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ABSTRACT

The availability of large, electronically encoded text cor-
pora and the use of computers in recent decades have made
Natural Language Processing (NLP) a flourishing research
area. A wealth of standard techniques has been developed
to serve use cases like document retrieval, identification
of a finite vocabulary and synonyms, and the collocation
of terms. Similarly, social networking among musicians
in internet forums and the advent of automatic chord ex-
traction have led to the establishment of chord databases,
if on a smaller scale. Comparatively little research has
been carried out on these growing corpora of chords. We
suspect that one reason for this lack of research lies in the
difficulty to decide if chords or other harmonic elements
can be treated like lexemes in a text corpus. More sim-
ply, the question is: What is a word in terms of harmony?
In this paper we propose a bottom-up approach. In order
to find harmonic units whose distributions resemble dis-
tributions of words we consider chord elements differing
in (a) length of chord sequence (counted in chord sym-
bols), and (b) chord alphabet. Using lengths from 1 to 4
and two different chord alphabets we obtain a parameter
space of size 8. For each of the parameter settings we
compute statistical summaries of the resulting frequency
distribution of the harmonic unit. As results, we report the
parameter settings for two different chord corpora (2500+
songs each) that generate a frequency model correspond-
ing most closely to the Brown Corpus, a general text cor-
pus of American English.

I INTRODUCTION

Music and language may be processed independently and
in different parts of the brain, but some obvious analo-
gies relate the two domains, including evolution over time,
and the auditory system as the primary gateway to percep-
tion. While there can be multiple independent melodies
at a time in a piece of music, chords have the particular
property that positions them close to language: they are
perceived sequentially. In fact, for most tonal music we
can assume that at each time point in a piece there is ex-
actly one chord. Aptly, it is common to refer to sequences
of chords as chord progressions.

The sequential nature of chord progressions has driven
music computing researchers to use processing techniques

known from text and speech processing tasks. For ex-
ample, hidden Markov models similar to those used in
speech recognition have been successfully incorporated
into automatic audio chord labelling algorithms in order
to achieve a smooth output (Bello and Pickens, 2005; Lee
and Slaney, 2007). However, the models are still much
simpler than their ancestors in speech recognition. Little
attention has been paid to the problem of deciding what to
model: most chord labelling algorithms assume that the
nature of a chord is entirely determined by its intervalic
content, with no reference to its duration or its metrical
position, i.e. ignoring harmonic rhythm. In addition to
that, it is (at least to us) very unclear whether just one
chord is the harmonic unit to model and work with or
whether progressions of two or even more chords form
a basic harmonic unit which, for example, should be mod-
elled as one state in a hidden Markov model. From mu-
sic theory, it is known that one just a chord on its own
(i.e. a root note and a chord type, e.g. d-minor) does
not have a single function or meaning. Only in combina-
tion with the intervals to surrounding chords, in relation
to a current tonal centre, and in connection with the corre-
sponding temporal data, distinctive harmonic information
emerges.

In NLP many powerful techniques have been devel-
oped in recent years to solve tasks in text processing that
have close analogues in music processing. Among these
tasks are the clustering of documents (or pieces in the
case of music) according to genre and style, the retrieval
of items from large databases according to similar con-
tent (query-by-example paradigm), the retrieval of iden-
tical structures despite differing surfaces (e.g. for detec-
tion of plagiarism or cover songs), the induction of (latent)
syntactic rules, or identification of word collocations or
idioms, i.e. lexemes that are commonly associated. Many
successful technical applications like internet search en-
gines, speech recognition systems or electronic dictionar-
ies incorporate solutions to these tasks. The techniques
developed to tackle these problems include Latent Seman-
tic Analysis, n-gram, hidden Markov and other probabilis-
tic models, statistics for word collocations, and probabilis-
tic parsing and grammar approaches. All these techniques
operate on tokens or basic units into which a text or an
utterance can be split. In many linguistic studies or appli-
cations, words are used as the basic token and the statis-



tical techniques are constructed or optimised to work on
large corpora of texts that have words as their basic token
(unit). From there follows the rationale of this study: If
we want to employ existing techniques from NLP to tackle
analogue problems in music research using harmonic data
(e.g. clustering according to style or cover song identifica-
tion) we would like to find a representation derived from
a large corpus of raw harmonic data that has comparable
distributional properties like those that are typically found
in verbal corpora. In other words, out of the many pos-
sibilities of what could constitute a “harmonic word” (i.e.
the basic unit used for modelling) we aim at finding the
one that generates a distribution that we can model us-
ing standard methodology from computational linguistics
and that results in a model similar to those from linguistic
corpora. We have to stress that we consider the analogy
to the concept ‘lexeme’ or ‘word’ in language only in a
distributional and maybe in a syntactical sense. We do,
however, by no means imply that a ‘harmonic word’ has
any semantic quality comparable to the verbal unit.

II TERMINOLOGY AND DATA

Two of the most important concepts of corpus linguistics
are type and token. A type is a member of the dictionary of
a language, typically a word (or morpheme), whereas a to-
ken is a member of the sample, the instance of a type. For
example, in an English language corpus the type “that”
could describe 612875 tokens. As we deal with very dif-
ferent kinds of data, one has to bear in mind that a type in
a language corpus will naturally be a word (or word form)
whereas in a corpus of harmonic data it will be some unit
of chord information, be it a chord or a chord sequence
(see Section III for details). In fact, the aim of this study
is actually to find out what a good type representation for
harmonic data might be.

A. Corpora

We use two different popular music corpora containing
harmonic (chord) information, which we call Community
Corpus and Automatic Corpus. Each set features more
than 2, 500 songs.

The Community Corpus (2548 songs, 195874 chords)
stems from several sources and has been compiled by nu-
merous anonymous (amateur) musicians using the com-
mercial software Band in a Box 1 . The main purpose of
the program is to generate a MIDI accompaniment (in dif-
ferent styles) while taking as an input only a chord se-
quence (and optional melodies) provided by the user. From
these Band in a Box files we extracted only the chord
progressions, including metric duration. It is impossible
to test thousands of songs for transcription accuracy, but
we assume that very bad quality files are rare in spite of
the likely lack of professional musical skill because Band
in a Box plays the generated transcriptions and users can
check their files by ear. The Community Corpus contains

1 http://www.band-in-a-box.com/

a wide range of songs, including many Jazz standards, but
also classic popular songs and folk songs.

The chord data of the Automatic Corpus (2592 songs,
294264 chords) set was automatically extracted from poly-
phonic MIDI files using the algorithm proposed by Rhodes
et al. (2007). The MIDI files used for this study was
a sample from a professionally assembled collection of
14,063 songs acquired from the commercial MIDI distrib-
utor Geerdes MIDI Music 2 designed for professional use
and karaoke playback. While the raw MIDI data is accu-
rate, the automatic extraction is likely to be noisy. This set
also is very diverse but—as the karaoke source suggests—
features more contemporary and commercial pop music.

We compared these two music corpora to the Brown
Corpus, a standard and widely researched text corpus of
written American English published in 1967 which con-
sist of 500 samples from different contemporary text gen-
res 3 (45,215 different words or types and 1,006,770 to-
kens or words in total).

B. Data Format, Chord Classes

The Automatic Corpus assigns to every beat (retrieved from
the MIDI representation) a chord label consisting of the
chord root as well as the chord “quality” chosen from a
set of six labels maj , min , dim , aug , sus9 , sus4 .
We adopt this format for the (originally richer) Commu-
nity Corpus and map the chords appearing in it to these six
classes 4 . Chords that do not fit with any of the six classes
are assigned to an auxiliary class called unknown. Both
chord data sets are stored in RDF files using the Chord On-
tology (Sutton et al., 2007), making them the two largest
chord corpora in open format we are aware of. We plan to
publish the Community Corpus and the Automatic Corpus
later this year on the website
www.chordtranscriptions.net.

III METHOD

The analytical characterisation of the two pop corpora in
comparison with the Brown Corpus makes extensive use
of the zipfR package (Evert and Baroni, 2007) for lexical
statistics within the R programming language. We largely
follow the analytical procedures proposed in the tutorial
introduction of the package 5 .

While the text corpus data is already provided by the
zipfR package, we have to compile statistics for the chord
corpora from the RDF files (see B.). In order to do so
we load each chord corpus into our software and generate
a suffix tree (for general information on suffix trees, see
(Gusfield, 1997)). The suffix tree structure allows us to
conveniently access much of the information we need for
further processing. We consider different “alphabets” of

2 http://www.midimusic.de/
3 http://khnt.aksis.uib.no/icame/manuals/brown/
4 for a table see

http://chordtranscriptions.net/ChordLists/chordlist reduced.csv
5 http://www.cogsci.uni-osnabrueck.de/˜severt/zipfR/materials/zipfr-

tutorial.pdf



harmonic elements or harmonic units which change with
the parameters described in this section.

A. Parameter Space

While in texts words often have boundaries marked by
space characters and the like, the chord sequence of a song
provides us only with the information of chord changes.
We look at four different kinds of harmonic elements, namely
at single chords, and chord progressions of length 2, 3, and
4. Please note that only the first option is non-overlapping.
We represent only the chord class of each chord (six differ-
ent classes, see above) and the interval between successive
chords. We assume that any song can be transposed into
any key and still remains the same. In much the same way
as Mauch et al. (2007) we transpose any of the items pre-
sented above so that the first chord has root C. Hence, two
chord progressions such as Cmaj – Fmin – Gmaj and
Dmaj – Gmin – Amaj will be considered equivalent.
Behind this procedure is the belief that the key of a piece
is a concept that facilitates composition and performance
but is less important for the listener (except for individuals
with absolute pitch). Also, as reliable key information is
not at hand, this is a convenient way to implement trans-
position invariance.

As we want to investigate the influence of harmonic
rhythm, we included duration information, as both collec-
tions of songs contain information on the metric duration
(quantised to beats) of the chords. In order to make the
information manageable, we mapped the durations into
three duration classes, namely 1beat , 23beats , and
manybeats , where 1beat captures all chords that have
a duration of one beat, 23beats those with duration of
either 2 or 3 beats and manybeats those with 4 or more
beats. For example, if one distinguishes chords with dif-
ferent harmonic duration,

Cmaj -1beat−→ Fmin -manybeats

differs from

Cmaj -manybeats−→ Fmin -manybeats ,

while they obviously would not differ if one considered
only the chord quality and root differences. The possible
parameter settings are hence to use metric durations or not
to (and hence assume all chord durations are equal).

Taken together, the 4 different length options for the
chord progression combined with the two types of alpha-
bet generate 8 different parameter settings that we explore
in this study. Future investigations following this approach
should also test the significance of metrical position of a
chord in a bar, duration ratio between successive chords,
the relation to the current key, and different chord class
sets. This will, of course, increase the number of parame-
ter settings.

B. Type Rankings

The most straightforward statistic of a text corpus is the
ranking of types. The types we are considering are chord

1 2 5 10 20 50

0
50

00
10

00
0

15
00

0
20

00
0

Frequency Spectrum Brown Corpus

m

V
m

●

●

●

●

●
● ●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 1. Word type frequency spectrum of the Brown
Corpus. m is the frequency class, and Vm the correspond-
ing number of word types. For example, the number of
different words (word types) that occur m = 2 times in
the corpus is about V2 = 6500.

n-grams on the one hand and words on the other. This
representation has a value in its own right (Mauch et al.,
2007) and can certainly serve to get an overview of the
(trivial) characteristics of a corpus (Table 1). To illustrate
how the harmonic alphabet and the resulting distribution
of relative frequencies differs between two parameter set-
tings, we picked two parameter settings at random, chord
sequences of length 1 including metric duration and chord
sequences of length 4 ignoring duration information, and
list them along the relative frequencies of words in the
Brown Corpus.

C. Frequency Spectra

The frequency spectra of linguistic corpora are charac-
terised by the fact that many words occur only once or
very rarely in the corpus while only a few words are used
very frequently. The frequency spectrum from the Brown
Corpus illustrates this nicely where we see the the fre-
quency class m = 1 being by far the class that includes
the largest number of different words (Vm), i.e. types.

In Figure 2 one can see an empirical frequency spec-
trum for chord progressions of length 3 in combination
with metric duration. The frequency spectrum resembles
the spectrum obtained from the Brown Corpus to a certain
degree.

We obtain a completely different spectrum from the
Automatic Corpus corpus when computed from a repre-
sentation of single chords (length=1) in combination with
the metrical duration information (see Figure 3): None of
the harmonic types appears only once and types occurring
in the corpus have a much higher frequency, i.e. are re-



— Community Corpus — Brown
Freq. rank metric durations, length 1 no durations, length 4 Corpus

rel. freq type rel. freq type rel. freq type

1 0.309 maj -manybeats 0.022 maj
5−→ maj

7−→ maj
5−→ maj 0.069 the

2 0.264 maj -23beats 0.016 maj
7−→ maj

5−→ maj
7−→ maj 0.036 of

3 0.128 min -23beats 0.014 maj
5−→ maj

5−→ maj
7−→ maj 0.028 and

4 0.117 min -manybeats 0.012 min
5−→ maj

5−→ maj
5−→ maj 0.026 to

5 0.061 maj -1beat 0.011 min
5−→ maj

7−→ min
5−→ maj 0.023 a

6 0.031 dim -23beats 0.011 maj
5−→ maj

5−→ maj
5−→ maj 0.021 in

7 0.022 min -1beat 0.009 maj
5−→ min

5−→ maj
5−→ maj 0.011 that

20 < 0.001 sus9 -23beats 0.006 maj
5−→ maj

5−→ maj
2−→ maj 0.005 at

50 — 0.002 min
5−→ maj

5−→ maj
9−→ maj 0.002 if

100 — 0.001 maj
5−→ maj

5−→ maj
11−→ maj 0.001 way

200 — 0.001 maj
2−→ min

8−→ maj
2−→ maj < 0.001 hand

1000 — < 0.001 min
1−→ min

5−→ maj
6−→ min < 0.001 charles

10000 — < 0.001 min
11−→ dim

7−→ min
5−→ maj < 0.001 registry

Table 1. Type rankings and relative frequencies for two selected parameter settings in the Community Corpus as well as
the Brown Corpus. For the chord sequences of length 4, the root difference between to consecutive chords is represented
as an upwards interval measured in semitones, i.e. the chord change C-F would be an instance of maj 5−→maj .
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Frequency Spectrum:  Automatic Corpus, Reduced Chord Set, Metric Duration, Length 3
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Figure 2. Harmonic type frequency spectrum of Auto-
matic Corpus using chord sequences of length 3 and met-
rical duration information. Similar in shape to Figure 1.

peated much more often.

D. Productivity

A common way to summarise these frequency spectra is
to divide the number of words which only occur once (V1,
technical term: hapax legomena) by the overall number
of tokens in the corpus (N ). The quotient is simply the
proportion of types that have exactly one instance in the
sample. It gives an indication of how the vocabulary is
used and how productive the process is that generated the
corpus, hence it is often called measure of productivity.
Table 2 lists the productivity values for all parameter set-
tings in our study. Baayen (1994) explains in more detail
the use of the productivity measure in language.

E. LNRE modelling

The characteristic shape of the frequency spectra arising
from linguistic corpora can be modelled by so-called Large
Number of Rare Events models that allow us to summarise
the frequency distribution from a corpus by a few model
parameters. Out of the several different models applica-
ble for this type of distribution we chose the finite Zipf-
Mandelbrot model as described by Evert (2004):

g(π) =

{
C · π−α−1 A ≤ π ≤ B
0 otherwise,

(1)

where C = (1 − α)/(B1−α − A1−α) is a normalising
factor. What is modelled here is the density g(π) of types
depending on their probability π. A quick intuitive expla-
nation could go as follows: In a finite corpus the proba-
bility of a type (estimated by its relative frequency) never
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Figure 3. Harmonic type frequency spectrum of Auto-
matic Corpus using chord sequences of length 1 and met-
rical duration information. One can see only a small por-
tion of the data, as most types are concentrated in very
high frequency classes, similar to what can be observed in
Table 1.

falls below some (small) positive number. The parame-
ter A represents that number. Similarly, the most frequent
type has a relative frequency somewhere between 0 and 1,
and intuitively the density g(π) should be zero for values
of π greater than that. Hence the use of B. The most in-
teresting parameter however is α: the basic assumption of
the model is that there are many types which occur rarely,
i.e. have a low probability. The density at values close
to zero is therefore high, which is modelled by a power
law, in which α characterises the slope of the type density
curve. For a more formal derivation, see (Evert, 2004).

We fitted the finite Zipf-Mandelbrot model to the Brown
Corpus and to all 16 frequency spectra resulting from pa-
rameters the eight parameter settings for each of the two
corpora. We used the Simulated Annealing algorithm for
the model fitting and parameter optimisation.

As visual examples, we present graphs of frequency
spectra as observed and as predicted by the finite Zipf-
Mandelbrot model for the Brown Corpus (α = 0.578;
Figure 4) and two parameter settings: Community Cor-
pus without duration information and length 4 (Figure 5),
and Automatic Corpus with metric duration and length
3 (Figure 6), as the latter two have α values (0.345 and
0.605) closest to that of the Brown Corpus. Looking at the
observed frequency distributions and the corresponding
model predictions for these parameter settings seems to
suggest a reasonable good model fit without any clear pat-
tern of deviations between observed and predicted num-
bers of the first 15 frequency ranks.
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Figure 4. Observed and predicted frequency spectrum for
the Brown Corpus from finite Zipf-Mandelbrot model
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Figure 5. Observed and predicted frequency spectrum
for the Community Corpus from finite Zipf-Mandelbrot
model. Parameter setting: Length of chord progressions =
4, not using durational information.



Corpus Duration Length Exp. Voc. Size Max. Voc. Size Productivity alpha B
at 100k tokens

1

Community

No Duration 1 7 (7) 0.0000 0.000 1.429
2 No Duration 2 380 (588) 0.0005 0.112 0.032
3 No Duration 3 3906 (49392) 0.0110 0.345 0.007
4 No Duration 4 12820 (4148928) 0.0498 0.857 0.008
5 Metric Duration 1 21 (21) 0.0000 0.000 0.419
6 Metric Duration 2 1657 (5292) 0.0032 0.173 0.008
7 Metric Duration 3 12122 (1333584) 0.0450 0.802 0.005
8 Metric Duration 4 27465 (336063168) 0.1297 1.000 0.005

9

Automatic

No Duration 1 5 (6) 0.0000 0.000 2.156
10 No Duration 2 190 (432) 0.0002 0.098 0.076
11 No Duration 3 2481 (31104) 0.0070 0.315 0.008
12 No Duration 4 12204 (2239488) 0.0602 0.650 0.004
13 Metric Duration 1 14 (18) 0.0000 0.012 0.773
14 Metric Duration 2 961 (3888) 0.0017 0.098 0.011
15 Metric Duration 3 13532 (839808) 0.0599 0.605 0.002
16 Metric Duration 4 38819 (181398528) 0.2563 0.983 0.002

17 Brown 12780 — 0.063 0.578 0.002

Table 2. Resulting bench mark values for all tested parameter settings in comparison with the Brown Corpus. The
Maximum Vocabulary Size figures represent the theoretical vocabulary size possible by using the respective alphabet.
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Figure 6. Observed and predicted frequency spectrum for
the Automatic Corpus from finite Zipf-Mandelbrot model.
Parameter setting: Length of chord progressions = 3, us-
ing metrical durations.

IV RESULTS

Table 2 contains the results for all the different parameter
settings considered. We focus primarily on three bench
mark values: The extrapolated expected vocabulary size
at a corpus size of 100,000 tokens (i.e. for the Brown
Corpus the vocabulary size after the first 100,000 tokens),
the measure of productivity, and the α parameter from
the LNRE- model. For each of these bench mark values
we look for input parameter settings that generate val-
ues within a comparable range (i.e. roughly within the
same order of magnitude) to the Brown Corpus. Taking
this rather qualitative look at the results table, we find the
closest approximation to the Brown Corpus for the met-
rical information setting of length 3 and the non-metrical
setting of length 4. This is finding holds true for both the
Community Corpus and the Automatic Corpus (see rows
2, 10 and 8, 16 of Table 2 respectively)

V DISCUSSION

We are aware that there are many more parameters that
can be introduced into the current framework. Also, we
certainly know that there are many more ways of look-
ing at chords and harmonic units that do not start from a
model of (overlapping) n-grams. For example, one of the
most distinctive properties of music, repetition (Huron,
2006), has been excluded in this paper. But we would like
to include in a future extension of this study repetition-
based methods for the segmentation of a continuous sym-
bol stream, like the algorithm proposed by Cohen and
Adams (2002). This would allow to cut the stream of



chord symbols into units of variable lengths. In addition
and following the present approach, one could also con-
sider reducing all chords to their roots (i.e. using only 1 in-
stead of 6 chord classes) or on the contrary, extending the
number of chord classes. Another option includes using a
fixed time window of, say, one or two bars, as a parame-
ter of the present framework instead of a fixed length for
the chord progressions. In addition to the present compar-
ison with the word frequency models distribution, looking
instead at distributions of part-of-speech tags might offer
some more insight.

VI CONCLUSIONS

For this study we compiled and used the largest manually
generated chord corpus we are aware of, as well as a chord
corpus automatically extracted from MIDI data. We have
identified two parameter settings for treating chord infor-
mation that result in a type frequency spectra that seem
to be comparable to a spectrum from a linguistic corpus
and that can be modelled similarly by a LNRE model.
One setting includes metrical duration and the other one
makes no use of this durational information. We do not
claim that this parameter setting is the optimal or most
adequate one for a harmonic representation (this will be
subject to further and more rigourous testing and explo-
ration of the parameter space). But these settings allow us
to look at the pop song corpora with a resolution compa-
rable to the Brown Corpus. At this point it is not taken
as granted that this resolution is adequate for investiga-
tion of the harmonic content of pop music corpora. Only
when we use the resulting harmonic units in an applica-
tion (e.g. LSA for musical style clustering or cover song
detection) will we be able to test whether the generation of
harmonic units actually has given useful and in that sense
meaningful results. Nonetheless, the exploratory investi-
gations presented in this paper are a necessary first step
for pruning the enormous parameter space that is poten-
tially relevant when we aim at finding a reliable unit for
harmonic modelling.
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