitudes. If the salienceevid
below a minimum threshold (set to 0.2 using the development
set explained in Section 4.1), this peak is suppressed. h&not
processing step in order to reduce processing time is theered
tion of the number of pitch candidates [5], by selecting dhly
pitches with the greater salience values. In the currengrexp
ments, 10 candidate pitches are selected fsjpj.

Spectral flatnesgs another descriptor that can be used for
the elimination of errors occurring in subharmonic posisib].
In the proposed system, the flatness of the first 6 partials of a
harmonic sequence is used:

VI Vip, h]

Fip] = T Vi
6

9)

The ratio of the geometric mean &f to its arithmetic mean
gives a measure of smoothness; a high valug'ijf] indicates
a smooth partial sequence, while a lower value indicates fluc
tuations in the partial values, which could indicate thespree
of a falsely detected pitch occurring in a sub-harmonictpmsi
For the current experiments, the low®t|[p] threshold for sup-
pressing pitch candidates was set to 0.1 after experimentat
using the development set, as described in subsection 4.1.

In order to suppress candidate pitches occurring at multi-
ples of the true fundamental frequency, a modified version of



thespectral irregularitymeasure formulated in [17] is proposed.
Considering a pitch candidate with fundamental frequeficy
and another candidate with fundamental frequelfey! > 1,
spectral irregularity is defined as:

Vip, hl — 1] + V[p, hi + 1]
2

SI[p, 1] = iva, hl] —

h=1

(10)

The spectral irregularity is tested on pairs of harmonyeall
related candidate FOs (whege = [fo). A high value of
SI[p,l] indicates the presence of the higher pitch with funda-
mental frequency fy, which is attributed to the higher energy
of the shared partials between the two pitches compareceto th
energy of the neighbouring partials fif.

In this work, theSTI is modified in order to make it more
robust against overlapping partials that are caused by non-
harmonically related FOs [16]. Given the current set of can-
didate pitches frons’[p], the overlapping partials from non-
harmonically related FOs are detected as in [16] and smdothe
according to thespectral smoothnessssumption, which states
that the spectral envelope of harmonic sounds should form
a smooth contour [8]. For each overlapping parfigp, h],
an interpolated valué/;nterp[p, k] is estimated by perform-
ing linear interpolation using its neighbouring partialéf-
terwards, the smoothed partial amplitutié[p, h] is given by
min(V[p, h], Vinterp[p, h]), as in [8]. The proposed spectral ir-
regularity measure, which now takes the form of a ratio for in
order to take into account the decreasing amplitude of highe
partials, is thus formed as:

2-V'[p, hi]
— 1]+ V'[p, hl + 1]

3
SI'p) =" Vb (11)
h=1 ’

For each pair of harmonically-related FOs (candidate pich
that have a pitch distance af{12,19,24,28,...}) that are
present ins’[p] , the existence of the higher pitch is determined
by the value ofST’ (for the current experiments, a threshold of
1.2 was set using the development set).

3.3. Temporal Evolution Rules

Although the ST and the spectral smoothness assumption are
able to suppress some harmonic errors, additional infeomat
needs to be exploited in order to produce more accurate esti-
mates in the case of harmonically-related FOs. In [16], ®mp
ral information was employed for multiple-FO estimatiorings
the synchoronicity criterion as a part of the FO hypothesises
function. There, it is stated that the temporal centroicefbiar-
monic partial sequence should be the same for all partiddss,T
partials deviating from their global temporal centroidioates
an invalid FO hypothesis. Here, we use tttenmon amplitude
modulation(CAM) assumption [6, 11] in order to test the pres-
ence of a higher pitch in the case of harmonically-relatesl FO
CAM assumes that the partial amplitudes of a harmonic source
are correlated over time and has been used in the past for note
separation given a ground truth of FO estimates [11]. Thnes, t
presence of an additional source that overlaps certaimafsart
(eg. in the case of an octave where even partials are ovedapp
causes the correlation between non-overlapped partidishen
overlapped partials to decrease.

To that end, tests are performed for each harmonically-
related FO pair that is still present ii[p], comparing partials
that are not overlapped by any non-harmonically relatecsifd c
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Figure 2: Salience function stages for amEs4-B4-C5-D5
piano chord. From top to bottom, the figures represent (i) The
raw salience function (ii) The salience function after thectral
structure rules have been applied (iii) The salience fonaiter

the temporal evolution tests have been applied.

didate with the partial of the fundamental. The correlation
efficient is formed as:

Cov(X|[n, kp1], X[n, kp,ni])
\/COU(X[n, kp,1])Cov(X|[n, kp ni])

Corr[p,h,l] = (12)

wherek, ;, indicates the frequency bin corresponding to khe

th harmonic of pitctp, n denotes the RTFI frame numbéthe
harmonic relation (eg. for octavés= 2), andCov(-) stands for

the covariance measure. Tests are being taken for eachypitch
and harmonic&l, using the same steady-state area used in sub-
section 2.3 as a frame range. If there is at least one harmonic
where the correlation coefficient for a pitch is lower thareg
value (in the experiments it was set to 0.8), then the hypighe
for the higher pitch presence is satisfied. In order to detnates

the various refinement steps used in the salience functign, F
ure 2 shows the three basic stages of the multiple-FO estimat
system for a synthesized&£G4-B4-C5-D5 piano chord.

4. Evaluation
4.1. Dataset

The proposed multiple-FO estimation system was testeden th
MIDI Aligned Piano Sounds (MAPS) database [5]. It con-
tains real and synthesized recordings of isolated notesicaiu
chords, random chords, and music pieces, produced by 9 real
and synthesized pianos in different recording conditi@os-
taining around 10000 sounds in total. Recordings are stereo
sampled at 44100Hz, while MIDI files are provided as ground
truth. For the current experiments, classic, jazz, andaayl
generated chords (without any note progression) of polgpho
levels between 1 and 6 were employed, while the note range
was C2-B6, in order to match the experiments performed in [5]
Each recording lasts about 4 seconds. A development s usin
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Figure 3: Multiple-FO estimation results (in F-measurejhwi
unknown polyphony, organized according to the ground truth
polyphony levelL.

2 pianos (consisting of 1952 samples) is selected whiletther o
7 pianos (consisting of 6832 samples) are used as a test set.
4.2. Figuresof Merit

In order to evaluate the results of the proposed multiplee$-0
timation system, the recall, precision, and F-measure sed:u

~ 2PR
"~ P+R

tp

ip
R=—2_
tp + fn

P=—*
tp + fp

wheretp is the number of correctly estimated pitch@sjs the
number of false pitch detections, afidis the number of missed
pitches. A set oP, R, F' is generated for each recording. By
varying the system parameters, precision/recBIR) curves
can be created by placing values on the x-axis an& values
on the y-axis.

(13)

4.3. Results

The performance of the proposed multiple-FO estimation sys
tem compared with the results shown in [5] is shown in Figure
3, organized according to the polyphony level of the ground
truth (experiments were performed with unknown polyphony)
The mean F-measures for polyphony levéls= 1,...,6 are
87.84%, 87.44%, 90.62%, 88.76%, 87.52%, and 72.96% re-
spectively. It should be noted that the subset of polyphengl|

6 consists only of 350 samples of random notes and not of clas-
sical and jazz chords. As far as precision is concernedrtegho
rates are high for polyphony levels 2-6, ranging from 91.11%
to 95.83%. The lowest precision rate is 84.25% for= 1,
where some overtones were erroneously considered as gitche
Recall displays the opposite performance, reaching 96 #2%
one-note polyphony, and decreasing with the polyphonylleve
reaching 87.31%, 88.46%, 85.45%, and 82.35%, and 62.11%
for levels 2-6.

Comparing the results with the system in [5] (where the re-
ported F-measures for the same polyphony levels were 93%,
93%, 88%, 80%, 75%, and 63%), it can be seen that the pro-
posed system yields improved results for polyphony levels 3
while falling back in the one- and two-note polyphony cadee T
best improvement is reported fér= 5, which is about 12.5%.
The algorithm in [5] follows the same pattern whBrand R are
concerned, reporting higR rates for all polyphony levels and
decreasingR rates as polyphony increases. Additional exper-

iments were performed in [5] using the iterative spectrdl-su
traction algorithm proposed by Klapuri in [8], which readhe
F-measures of about 85%, 91%, 91%, 85%, 81%, and 72% for
L = 1,...,6, respectively. In this case, the proposed system
performs better fol. = 1,4, 5, 6, reporting the best improve-
ment (6.5%) for the 5-note polyphony case, while the worst pe
formance difference is about 3.5% fbr= 2.

In terms of a general comparison between the 3 systems,
a weighted F-measure was used, weighting the varioder
polyphony levels 1-6 with their respective set size, sire t
global F-measure was not reported in [5]. For the proposed
system, the actual globl is 87.48%. For the algorithm in [5],
the estimated globdl is 83.70%, while for the algorithm of [8]
used in [5], itis 85.25%.

Concerning the statistical significance of the proposed
method’s performance compared to the methods in [5, 8], the
recognizer comparison technique described in [7] was em-
ployed. The number of pitch estimation errors of the two meth
ods is assumed to be distributed according to the binomial la
The error rate of the proposed methodis= 0.1252, while
the average error rate of the two methods in [3}ds= 0.1630
andps = 0.1475. Taking into account that the test set size
S = 6832 and considering 95% confidence & 0.05), it can
be seen that, — p1 > z4+/2p/S, Wherez, can be determined
from tables of the Normal lawzg.0s = 1.65) andp = 21tp2.
Likewise, it can be seen that — p1 > z44/2p/S, where in
this timep = 2123, This indicates that the performance of
the proposed multiple-FO method is significantly better vhe
compared with the methods in [5, 8].

Another issue for comparison is the matter of computa-
tional complexity, where the algorithm in [5] being repatt®
require a process time of about &@al time, while the pro-
posed system is able to estimate pitches faster than real tim
(implemented in Matlab), with the bottleneck being the RTFI
computation; all other processes are almost negligiblercigg
computation time. This makes the proposed approach aveact
as a potential application for automatic polyphonic mustt
scription.

In [5], additional results are reported using a subset of
97 recordings which only contains octaves. The system in
[5] yielded an F-measure of 81%, while the algorithm in [8]
reached 77%. Here, the reported mdap; is 84.59%, with
Pyt = 90.59% and R,.: = 84.12%. The improved perfor-
mance of the proposed system on octave detection could be at-
tributed to the octave presence tests that were performiagd us
the ST measure as well as on the temporal evolution tests using
the partial correlation. In contrast, the method in [5] uges
smoothness of the partial envelope as a pitch presenceaindic
tion, which is not sufficient for detecting octaves. Additid
insight to the performance of the octave detection experime
is given in the form of aP/R curve with varyingSI’ in Figure
4. WhenSI' = 0.25, F,.; reaches a value of 87.59%, while
when using theST’ threshold for the whole system the,.;
drops about 4%. When the value 81’ reaches 5, the recall
drops to 50%, which indicates that only the lower pitchedef t
octaves are selected.

5. Conclusions

In this work, a system for multiple fundamental frequency es
timation of piano sounds was proposed. The constant-Q res-
onator time-frequency image was selected as a mid-leval dat
representation, while techniques for noise suppressipec-s
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Figure 4: P/R curve for the octave detection experiments with
SI' € {0,5}. The circle marker corresponds to the selected
S1I’ for the whole system (withf,., = 84.59%) and the cross
marker corresponds to the optimgl’ value for the octave ex-
periments only £, = 87.59%).

tral whitening, and onset detection were employed in order t
make the subsequent analysis robust. A log-frequencynsalie
function was proposed, being able to handle tuning and inhar
monicity estimation, while pitch candidates were seleeted
refined according to a set of rules based on spectral chamacte
tics. A novel procedure for suppressing errors by harmdigica
related FOs was proposed, using the common amplitude mod-
ulation assumption, which takes the form of partial cotiefta
tests. Experiments were performed on a large dataset o pian
recordings containing samples that were created usingrdift
sources and recording conditions. The system reportsasece
pitch estimation performance when compared to stateef-th
art approaches. Statistical significance tests were daorigin
order to verify the proposed method’s superiority. In addit

the system was able to address the octave detection prolylem b
employing tests on harmonically-related FOs.

In the future, experiments will be performed on datasets
consisting of various instrument types, such as the 30unstr
ment random mixtures dataset used in [8]. To that end, au-
tomatic adaptation of the proposed system parametersdxccor
ing to the spectral envelope shape and the partial evolation
the produced notes is necessary. It should be noted that, al-
though the method can be extended in order to cover several
instrument types, the detection of notes produced by extyem
inharmonic instruments such as marimba or vibraphone can-
not be supported by the current system. In addition, a robust
onset detection algorithm will be developed in order to accu
rately detect soft onsets produced by pitched non-penraissi
instruments. More emphasis will also be given to the matter
of correctly estimating the pitch of complex combinatiorfs o
harmonically-related notes, which still remains an opevbpr
lem in the literature. Finally, the multiple-FO estimatialgo-
rithm will be incorporated into an automated music transcri
tion system.
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