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Abstract. We present a system that automatically turns the pages
of the music score for musicians during a performance. It is based
on a new algorithm for following an incoming audio stream in real
time and aligning it to a music score (in the form of a synthesized
audio file). Precision and robustness of the algorithm are quantified
in systematic experiments, and a demonstration using an actual page
turning machine built by an Austrian company is described.

1 Introduction

The musicians among the readers may be familiar with the problem
of having to turn the pages of the music score while playing a piece
of music on an instrument. This is not so much a problem in a live
concert, where the artist either plays the piece by heart or has a (semi-
)professional page turner by her side, but it is very bothersome during
practicing (where it has to be done over and over again). In many
cases, having to turn the page requires the musician to remove one
hand from the instrument and, thus, to stop playing and then continue
after the page has been turned. Such a forced disruption is annoying
and frustrating, both musically and from a practicing point of view.
An intelligent system that automatically ‘knows’ when to turn the
pages and does that in a reliable manner would be highly useful.

The Austrian CompanyQuidenus GmbH(www.qidenus.com) has
developed an electro-mechanical device that actually turns the pages
of books, music scores, etc. via two physical ‘fingers’ (see Fig. 5,
center). The device is operated by the musician via a foot switch.
The musician may thus play without interruption, but is still forced
to focus her thoughts on the act of page turning as the respective
point in the piece approaches. Our idea was to make this device de-
cide and act completely autonomously, without the musician having
to do anything, by ‘listening’ to the musician in real time, comparing
the ongoing performance to some internal representation of the sheet
music, and automatically turning the page at the appropriate time.
This is a very challenging AI task, which involves real-time machine
listening and adaptivity. The contribution of this paper to Artificial
Intelligence is thus a general method for tracking (‘listening to’) au-
dio streams in real time, on-line, with high robustness and flexibility.

2 Requirements and Related Work

Technically, what is required is an algorithm that is capable of au-
tomatically listening to a live music performance (in the form of a
raw audio stream, in our case) and tracking the current position in
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the score. This task is known asautomatic score following. There
has been quite some work on score following in the AI and computer
music communities, starting as early as 1984 [3, 9] and intensifying
in recent years (e.g., [2, 4, 7, 8]). Many of these algorithms require
practicing sessions with the same musician [9], during which the sys-
tem learns a predictive model of the expected tempo and timing de-
viations applied by the musician, represented, e.g., as a Graphical
Model or Bayesian Network [7], or a Hidden Markov Model [8].

Our goal is to avoid this laborious training phase and develop a
system that adapts to the musician currently playing without any
training. An additional goal is to provide robustness in the face
of structural changes (see below), which has mostly been ignored
in previous approaches (with the notable exception of [6], where
HMMs are used to model the high-level structure of the music). In
more detail, our system should have the following properties:

On-line tracking: The artificial page turner must ‘listen to’ and fol-
low a musician’s performance in real time. Specifically, in a real
scenario, we cannot assume that the musician plays a MIDI in-
strument (in which case we would have conveniently processable
symbolic input data), but, rather, a ‘regular’ instrument whose
sound is recorded by a microphone. The problem is thus to track
a raw audio stream and to align it to the music score in real time.

Robustness against changes in tempo and timing:In classical
music, musicians deliberately vary the tempo (among other
parameters) to add expression to a piece; this phenomenon comes
under various names like ‘agogics’, ‘rubato’, or ‘expressive
timing’. In fact, this is an indispensable part of (classical) music
performance [10]. Such tempo changes can be very abrupt and
large (e.g., a slowing down of 50% within one beat). Musical
scores do contain some rough indications (like aritardando
prescription), but these are neither precise and quantitative nor
complete. A music tracking system must be able to accommodate
such changes without becoming confused.

Robustness in the face of structural changes:In some cases, the
musician may choose to follow structural indications in the score
(specifically,repeats), but may also decide to ignore repeated sec-
tions. A page turning system should be able to automatically rec-
ognize the performer’s decisions.

Error tolerance: Musicians make mistakes (particularly in the
practice phase); they may omit notes or whole segments, play er-
roneous or superfluous notes, or spontaneously restart at a partic-
ular point of a piece after having made a mistake. Clearly, a page
turning system should be robust to such errors.

Adaptivity: Initially, it is unclear how and how fast the musician
is going to play. The system has to be able to adapt to the spe-
cific circumstances of a live performance, without prior training
or information.



Figure 1. Excerpt (bars 43-46) of the Etude Op.25 No.11 in A minor by Fréd́eric Chopin: notated score (top); audio signal of synthesized reference score
(middle); real performance (bottom); the correct time alignment produced by the algorithm is indicated by connecting lines. To avoid clutter, only the

alignment of points at bar lines is shown.

3 On-line Audio Following

The solution we are going to adopt is the following. Rather than try-
ing to identify individual notes from the incoming audio stream and
trying to associate these with the corresponding notes in the notated
score (the ‘sheet music’), we first convert (a MIDI version of) the
given score into a sound file, by using any available software synthe-
sizer. That gives an audio rendition of the piece in poor sound qual-
ity, without any expressive aspects (the piece will sound perfectly
mechanical and machine-like), and, in the case of the piano, without
any pedalling. In the live tracking process, the incoming audio stream
must be aligned, on-line, to the synthesized audio file. Figure 1 shows
a short excerpt from the Etude Op.25 No.11 in A minor by Fréd́eric
Chopin, with the corresponding excerpts from the synthesized score
audio file, and from an actual performance.

The algorithm to be described here builds on a dynamic program-
ming method first presented by S. Dixon [5], and adds a number of
new strategies to make it more robust and adaptive. We first recapit-
ulate the basic algorithm and then present our new method.

3.1 The Basic Audio Alignment Algorithm

In [5], Dixon presents an algorithm for the online alignment of two
audio streams that is based on Dynamic Time Warping (DTW). The
streams are given as sequences of short (46 ms) audio frames. The
important differences between this algorithm and standard DTW are
linear time and space complexity, and the fact that the optimal align-
ment is computed incrementally. The algorithm works as follows:

Given two sequencesU = u1, ..., um and V = v1, ..., vn, an
alignment betweenU andV is a pathW = W1, ..., Wi (through
a cost matrix) where eachWk is an ordered pair(ik, jk) such that
(i, j) ∈ W means that the pointsui andvi are aligned.W is con-
strained to be monotonic and continuous. Anm×n matrix represents
a local cost functiond(i, j) which assigns costs to the alignment of
each pair(ui, vi). The cost of a pathW is the sum of the local align-
ment costs along the path. Them×n path cost matrixD is computed
using the recursion:

D(i, j) = d(i, j) + min

{
wa ∗D(i, j − 1)
wa ∗D(i− 1, j)

wb ∗D(i− 1, j − 1)

}
(1)

D(i, j) is the cost of the minimum cost path from(1, 1) to (i, j),
D(1, 1) = d(1, 1), wa = 1 andwb = 2. The weightswa andwb

are used to normalize paths of different lengths to make them com-
parable. The alignment algorithm computes a quasi-optimal solution
(a ‘forward path’) by incrementally constructing this cost matrix in
real time. During the initial phase, as long as less thans = 500 el-
ements of each series have been processed, columns and rows are
calculated alternately and the path follows the diagonal of the ma-
trix. Calculating a row (column) means incrementing the pointer to
the next element of the respective time series, calculating the new
local distances, and updating the cost matrixD by using formula 1.

After this initial phase the number of cells to be calculated is given
by a search width parameterc = 500, e.g. for a new columni the
local distancesd(i, j−c), d(i, j−(c−1)), ..., d(i, j) are calculated,
wherej is the index of the current row. The calculation of the mini-
mum cost paths using formula 1 is restricted to using only calculated
cells. In this way, only a sub-band of the cost matrix of constant width
is computed (see Fig. 2), which reduces time and space complexity
from quadratic to linear.

To decide if a row or a column should be computed (i.e., which of
the two time series to advance), the minimum path cost for each cell
in the current rowj and columni is found. If this occurs in the cur-
rent position(i, j) both a new row and column are calculated. If this
occurs elsewhere in rowj a new row is calculated and if this occurs
elsewhere in columni a new column is calculated. If one time series
has been incremented more thanMaxRunCount = 3 times, the
other series is incremented. In our musical setting, this embodies the
assumption that a given performance will not be more than 3 times
faster or slower than the reference score, and prevents the alignment
algorithm from ‘running away’ too far.

The audio streams to be aligned are represented as sequences of
analysis frames, using a low-level spectral representation computed
via a windowed FFT of the signal with a hamming window of size
46ms and a hop size of 20ms. The data is mapped into 84 frequency
bins, spread linearly up to 370Hz and logarithmically above, with
semitone spacing. In order to emphasizenote onsets– the most im-
portant indicators of musical timing – only the increase in energy in
each bin relative to the previous frame is stored. The cost of align-
ing two such 84-dimensional vectors is computed as the Euclidean
distance between the two vectors.
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3.2 Steps Towards Intelligent Audio Following

Initial experiments with Dixon’s algorithm showed that it works
relatively well with professional performances (e.g., recordings by
famous pianists), when there are no serious performance errors –
though even there we encountered some substantial alignment errors,
especially in situations of rapidly changing tempo. With less perfect
performances, the algorithm has severe problems.

In this paper, we propose three strategies for making on-line audio
following more effective. They will be evaluated experimentally in
Section 4.1. The strategies are presented here in the context of music
alignment, but – with the exception of the second one – they are
completely general and should prove useful in many other domains
that require robust on-line sequence alignment. In the following, the
completely known time series representing the score sits on they
axis of the cost matrix, the live audio stream on thex axis.

Strategy 1: The Backward-Forward Strategy

The first strategy consists in using the present hypothesis plus the
information from which it was constructed, in order to re-consider
past decisions and then, in turn, using the revised decisions to im-
prove the present hypothesis.

More precisely, the method works as follows: After every 2 frames
of the live input a smoothed backward path is computed, starting at
the current position(i, j) of the forward path. By following this path
b steps backwards on the y-axis (the score) one gets a new point
which lies with a high probability nearer to the globally optimal
alignment than the corresponding point of the forward path (because
this backward computation takes into account information from the
‘future’ that was not available when computing the original forward
path). Starting at this new point another forward path is computed un-
til a border of the current matrix (either columni or rowj) is reached.
If this new path ends in(i, j) again, this can be seen as a confirma-
tion of the current position. If the path ends in a columnk < i, new
rows are calculated until the current columni is reached again. If the
path ends in a rowl < j, the calculation of new rows is stopped until
the current rowj is reached. In our specific implementation, two dif-
ferent backtracking lengths are used: after 4 short backtrackings of
lengthb = 10 a longer one of lengthb = 50 is performed.

The main effect of this strategy isincreased robustness against
tempo changesand improved error tolerance: If there are extreme
tempo changes in the performance, or the performer makes large
errors – plays wrong notes and repeats or omits a whole bar – the
forward-backward strategy permits the system to correct the error
faster by waiting for the musician or jumping forward in the score.
This is because the re-computation of the backward path is not
limited by theMaxRunCount constraint that governs the on-line
forward path computation. A situation where the system ‘waits for’
the performer to catch up after a serious mistake is shown in Fig. 2.

Strategy 2: Utilizing Musical Information

Given that the reference audio file to which a performance is
aligned was synthesized from a written score, we have additional
information – beyond the pure audio representation – that can be ex-
ploited. In particular, for each note, we know precisely where it starts,
i.e., we know the preciseonset timesin the score audio; this is some-
thing that is not at all obvious from the audio itself (cf. Fig. 1). The
information can be used to bias the path to pass though points where
the performance signal is particularly similar to the sound expected
at note onsets, as follows: For every frame of the incoming live input

Figure 2. Part of a cost matrix (note that not the complete matrix, but only
a sub-band around the diagonal is computed). This particular situation shows

the system reacting to an additional bar of music (not present in the score)
erroneously played by the pianist. The live performance is on thex axis, the
score representation on they axis. Red crosses show the correct note onsets

according to the score. The blue path is calculated by Dixon’s original
algorithm, the white path is our performance tracker. Note how our algorithm

effectively ‘waits’ for the pianist (the horizontal segment) after having
noticed the error. This is made possible by the Backward-Forward Strategy.

a heuristic measureM is computed that tries to capture the likelihood
that the current frame corresponds to the next onset expected accord-
ing to the score. IfM exceeds a given threshold, the current frame is
aligned with the corresponding onset frame on the score axis; other-
wise, forward path computation continues as usual. The measureM
combines three components: the sound similarity between the current
audio frame and the score audio frame representing the next onset; a
measure of “onset-ness” of the current frame (this is computed by a
simple onset detection measure based on spectral differences to the
previous frame); and the distance, on they axis, of the forward path
to the score coordinate of the next onset (the closer, the more likely).
The details of the function are too complex to explain here (they can
be found in [1]), but the idea is fairly intuitive.

The main effect of this strategy is anincrease in alignment
precision. In addition, strategy 2 also helps improve therobustness
of alignment, particularly during hard-to-track tempo changes: the
search for onsets adds the capability to catch onsets correctly even if
the forward path went wrong for some frames.

Strategy 3: Maintaining Multiple Hypotheses

The third strategy is aimed directly at the ‘structural changes’
problem, i.e., the possibility that a musician may choose to ignore
repeat signs or repeat or skip entire sections. This problem is solved
in a straightforward way: Instead of using just one instance of the
algorithm, up to 3 instances are started simultaneously at predefined
positions and work on different parts of the piece. After 500 frames
of the score representation (y) the path costs, normalized by the
number of frames processed, are compared and the instance of the
algorithm with the least cost is selected. The positions where this
‘forking’ is triggered are the boundaries of major sections as given
in the score. At each section boundary, one instance of the alignment
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Figure 3. Recovery time in beats after big mistakes by the musician (removing a bar [r], adding a bar [a] and changing a bar [c]) as cumulative frequencies
(“y% of the errors are belowx beats”). The evaluation is based on 88 alignments of the Etude (4 bars changed) and 132 alignments of the Ballade (6 bars

changed), for each of the cases [r,a,c].

algorithm assumes that the musician will repeat the previous section
and skips back to the beginning of the section; one instance assumes
the musician will continue with the next section; and a third instance
assumes that the musician will skip the new section and jumps ahead
to the next one. As our experiments show (see Section 4.1), this
strategy works extremely well (and is still computationally feasible).

Other Improvements

Other changes that led to some improvement concern the opti-
mization of a few parameters. The weights in the path cost recursion
were set towa = 1.3 while leavingwb = 2, which makes diagonal
steps cheaper. The original algorithm showed problems – e.g. uncon-
trolled expansions of the path in one single direction – especially be-
tween note onsets where there is no data for a reasonable alignment.
That was mostly solved by this reweighting. As a consequence, the
path computation now proved to be so stable thatMaxRunCount
could be set to6, which leads to more freedom in path computation
and the possibility to catch even large differences in tempo.

And finally, with regard to theadaptivityproblem, the described
algorithm works entirely without pre-training (in contrast to, e.g.,
HMM-based approaches). The only information used is the score
represented as a (constant tempo) MIDI file. The only change relative
to Dixon’s original algorithm was to shorten the initial phase (where
the path is forced to follow the diagonal) to 1 second instead of 10. As
a consequence, the algorithm adapts much faster to the general play-
ing speed of the musician. From that point onwards, the above strate-
gies ensure that the system adapts very effectively to tempo changes,
delays and even insertions and deletions in the performance.

4 Experiments

4.1 Quantitative Experiments

A quantitative evaluation requires correct reference alignments. For
practical reasons, the systematic experiments were performed off-
line. The results are the same as for on-line alignment, except for a
small latency that would occur in real-time processing. In the follow-
ing we refer to Dixon’s original algorithm, which serves as a refer-
ence, asD; to the new algorithm that uses all our improvements ex-
cept strategy 2 (thus not relying on any music-specific information)
asA1; and to the new algorithm including strategy 2 asA2.

The algorithms were evaluated on 2 sets of 22 piano recordings of
the Etude in E major, Op.10 no.3, bars 1–21 and the Ballade Op.38,

Etude Ballade
D A1 A2 D A1 A2

Mean Error 0.23 0.10 0.07 0.32 0.19 0.15
1st Quartile 0.02 0.02 0.02 0.04 0.02 0.02
2nd Quartile 0.08 0.04 0.02 0.08 0.04 0.02
3rd Quartile 0.26 0.12 0.04 0.26 0.10 0.06
Largest Error 3.06 2.02 2.12 9.82 7.56 7.24

Table 1. Alignment errors of the algorithms on the Etude and the Ballade.
The results are based on the alignment of 3564 notes in the Etude and 4422

notes in the Ballade. The errors are given in seconds.

bars 1–45 by Fŕed́eric Chopin, played on a computer-monitored
grand piano by skilled pianists. The audio recordings were aligned to
synthesized score audio files with constant tempo. As the computer-
monitored piano also records the precise (‘true’) note onset times,
the alignment error could then be calculated.

As Table 1 shows, both new algorithmsA1 andA2 outperformD
by far. Further evaluations showed that especially the reweighting
towards cheaper diagonal steps improved the accuracy ofA1. The
further improvement ofA2 is due to the fact that strategy 2 is very
effective at correcting errors between 0.02 and 0.2 seconds.

The excerpt of the ballade ends at a phrase boundary, which due
to extreme variations in tempo and discontinuities in timing are the
most problematic parts in score following. This explains the large er-
rors on the Ballade in Table 1. After a phrase boundary the algorithm
recovers easily. Nonetheless if a page-turning mark happens to be in
the area of a phrase boundary this could cause a delayed or premature
page-turning. Of course improvements on handling those boundaries
are among the main goals of future work.

The new algorithms not only increased the accuracy but also de-
creased the variability of the results, as can be seen in Figure 4. Fur-
thermore, there was no performance which was better aligned byD
than byA1or which was better aligned byA1 than byA2.

Further tests were performed to evaluate the robustness against
performance errors. As it is not possible to change the performances,
the score representation was changed instead. For the case of the mu-
sician leaving out notes, notes are repeated in the score, for playing
additional notes, notes are deleted from the score, and for playing
wrong notes, score notes are replaced by an augmented fourth.

As Figure 3 shows the new path computation recovers much faster
from mistakes than the old one, especially in the cases of adding
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Figure 5. Some impressions from the second live experiment. Center panel: the page turning device.
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Figure 4. Variability, among 22 performances of the etude (left) and the
ballade (right), of the mean errors of the alignments (shown as boxplots).

notes (due to the capability of ’waiting’ for the musician, see Figure
2) and playing false notes (due to both the ’waiting’ and the reweight-
ing towards the diagonal). In correcting alignment errors due to omit-
ted notes the performance of the algorithms is about equal.

Strategy 3, ‘Considering Alternatives’, was evaluated on altered
scores of the Etude and the Ballade where a repeated section was in-
serted. For all 22 performances of both pieces, the omitted repetition
was recognized and the correct path through the piece was found.

4.2 Qualitative Evaluation

To evaluate the system under realistic conditions, two live experi-
ments were performed (for some impressions see Fig. 5). One was
done with a simple electronic piano, one with a grand piano. The
audio signal was recorded over the air with a single microphone. A
trained pianist from our research group played two Chopin pieces:
the Ballade Op.52 in A[ major and the Etude Op.25 No.11 in A mi-
nor (cf. Fig. 1). In both tests the system worked very reliably, even
in the presence of errors (and even some re-starts) by the pianist. It
turned out that the more onsets are played (the faster the piece is),
the better the alignment. So even the very fast etude was aligned per-
fectly (or at least well enough for correct page turning).

5 Conclusions and Future Work

The paper has presented a general algorithm for robust, effective on-
line tracking of audio streams in real time, and has demonstrated its
usefulness for an interesting task: automatic page turning for musi-
cians. The algorithm may prove useful in many other score following
tasks, e.g. live visualization and automatic accompaniment.

On the technical side there are some clear directions for future
work. The first concerns improvements in handling large, discontin-
uous tempo changes as they occur at phrase boundaries, or at the
end of pieces. This may require explicit recognition and modeling of
musical structure. As the concept of multiple matchers is currently
limited to fixed parts of the piece, such flexible structure models
might also lead to more intelligent tracking of the performer (e.g.,
re-starting at a musically suitable place after a mistake).

So far, the system has only been tested on piano music. There are
no fundamental results why it should not perform well on other kinds
of music, though non-percussive instruments (like the violin) could
be more problematic because our audio features are strongly related
to note onsets. Investigations in this direction will be carried out.
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