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Abstract

In this thesis we exploit piano acoustics to automatically transcribe piano

recordings into a symbolic representation: the pitch and timing of each de-

tected note. To do so we use approaches based on non-negative matrix factori-

sation (NMF). To motivate the main contributions of this thesis, we provide two

preparatory studies: a study of using a deterministic annealing EM algorithm

in a matrix factorisation-based system, and a study of decay patterns of partials

in real-word piano tones.

Based on these studies, we propose two generative NMF-based models which

explicitly model di↵erent piano acoustical features. The first is an attack/decay

model, that takes into account the time-varying timbre and decaying energy

of piano sounds. The system divides a piano note into percussive attack and

harmonic decay stages, and separately models the two parts using two sets of

templates and amplitude envelopes. The two parts are coupled by the note acti-

vations. We simplify the decay envelope by an exponentially decaying function.

The proposed method improves the performance of supervised piano transcrip-

tion.

The second model aims at using the spectral width of partials as an inde-

pendent indicator of the duration of piano notes. Each partial is represented by

a Gaussian function, with the spectral width indicated by the standard devia-

tion. The spectral width is large in the attack part, but gradually decreases to

a stable value and remains constant in the decay part. The model provides a

new aspect to understand the time-varying timbre of piano notes, but further

investigation is needed to use it e↵ectively to improve piano transcription.

We demonstrate the utility of the proposed systems in piano music tran-

scription and analysis. Results show that explicitly modelling piano acoustical

features, especially temporal features, can improve the transcription perfor-

mance.
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Chapter 1

Introduction

This thesis explores piano acoustics for automatic transcription, using knowl-

edge and techniques from signal processing, machine learning, and the physics

of musical instruments. Signal processing provides a time-frequency representa-

tion as the front-end of the transcription system and machine learning helps us

estimate the specific parameters for our models that relate the time-frequency

representation to musical notes. The physics of musical instruments, and piano

acoustics in particular, provides us with knowledge about the structure of piano

sounds, and informs our research into new features to improve transcription

accuracy.

Automatic music transcription (AMT) is important because the transcribed

music notation (musical score) is a convenient summarisation of music that al-

lows musicians to e�ciently exchange musical ideas and play them. It can be

used in many applications, such as karaoke, query by humming (e.g. midomi1)

and music education [Tambouratzis et al., 2008]. In order to limit the scope of

the thesis, we decided to focus on a single instrument. Being one of the most

commonly-used instruments, the piano was the natural choice. Piano sounds

have many specific features, including either ones simplifying the transcription

task like discrete frequency and percussive onsets, or others such as time-varying

timbre, large frequency and dynamic ranges. The richness of piano sounds

makes the topic (piano transcription) interesting to explore. Furthermore, pi-

ano acoustics have been well investigated, providing us with ample theoretical

findings which we can make use of.

In order to transcribe piano music signals into a symbolic representation,

we make use of the non-negative matrix factorisation (NMF) framework to gen-

erate transcription systems motivated by piano acoustics. The thesis does not

use methods such as simpler template matching, neural networks and hidden

1
http://www.midomi.com
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Markov models. NMF has been used for AMT for more than one decade. It fac-

torises a spectrogram into two low-rank matrices, representing spectral features

and temporal features individually. Unlike simple template-matching models

and black-box methods such as neural networks, NMF can explicitly model

physical parameters, is easy to extend, and can be combined with a wide range

of di↵erent methods, such as source/filter models for spectral modelling [Cheng

et al., 2014].

In Section 1.1, we introduce automatic music transcription and piano tran-

scription. Then we specify the research questions of the thesis in Section 1.2.

Section 1.3 presents the structure of the thesis and contributions associated to

each part. In Section 1.4, we list the publications by the author.

1.1 Automatic music transcription and piano

transcription

Automatic music transcription converts a musical recording into a symbolic rep-

resentation using some form of musical notation. AMT is a fundamental task in

the music information research (MIR) domain, which is related to many MIR

tasks, such as key detection, chord estimation, source separation, instrument

recognition, fundamental frequency estimation, beat tracking, and onset/o↵set

detection. They represent di↵erent levels and aspects (e.g. melody or rhythm)

of music understanding. The task of automatic music transcription produces

musical notation at a relatively low level [Benetos, 2012]. Research on AMT

mainly focuses on three subtasks with detailed definitions in [Duan and Tem-

perley, 2014, MIREX, 2016]. (1) Multiple F0 estimation (MFE) concentrates

on the time frame level information. In this subtask, an audio signal is first

divided into frames of equal time durations, then pitches are estimated in each

frame. (2) Note tracking produces a list of note events, consisting of onsets,

o↵sets and pitches of the notes. (3) In the third level, the stream or instrument

level, systems try to explore the additional property of sound sources, in order

to assign notes to their instrument sources [Grindlay and Ellis, 2011, Bay et al.,

2012, Benetos et al., 2013b]. In order to step from AMT toward producing the

musical score, it is essential to consider high-level information (key detection

and chord estimation) and rhythm information (beat tracking).

In comparison to other instruments, working on piano music simplifies the

transcription task in several ways, due to features such as discrete pitches and

hard onsets. However, piano transcription is still of great challenge. Firstly,

the piano covers a large pitch range with fundamental frequencies from 27.5Hz

to 4186Hz. Secondly, the sti↵ness of the strings causes inharmonicity of pi-

15



ano sounds. Thirdly, the number of simultaneous notes can be high in piano

music. It is even possible to have over 10 notes at the same time (using the sus-

tain pedal). Lastly, the decaying note energy makes the o↵sets hard to detect

correctly.

In this thesis, we start our studies on automatic music transcription in Chap-

ter 3, in which we analyse results of AMT systems at all three levels (frame level,

note level and instrument level). After investigating piano decay in Chapter 4,

we focus on piano transcription in Chapter 5 and 6, so that instrument assign-

ment is not needed for these two chapters.

1.2 Research questions

The work in this thesis addresses one main research question (RQ), which we

then break down into four more specific questions as detailed below.

RQ: Can automatic transcription of piano music be improved by con-

sidering acoustical features of the piano?

This thesis targets the automatic transcription task on a specific piano. Given

the situation that we have access to isolated notes produced by the piano (the

training dataset), we want to know what we can learn from the training dataset,

and how that might be useful for transcribing polyphonic music pieces played

on the same piano.

In order to answer the research question, we review both piano acoustics

and automatic music transcription methods. The thesis is undertaken from the

following four aspects.

RQ1: What are the weaknesses of matrix factorisation-based ap-

proaches and how can the weaknesses be addressed?

We review automatic music transcription systems in Sectoin 2.2. Among the

methods, non-negative matrix factorisation (NMF) is commonly used since

[Smaragdis and Brown, 2003]. NMF can represent the spectral features and

temporal features of musical tones individually, is easy to extend, and has been

used in a physics-informed piano analysis system [Rigaud, 2013]. NMF is cho-

sen as the fundamental framework for the proposed methods in this thesis. We

specify systems based on non-negative matrix factorisation in Section 2.3, and

deal with the local minimum problem of probabilistic latent component analysis

(PLCA) (the probabilistic counterpart of NMF) in Chapter 3.
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RQ2: Which features can we learn associated with piano acoustics?

Piano acoustics studies features associated with the physical structure and ex-

citation mechanism of the piano. We briefly introduce piano acoustics in Sec-

tion 2.1.2, including inharmonicity, attack noise and temporal evolution of piano

tones. Inharmonicity has been studied by Rigaud [2013] for piano transcription

and tuning. This thesis will focus on the time-varying spectral structures and

the temporal evolution of piano tones.

RQ3: How do piano partials decay in real recordings?

Among the features associated to piano acoustics, we are particularly interested

in piano decay. The theory of piano decay was studied by Weinreich [1977]

and has been applied for sound synthesis [Aramaki et al., 2001, Bensa et al.,

2003, Bank, 2000, 2001, Lee et al., 2010]. Previous studies on decay parameter

estimation were only verified on some examples of synthetic notes [Välimäki

et al., 1996, Karjalainen et al., 2002]. We do not know how well the theory

based on two coupled strings works for all piano tones with di↵erent numbers of

strings (1-3 strings). In Chapter 4, we track the decay of acoustic piano tones to

understand partial decay of all 88 piano notes. We analyse the influence of the

frequency range, pitch range and dynamic on decay patterns, to gain insights

into how the decay information can be used in piano transcription systems.

RQ4: How can acoustical features be modelled in transcription sys-

tems?

Piano acoustics is well understood, but it is not intuitive to analyse and apply

the acoustical features in an NMF framework. Previous studies on analysing mu-

sical signals using NMF are undertaken in several ways [Rigaud, 2013, Cheng

et al., 2014], in which the parametric models attracted our attention. Hen-

nequin et al. [2011a] extend the temporal activations of a standard NMF to

be frequency-dependent by using the auto-regressive moving average (ARMA)

model. Then the parameters of the ARMA model can be estimated directly.

Hennequin et al. [2010] and Rigaud [2013] parameterise each partial by its fre-

quency and the main lobe of the Hamming window, to estimate the frequencies

directly for vibratos and inharmonic tones, respectively. In Chapter 5, we pa-

rameterise the decay envelope as an exponentially decaying function. In Chap-

ter 6, we model each partial by its frequency and a Gaussian function, with the

spectral width represented by the standard deviation of the Gaussian function.

Then we can model and directly estimate the decay rate and the spectral width

respectively in these proposed parametric models.
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1.3 Thesis structure and contributions

The remainder of this thesis is organised as follows, with the associated contri-

butions of the chapters.

Chapter 2 - Background: We present necessary information on piano mu-

sic and computational methods. First, we introduce sound generation

and perception, and specify piano acoustics as the theoretical foundation

of our proposed piano transcription systems. Then we give a literature

review on related work in the automatic music transcription (AMT) do-

main. Especially, we present a general framework for AMT systems based

on non-negative matrix factorisation (NMF), including front-end, post-

processing of standard AMT systems, and parameter estimation methods

and constraints imposed in the NMF framework. Finally we describe com-

monly used evaluation metrics and compare the performance of important

methods based on the results of a public evaluation platform.

Chapter 3 - A Deterministic Annealing EM Algorithm for AMT:

We deal with the local minimal problem of PLCA with a Deterministic

Annealing Expectation-Maximisation (DAEM) algorithm and show the

improvements in transcription performance by doing so.

Contributions: We provide modified update rules for a PLCA-based

transcription method [Benetos and Dixon, 2012a] according to the DAEM,

with the introduction of a ‘temperature’ parameter. In comparison to

the baseline method, the proposed method brings improvements to both

frame-level and note-level results.

Chapter 4 - Modelling the Decay of Piano Tones: We track the decay

of acoustic piano tone. First, partials are found with inharmonicity con-

sidered. Then we track each partial to understand the decay of piano

tones in real recordings.

Contributions: We track the decay of acoustic piano tones from the

RWC Music Database in detail (first 30 partials of 88 notes played in 3

dynamics). We compare the temporal decay of individual piano partials to

the theoretical decay patterns based on piano acoustics [Weinreich, 1977].

We analyse the influence of the frequency range, pitch range and dynamic

on decay patterns, and gain insights into how piano transcription systems

can make use of decay information.

Chapter 5 - An Attack/Decay Model for Piano Transcription: We

propose an attack/decay model motivated by piano acoustics, which

models the time-varying timbre and decaying energy of piano notes. We
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detect note onsets by peak-picking on attack activations, then o↵sets for

each pitch individually based on the reconstruction errors.

Contributions: The attack/decay method brings three refinements to

the non-negative matrix factorisation: (1) introduction of attack and har-

monic decay components; (2) use of a spike-shaped note activation that

is shared by these components; (3) modelling the harmonic decay with an

exponential function.

The results show that piano transcription performance for a known piano

can be improved by explicitly modelling piano acoustical features. In

addition, the proposed methods help to automatically analyse the decay

of piano sounds in di↵erent dynamic levels.

Chapter 6 - Modelling Spectral Widths for Piano Transcription: We

present a model for piano notes with time-varying spectral widths in an

NMF framework. We refine detected onsets by their spectral widths, and

analyse the spectral widths of isolated notes and notes in the musical

pieces.

Contributions: We present a new feature, the spectral width, which

could be potentially used as a cue to indicate the duration of piano notes.

The results on isolated notes suggest that the spectral width is large in

the attack part, then it decreases and remains stable in the decay part.

We use the spectral widths to refine detected onsets in the transcription

experiment. We analyse the spectral width distributions at onsets and in

the decay parts for notes in the musical pieces and show several directions

of future work.

Chapter 7 - Conclusions and further work: This chapter summarises the

contributions of the thesis and provides a few directions worthy of further

investigation, building on the work in the main chapters and generalising

the proposed models for other pianos and instruments.

1.4 Related publications

The publications listed below are closely related to this thesis. The main chap-

ters are based on [5] (Chapter 3), [3] (Chapter 4) and [1] (Chapter 5), respec-

tively. The author was the main contributor to the listed publications, who

performed all scientific experiments and manuscript writing, under supervision

of SD and MM. Co-authors SD, MM, EB provided advice during meetings and

comments on manuscripts. EB provided code of the baseline model in [5] and

[6].
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Chapter 2

Background

The scope of this thesis is the automatic transcription of audio recordings of

piano music into symbolic notation. It relates to piano music and computational

methods. In this chapter, we present necessary information from both aspects.

First, we introduce related music knowledge in Section 2.1. Then in Section 2.2

we give a literature review on related work in the automatic music transcription

(AMT) domain. In Section 2.3 we focus on techniques for AMT systems based

on non-negative matrix factorisation (NMF). Section 2.4 describes commonly

used evaluation metrics. In Section 2.5 we conclude this chapter.

2.1 Music knowledge

We first introduce how sounds are generated and how people perceive them in

Section 2.1.1, to understand the observation (input) and expected output of

AMT systems. Secondly, in Section 2.1.2 we specify piano acoustics: features

related to the piano’s physical structure, which is the theoretical fundament of

our proposed piano transcription systems.

2.1.1 Sound generation and perception

In this section, we discuss sounds of music instruments generated via vibrating

strings or air columns (pitched instruments).

Given a tense string with fixed ends, when the string is set to vibrate, it

excites a series of waves with nodes at both ends of the string, as shown in

Figure 2.1. These waves are the standing waves of the string; a detailed demon-

stration can be found online.1 The frequency of the first wave is called the

fundamental frequency (f0) of the string. Compared to the string length L, the

1
http://newt.phys.unsw.edu.au/jw/strings.html
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Figure 2.1: The first four standing wave modes of an ideal vibrating string fixed
at both ends.

wavelengths of the standing waves are

�n = 2L/n, n = 1, 2, 3, · · · , (2.1)

where �n is the wavelength of the nth standing wave. Because the frequency is

inversely proportional to the wavelength, the frequencies of the standing waves

are integer multiples of f0. These frequency components are called harmonics

of the string. The first harmonic f1 is identical to the fundamental frequency f0;

the second harmonic f2 is the upper octave of f1; and the fourth harmonic f4

is double octave [Roederer, 2009, Chapter 4.1]. The frequency components of a

vibrating string are not always harmonically located, such as the spectrum of a

piano tone in Figure 2.2(a). We find that its frequency components are stretched

a little away from the harmonics because of the sti↵ness of strings. In this

case we call these frequency components partials, which include all frequency

components of a sound, whether they are harmonics or not [Rossing, 1990,

Chapter 4.4]. The waveform generated by the vibrating string is a quasi-periodic

signal, which can be assumed as a periodic wave for short durations:

x(t) = x(t+ T ), 8t, (2.2)

where x(t) is the waveform of the signal at time t, and T is the period, equal to

1/f0.

A musical sound is a complex tone, consisting of a set of harmonics or

partials, as shown in Figure 2.2. The frequency components of a complex tone
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Figure 2.2: Spectra of tones A4 (with the fundamental frequencies of around
440Hz) generated by di↵erent instruments. The dashed lines indicate positions
of harmonics (multiples of f0).

are perceived together as a single pitch.2 The perception of pitch is related

to the fundamental frequency of the tone (the repetition rate of the vibration

pattern), but a pitch is also perceptible even when the fundamental frequency

is absent. Smoorenburg’s historic pitch-matching experiments show that two

neighbouring harmonics of a complex tone can be perceived as a pitch with a

missing fundamental frequency [Roederer, 2009, Chapter 2.7]. For example, for

two pure tones of frequencies of 800Hz and 1000Hz, corresponding to the 4th

and 5th harmonics of a pitch of 200Hz, the perceived pitch is 200Hz.

In Western music theory, an octave includes 12 semitones. The relation

between f0 and pitch is given as follows:

f0 = 440 ⇤ 2(m�69)/12, (2.3)

2The American National Standards Institute (1960) defines pitch as “that attribute of
auditory sensation in terms of which sounds may be ordered on a scale extending from low to
high.”
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where m is the Musical Instrument Digital Interface (MIDI) index of a pitch.

For a piano, the pitch range is m 2 [21, 108].

The sounds in Figure 2.2 have the same pitch. However, their spectra vary.

The spectral structure of a pitched sound is characterised by the excitation

mechanism and physical structure of the instrument [Roederer, 2009, Chap-

ter 4.2, 4.3]. The identification of the instrument is related to timbre3 percep-

tion, which depends primarily on the precise structure of the spectrum, as stud-

ied in psychoacoustic experiments in [Plomp, 1970, 1976, McAdams, 1999]. For

example, a musician may describe a tone as dull or stu↵y (few upper harmon-

ics), “nasal” (mainly odd harmonics), bright or sharp (many enhanced upper

harmonics), or otherwise. These qualifications are associated to actual instru-

mental tones (fluty, stringy, reedy, brassy, etc.) [Roederer, 2009, Chapter 4.8].

In this section, we briefly introduce how a pitched sound is generated with

harmonics (partials) and what is primary to human perception of the pitch and

timbre of the sound. Just like human perception of music, an automatic music

transcription (AMT) system also works on a waveform of complex tones, to

estimate the pitch of each tone. The expected output can be in the form of a

time-pitch representation or a list of note events.

2.1.2 Piano acoustics

In this section we investigate piano acoustics, specific properties of sounds as-

sociated to piano physics.

A piano mainly consists of a keyboard, keys, hammers, strings and a sound-

board, as shown in Figure 2.3. It has 88 keys, with a pitch range of more than 7

octaves (A0 to C8), covering fundamental frequencies from 27.5Hz to 4186Hz.

Each piano tone is generated by the string(s) vibrating at a specific frequency.

The fundamental frequency of a string with fixed ends is given by [Pierce, 1983,

Chapter 2]:

f =
1

2l

s
T

µ
. (2.4)

It is related to the length l, the tension T and the linear density µ (mass per

unit length) of the string. This means that for two tones an octave apart, the

string length of the lower pitch is twice as long as that of the higher pitch, if

the strings have equal tension and density. In this case, the string lengths of

low-pitch keys would be too long to fit on the sound board. To build a piano

of reasonable size, low bass tones usually use thicker strings, and treble tones

(tones in the high pitch range) use thinner strings with higher tensions [Burred,

3The American National Standards Institute (1960) defines timbre as “that attribute of
auditory sensation in terms of which a listener can judge two sounds similarly presented and
having the same loudness and pitch as dissimilar.”
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Figure 2.3: Grand piano structure, http://www.radfordpiano.com/structure/

2004], [Fletcher and Rossing, 1998, Chapter 12]. The short and thin strings are

less resonant than the long and thick strings, therefore, two or three strings are

used for a mid or high pitch to produce a louder sound [Livelybrooks, 2007].

Due to the sti↵ness of the string, partials of piano tones are slightly stretched

away from the harmonic positions (shown in Figure 2.2(a)), which is referred

to as inharmonicity. The inharmonicity coe�cient B is calculated as follows

[Fletcher et al., 1962]:

B =
⇡3Qd4

64l2T
, (2.5)

where Q is Young’s modulus, d is the diameter of the string, l and T are the

length and the tension of the string. This shows that the degree of inharmonic-

ity increases with decreased length and increased thickness. Then piano tones

of low-pitch and high-pitch ranges have greater inharmonicity than mid-pitch

tones. Experiments in the 1960’s showed that slight inharmonicity made syn-

thesised piano tones sound more natural, and was one of the characteristics that

added certain warmth [Fletcher et al., 1962], richness and quality to the piano

sound [Blackham, 1965]. However, the sound quality can be influenced nega-

tively by excessive inharmonicity [Burred, 2004, Chaigne and Kergomard, 2016].

Especially for bass notes, when the partials are very inharmonic, the pitch can

be confusing with a less pleasing sound. In an experiment on the audibility of
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Table 2.1: Three levels of music dynamics, adapted from [Rossing, 1990, p. 100]

Name Symbol Meaning

forte f Loud
mezzo forte mf Moderately loud
piano p Soft

inharmonicity [Järveläinen et al., 2001], inharmonicity was more easily detected

for bass tones than treble tones.

Inharmonicity also influences piano tuning [Schuck and Young, 1943]. When

tuning a piano, a note’s upper octave is tuned to the frequency of its second

partial to eliminate the beats between these two notes. Then the fundamental

frequency ratio of an octave is slightly larger than 2. This results in the stretched

piano tuning, which allows the piano to sound maximally in tune with itself. In

[Rigaud, 2013], a model is proposed and studied, to explain inharmonicity and

tuning.

An individual piano tone is generated by the hammer hitting the string(s)

of the key. There are three characteristics of piano sounds associated with

the attack motion [Meyer, 2009, Chapter 3.4]. Firstly, the strike produces a

percussive sound. We can see that the energy distribution is flatter at the

attack stage, as shown in Figure 2.4. Secondly, the dynamics of a piano tone

are primarily determined by the force of the key attack [Hirschkorn, 2004].

Commonly used dynamics symbols are introduced in Table 2.1. Thirdly, the

hammer hits the string at 1/7 of its whole length, resulting in a particular

excitation structure with suppressed 7th, 14th, ..., partials.

Then we look at the sound evolution after the attack. In a grand piano the

string is excited into a perpendicular motion to the soundboard because the

hammer strikes from below. This perpendicular motion decays quickly. Due

to the coupling of the bridge and soundboard, the plane of vibration gradually

rotates to a parallel motion which decays more slowly [Weinreich, 1977]. This is

referred to as the typical “double decay” of the piano, as shown in Figure 2.5(a).

In a piano, most notes have more than one string per note. Usually only the

lowest ten or so notes have one string per note. The subsequent (about 18)

notes have two strings, and the rest have three strings. For notes with multiple

strings, the decay rate will double or treble if the strings are tuned to exactly

the same frequency. To make the sound sustain longer, the strings are tuned

to slightly di↵erent frequencies. Weinreich [1977] studies the coupled oscillation

of two strings in detail. If the frequency di↵erence between strings is small,

the coupled motion will result in a double decay, as shown in Figure 2.5(b).
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Figure 2.4: Time evolution of the spectrum of note A4 (440Hz).

When the frequency di↵erence is large, the decay becomes a wave-like curve, as

shown in Figure 2.5(c). Half of the frequency di↵erence is defined as the angular

frequency mistuning, and the amplitude modulation of the decay is called beats

or beating [Weinreich, 1977]. Note that the beat frequency is not equal to the

frequency di↵erence between strings, due to the coupled oscillation of strings.

We also observe beats in high partials of single string notes. This is known as

“false beats” which is caused by imperfections in string wire or problems at the

bridge such as loose bridge pins [Capleton, 2004].

We have reviewed spectral and temporal features of piano sounds associated

to its excitation mechanism and physical structure. In our work we represent

spectral features, such as inharmonicity and the excitation structure, by training

on isolated tones, but focus more on the temporal evolution of piano sounds.

The decay of real world piano tones is studied in detail in Chapter 4 and its

utility for transcription is analysed in Chapter 5. The temporal evolution from
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Figure 2.5: Di↵erent decay patterns of partials from notes (a) F1 (43.7Hz),
(b) G[2 (92.5Hz) and (c) A1 (55Hz). The top and middle panes show the
waveforms and spectrograms, respectively. The bottom panes show the decay
of selected partials, which are indicated by the arrows on the spectrograms. The
dashed lines are estimated by the model in Chapter 4.

the attack to decay stage is modelled in Chapter 6.

2.2 Related work

In this section, we review methods proposed for automatic music transcription.

Readers are referred to [Klapuri and Davy, 2006, de Cheveigné, 2006, Chris-

tensen and Jakobsson, 2009, Benetos et al., 2013b] for some excellent literature

reviews. Here we provide a new aspect to catalogue the methods by the level

of music understanding they involve. In the following sections, we introduce

methods automatically transcribing musical signals by relating the pitch of a

musical tone to its fundamental frequency (period), harmonics (partials) and

spectral structure (timbre), modelling musicological information, and making

use of classification-based methods. Then in Section 2.2.6, we cover steps to

form note events and some note-level methods which model the discrete note

events directly.
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2.2.1 Methods based on periodicity

Methods reviewed in this section detect the pitch of a musical tone by its period.

These methods, which are also referred to as pitch detection algorithms (PDA)

[Hess, 1983, Gerhard, 2003], usually work only for single-pitch detection.

As mentioned in Section 2.1.1, a pitched sound is a quasi-periodic signal and

can be assumed as a periodic wave for short durations. We rewrite Equation 2.2

as follows:

x(t)� x(t+ T ) = 0, 8t, (2.6)

where x(t) is the waveform of the signal, and T is the period, equal to 1/f0.

The key for detecting period is to design a period candidate generating function,

which should have a maximal or minimal value at the time of the period [Talkin,

1995]. Commonly used functions are based on the autocorrelation function

(ACF) [Rabiner, 1977], and the average magnitude di↵erence function (AMDF)

[Ross et al., 1974]. In a frame with an integration window of size W , the ACF

at time index t is defined as:

ACF t(⌧) =
t+WX

j=t+1

x(j)x(j + ⌧), (2.7)

where ⌧ is the time lag. We show the squared-di↵erence function (SDF)

[de Cheveigné, 1998], a variant of AMDF, defined as:

SDF t(⌧) =
t+WX

j=t+1

(x(j)� x(j + ⌧))2. (2.8)

The cepstrum is also a commonly used method for period detection, which

is defined as the inverse Fourier transform of the short-time log magnitude

spectrum [Noll, 1967, Oppenheim and Schafer, 2004]. Unlike the previous time-

domain method, the cepstrum is performed in the frequency-domain, then in-

versely transformed back to the time domain. The harmonic peaks are flattened

by the log operator on the magnitude spectrum.

The above methods show peaks or valleys at multiples of the period, with the

period detected by the first peak of the ACF and cepstrum or first valley of the

AMDF and SDF. Associating the pitch with the zero-lag peak and other high-

order peaks are the typical errors in these pitch detection algorithms. Several

extended methods to solve these problems are introduced as follows.

de Cheveigné and Kawahara [2002] propose a method, YIN, based on ACF

with a number of modifications for f0 estimation. The method first computes a

modified ACF with shrunk integration window size, which lowers the high-order

peaks. Then the square di↵erence function is applied as the second indicator.

29



It is argued that the SDF is closer to the representation of the periodic signal

in Equation 2.6, which contributes to a significant reduction of the error rate.

A cumulative mean normalised di↵erence function is proposed based on SDF to

decrease the errors near the zero lag. In the fourth step, an absolute threshold

(0.1) is used to find the first dip for the period. The global minimum is selected

if no dip is below the threshold. Then parabolic interpolation is used for a

better estimation of the period. There is a final smoothing step to reduce

the fluctuation of the f0 estimation. The algorithm outperforms all compared

methods, and is simple and computationally e�cient with few parameters to be

tuned.

McLeod and Wyvill [2005] propose a normalised square di↵erence function

(NSDF) to find the pitch, which is defined as:

NSDF t(⌧) =
ACF t(⌧)

mt(⌧)
(2.9)

where mt(⌧) =
Pt+W

j=t+1 (x(j)
2+x(j+⌧)2). This normalised SDF (or normalised

ACF) minimises the edge e↵ects of the decreasing window size. The highest

positive maxima between pairs of zero crossings are selected as the candidates,

and the maximum at delay 0 is ignored. A threshold is set by multiplying the

global maximum with a constant k 2 [0.8, 1). The delay ⌧ of the first candidate

above the threshold is detected as the pitch period. Parabolic interpolation is

also applied to find the positions of the maxima more accurately. The method

uses a small window for a better representation of a changing pitch, such as

vibrato.

The above period detection methods actually find the smallest common pe-

riod shared by all harmonics of a pitch. If there are two pitches, they detect

the smallest common period they share, or a ‘root’ frequency of the two notes

[Moorer, 1975]. So these methods usually work only for single-pitch signals.

In the following, we introduce two methods jointly using temporal and spec-

tral representation [Peeters, 2006, Emiya et al., 2007]. The methods are moti-

vated by the observation of inverse octave errors (‘twice the pitch’ and ‘half the

pitch’) of the two representations. The pitch detection function is a product of

the temporal method and the spectral method, to reduce both octave errors. In

[Peeters, 2006], di↵erent representations are considered: spectral ones include

the Discrete Fourier Transform (DFT) of the signal, the frequency reassignment

(REAS), and the Auto-Correlation Functions of DFT and REAS; and temporal

ones include the Auto-Correlation Function and Real-Cepstrum of the signal.

Then the proposed periodicity function is computed by the product of each of

the two kinds of representations. The method is tested on a large test set of over

5000 musical instrument sounds, showing competitive results in comparison to
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the YIN estimator [de Cheveigné and Kawahara, 2002].

Emiya et al. [2007] propose a pitch estimation method for a short analysis

window and focusing on piano sounds. Both the temporal method (based on

the autocovariance function) and spectral method (based on spectral matching)

include the inharmonicity factor. The final pitch detection function is a product

of the two methods. This model is the first physics-based transcription system

for piano. The test dataset contains a large set of isolated piano tones for

RWC database [Goto et al., 2003], a PROSONUS and a Yamaha upright piano.

Better performance is achieved by the proposed method compared to the YIN

estimator [de Cheveigné and Kawahara, 2002], especially for low-pitch and high-

pitch notes.

2.2.2 Methods based on harmonics (partials)

We know that a pitched sound actually consists of a set of frequency components,

appearing at or near integer multiplies of f0, as shown in Section 2.1.1. Methods

reviewed in this section make use of harmonics (partials) to detect the pitch of

the sound.

A subharmonic summation method uses the weighted sum of harmonic am-

plitudes [Hermes, 1988]:

H(f) =
NX

n=1

hnP (nf), (2.10)

where H(f) is the subharmonic sum spectrum, and hn is the weight for the

nth harmonic. P is the spectrum with low frequency noise suppressed. Pitch is

detected with f0 where H(f) is maximum.

Taking harmonics (partials) into account makes it possible to estimate mul-

tiple pitches. The first attempt for duets was carried out by Moorer [1975].

The method first detects the root frequency (the greatest common frequency)

of the two notes with a periodicity detector. Bandpass filters centred at multi-

ples of the root filter out harmonics of notes. The strongest harmonic and its

sub-harmonics are compared to detect the root. Each integer multiple of the

root forms a note hypothesis. The hypothesis is tested by the existence of its

harmonics.

Klapuri [2003] proposes a multiple fundamental frequency estimation

method by iteratively detecting the predominant pitch and cancelling the de-

tected sound. First, the power spectrum is magnitude-warped and noise is sup-

pressed using a moving average filter. Then for each iteration, an f0 is detected

with the highest global weight. The global weight of an f0 is a sum of its squared

band-wise weights with adopted inharmonicity, and the band-wise weight is a

sum of its partials’ amplitudes modified by a triangular window. The method
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assumes a smooth spectrum for a pitched tone. When cancelling a detected

pitch, the spectrum of the detected pitch is smoothed to reduce its influence

on remaining pitches. The smoothing method replaces the original amplitude

value of each partial by the weighted mean of the partials’ amplitudes in an

octave-wide triangular weighting window if the weighted mean is smaller. Two

terms based on the signal-to-noise ratio are used to stop the iteration.

Yeh et al. [2010] propose a joint estimation method for multiple fundamen-

tal frequency estimation by progressively combining hypothetical sources and

iteratively verifying each combination. The system first applies an adaptive

noise level estimation to divide the spectral peaks into partials of harmonic

sources and noise. A score function is defined as the weighted sum of the four

criteria, which are proposed to prevent sub-harmonic/super-harmonic errors,

including harmonicity, mean bandwidth, spectral centroid, and the standard

deviation of mean time. The f0 candidates are selected by iteratively applying

a predominant-f0 estimation and cancelling related partials. A harmonically

related f0 (HRF0) of the extracted f0s is also selected as a candidate if it is

dominant and disturbs the envelope smoothness. To infer the best combination,

f0 candidates are added to the combination one by one starting with the highest

score. The newly added f0 is considered valid if it either explains more energy

than the noise, or significantly improves the envelope smoothness for HRF0s.

Duan et al. [2010] estimate multiple f0s by modelling both the spectral

peak and non-peak regions. The peak region likelihood helps find f0s that

have harmonics that explain peaks, and the non-peak region likelihood helps

avoid f0s that have harmonics in the non-peak region. The method first detects

peaks from the spectrum. The f0 candidates are restricted to be around peaks

with the lowest frequencies or (locally) highest amplitudes. To reduce the time

complexity, an iterative greedy search strategy is applied to add f0s one by

one. For each iteration, a set of f0s is found which maximises the product

of the peak and non-peak region likelihoods. The likelihoods are based on the

probabilities of peaks belonging to given f0s, which are learned from monophonic

and polyphonic training data. A threshold-based method is used to end the

iteration. In the post-processing step inconsistent f0 estimates are removed and

the missing f0 is reconstructed using neighbouring f0 estimates.

Dressler [2011] proposes a pitch estimation method based on pair-wise anal-

ysis of spectral peaks. The method first detects amplitude and instantaneous

frequency (IF) of the spectral peaks, with each peak magnitude weighted by

its IF. The method finds pitch candidates by assuming two spectral peaks are

successive harmonics or successive odd harmonics for wind instruments (sup-

pressed even harmonics because of the open end of wind instruments). A pitch

candidate is rated by a multiplication of values of functions indicating the har-
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monicity, spectral smoothness, attenuation by intermediate peaks and harmonic

impact of the candidate. Each function operates on frequencies or amplitudes

of the pitch pair or peaks between them.

2.2.3 Methods based on timbre

Timbre is associated to the spectrum of the musical sound. It primarily explains

the human ability of distinguishing instruments, as explained in Section 2.1.1.

Methods reviewed in this section represent the spectral structure of each pitch,

with the ability to be applied to multi-instrument music signals to identify

pitches from di↵erent instruments.

All matrix-factorisation-based AMT methods are included in this category,

such as non-negative matrix factorisation (NMF) [Smaragdis and Brown, 2003],

probabilistic latent component analysis (PLCA) [Smaragdis, 2009], independent

component analysis (ICA) [Plumbley and Abdallah, 2003], and sparse coding

[Abdallah and Plumbley, 2004]. Spectrogram factorisation methods decompose

the spectrogram into two matrices,

Xft ⇡

RX

r=1

WfrHrt, (2.11)

where X is the observed spectrogram, W represents spectral bases of pitches

and H are corresponding activations. f 2 [1, F ] is the frequency bin, t 2 [1, T ] is

the time frame, and r 2 [1, R] is the pitch index. A spectral basis has the same

dimension as the spectrogram in frequency, and represents the primary timbre

information of a pitched sound with a weighted average of its spectrogram over

time.

Among these methods, NMF is the most commonly used framework for

AMT, and our proposed systems are also based on NMF. We will discuss NMF-

based AMT systems in detail in Section 2.3. We briefly introduce some ex-

tensions based on matrix factorisation for multi-instrument polyphonic music

transcription as follows.

Vincent and Rodet [2004] use a three-layer probabilistic generative model

for multi-instrument separation and transcription. The low level is a spectral

layer modelled by a non-linear independent subspace analysis (ISA), describing

the input spectrum as a sum of weighted spectral components. The middle level

is a description layer, connecting the other two layers. The high-level state layer

tracks note states using the product of a Bernoulli prior and a factorial Markov

chain. This method needs information about instrument types to perform tran-

scription.

Cont et al. [2007] propose a real-time system for multi-pitch and multi-
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instrument recognition based on NMF and sparse coding. First, a modulation

spectrum representation is learned per pitch and instrument to represent not

only short-term features but also long-term features, such as spectral envelope

or phase coupling. Then the spectrum is decomposed using learned templates

with a sparse non-negative decomposition method.

Grindlay and Ellis [2011] transcribe multi-instrument polyphonic music us-

ing a hierarchical probabilistic model. A set of linear subspaces are trained

on sounds of instruments. Detected notes can be assigned to their respec-

tive sources by mapping the note into a subspace or a hierarchical mixture-

of-subspaces. The hierarchical mixtures include far more than just the training

points. The system only needs information about the number of instruments.

The types of instruments are not necessary but can help the performance.

Bay et al. [2012] present a PLCA-based model for tracking the pitches of

individual instruments in polyphonic music. The system first learns a dictio-

nary of spectral basis vectors for each note of various musical instruments, then

explains the input spectrum of each frame as a sum of spectral bases in the

dictionary. Finally, a Viterbi algorithm is applied to track the most likely pitch

sequence for each instrument.

Kirchho↵ [2013] investigates instrument-specific transcriptions with a human

user involved. Di↵erent types of user input are studied to derive timbre models

for the instruments by means of NMF, source/filter model and so on.

Benetos et al. [2013a] propose a temporally constrained shift-invariant model

for multi-instrument music transcription. For each pitch of a variety of instru-

ments, several spectral templates are learned, corresponding to the attack, sus-

tain and decay states. The templates are able to shift across the log-frequency

axis to fit notes with frequency modulations and tuning changes based on a

shift-invariant PLCA (SI-PLCA) model. Pitch-wise HMMs constrain the tem-

poral transitions between states. All parameters are jointly estimated in an

HMM-constrained SI-PLCA model. With the trained templates on a set of

instruments, this method needs no prior information about played instruments.

Beside matrix-factorisation-based methods, there is another way to repre-

sent the spectral structure of musical sounds, by means of a Gaussian mixture.

Goto [2004] proposes a harmonic structure model for predominant-f0 estimation

(PreFEst). The hth harmonic of a tone with fundamental frequency of f0 is rep-

resented by a Gaussian function centred at f0 + log2 h on a log frequency scale,

with the relative amplitude determined by the weight of the Gaussian function.

The PreFEst-core uses several types of harmonic-structure tone models to deal

with sounds produced by di↵erent instruments. The frame level pitch likeli-

hoods are estimated using an expectation-maximisation (EM) algorithm on the

MAP (maximum a posteriori probability) mixture weights of the tone models.
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A multiple-agent architecture is used to find the most dominant and stable f0

trajectory. First, an agent is generated by considering salient values of peaks

in current and near-future frames. Then each agent allocates peaks of close

frequency and is penalised if no peak is found nearby. The global f0 estimation

is obtained by the agent with the highest reliability and greatest total power.

The same harmonic structure is applied in the harmonic temporal structure

clustering (HTC) method for multi-pitch analysis [Kameoka et al., 2007]. The

HTC method imposes temporal continuity by weighted Gaussian function ker-

nels which are equally spaced after the onset. This two-dimensional geometric

model jointly estimates pitch, intensity, onset and duration of each underlying

source. The EM algorithm is applied to iteratively decrease the Kullback-Leibler

(KL) divergence between the HTC model and the whole observed spectrogram.

The model is then extended as a maximum a posteriori (MAP) estimation prob-

lem to include prior distributions on the parameters, which helps to prevent

sub-harmonic (half-pitch) errors and avoid overfitting.

The HTC model is further extended to Harmonic-Temporal-Timbral Clus-

tering (HTTC) for the analysis of multi-instrument polyphonic music [Miyamoto

et al., 2008]. The HTTC model considers multi-pitch analysis and timbre clus-

tering simultaneously. Each acoustic event is modelled by a harmonic structure

and a smooth envelope both represented by Gaussian mixtures. Timbres are

clustered to form timbre categories based on the similarity of the shape of spec-

tral energy in time and log-frequency space, regardless of pitch, spectral power,

onset, and duration. The harmonic, temporal and timbral model parameters

are simultaneously updated using the EM algorithm.

2.2.4 Methods based on high level information

A music piece is not a set of independent note events, despite often being mod-

elled so. Temporal or harmonic structure of music can provide useful informa-

tion for AMT. For example, both key and chords describe harmony, strongly

related to corresponding notes. Acoustic models directly extract information

from signals, while musicological models model the abstract structure of mu-

sic. A musicological model is also called a symbolic model or a music language

model. We show several AMT systems with musicological models in detail as

follows.

Ryynänen and Klapuri [2005] propose a transcription system with three

probabilistic models: a note event HMM, a silence model, and a musicological

model. First, the system applies a multiple-pitch estimator [Klapuri, 2005] to

detect f0s and related features frame-by-frame. The 3-state note HMM cal-

culates likelihoods for di↵erent notes based on the estimated f0s and related
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features, and the silence model built on a 1-state HMM is used to skip the

silent time regions. The musicological model controls transitions between note

HMMs and the silence model according to the key estimated on frame-wise f0s.

Given a relative-key pair (major and minor keys with the same set of notes), the

transition probabilities between note HMMs are trained from a large database

of monophonic melodies. Probabilities for the note-to-silence and the silence-

to-note transitions are set with the assumption that a note sequence is more

likely to start and to end with a frequently occurring note in the musical key.

Transcription is done by searching for disjoint paths through the note models

and the silence model.

Raczyński et al. [2013] propose a family of probabilistic symbolic polyphonic

pitch models, which account for both the temporal and the harmonic pitch struc-

ture. In the paper, acoustic modelling is represented as a maximum likelihood

estimation process:

N̂ = argmax
N

P (S|N), (2.12)

where P (S|N) is the acoustic model, S are the observations and N are the note

activations. The proposed model includes a symbolic pitch model P (N) as prior

knowledge in the posteriori-like estimation by Bayes’ rule:

N̂ = argmax
N

P (S|N)P (N). (2.13)

The distribution of the note sequences P (N) is modelled in a Dynamic

Bayesian Network with two layers of hidden nodes: a chord layer and a note

activity layer, as shown in Figure 2.6. The symbolic model makes use of a chord

model and 5 sub-models for temporal dependencies of notes and chords and

harmonic dependencies between notes. Knowledge about chord progressions

is modelled in the chord model, and relations between chords and pitches are

modelled in a harmony sub-model. Each of the other 4 sub-models deals with

a di↵erent property of pitch, for note duration, melodic intervals in voices, the

degree of polyphony per frame and neighbouring pitches, respectively. In or-

der to e↵ectively deal with the high dimensionality of the distributions, the note

combination distribution is factorised into a product of single note distributions.

Sub-models are normalised and combined by means of linear or log-linear inter-

polation for each note distribution. The proposed symbolic model is evaluated

on symbolic data and on audio data. The second evaluation is in combination

with an NMF-based acoustic model [Raczyński et al., 2007]. In both experi-

ments the proposed model outperforms the baseline Bernoulli model.

Sigtia et al. [2014] use a Music Language Model (MLM) to improve au-

tomatic music transcription performance. The MLM is based on Recurrent

Neural Networks (RNNs), which can model long-term temporal dependencies,
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C1 C2 . . . Ct . . . CT

N1 N2 . . . Nt . . . NT

S1 S2 St ST

Figure 2.6: Dynamic Bayesian Network structure with three layers of variables:
the hidden chords Ct and note combinations Nt, and observed salience St

and the acoustic AMT model is based on probabilistic latent component anal-

ysis (PLCA) [Benetos et al., 2013a]. First, the pre-trained MLM generates

a prediction based on the results of the PLCA-based acoustic model (a pitch

activation distribution). Then, the prediction is combined with the pitch acti-

vation distribution via a Dirichlet prior. Finally the combined pitch activation

is weighted and added to the output of the acoustic model. With the RNN

trained on symbolic music data from the Nottingham dataset,4 the proposed

hybrid models outperform the baseline acoustic AMT system by 3 percentage

points in terms of note-wise F-measure on the Bach10 dataset [Duan et al.,

2010] of multiple-instrument polyphonic music.

Sigtia et al. [2015, 2016] employ a hybrid architecture for polyphonic music

transcription, as shown in Figure 2.7. The proposed model also comprises an

acoustic model and a music language model. The acoustic model (the posterior

distributions p(yt|xt)) is modelled using di↵erent neural networks to identify

the pitches in a frame of audio. The MLMs model the prior p(yt|y
t�1
0 ) using a

generative RNN for the correlations between pitch combinations over time. Both

the acoustic and the language models are jointly trained under a single objective

with the hybrid RNN framework. Sigtia et al. [2015] compare three acoustic

models based on the deep feed-forward neural network (DNN) and RNN. A high

dimensional beam search algorithm is used to perform inference over the output

variables. Sigtia et al. [2016] also include convolutional neural nets (ConvNets)

as the acoustic model, and an e�cient version of the beam search algorithm is

presented to reduce decoding time by an order of magnitude. The experiments

on the MAPS database [Emiya et al., 2010] show that the hybrid architecture

o↵ers better results than applying a threshold or HMM on the same acoustic

models and outperforms state-of-the-art transcription systems.

4
http://ifdo.ca/

~

seymour/nottingham/nottingham.html
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y1 y2 y3 y4 . . .

x1 x2 x3 x4

Figure 2.7: The hybrid architecture of the AMT systems in [Sigtia et al., 2015,
2016].

2.2.5 Classification-based methods

The acoustic models in [Sigtia et al., 2015, 2016] are also classification meth-

ods based on neural networks. In this section, we introduce several more

classification-based methods in which classifiers are trained on spectral features.

Poliner and Ellis [2007] propose a supervised classification system based

on a Support Vector Machine (SVM) for polyphonic piano transcription. The

system employs separate one-versus-all SVM classifiers for each of the 87 piano

keys (the highest note is not included), then the classifier outputs are temporally

constrained via hidden Markov models. The classification is performed at the

frame level, with each frame of the input audio represented by a 255-element

feature vector. The binary note classifiers are trained from spectral features,

and the input feature vectors of di↵erent notes correspond to di↵erent frequency

ranges: the first 63 piano keys use normalised spectrograms below 2 kHz; the

next 12 notes between 1 kHz and 3 kHz; and the rest of the notes between 2 kHz

and 4 kHz. The classifiers are trained, tested, and validated on music pieces

generated by MIDI files and a Yamaha Disklavier piano. A two-state, on/o↵,

HMM is used to temporally smooth the output of each note independently. The

HMM parameters are learned on the ground-truth transcriptions of the training

set. The experiment shows that using a larger and more diverse training set can

improve the classification accuracy.

Nam et al. [2011] further extend the previous classification-based approach

of Poliner and Ellis [2007] in two ways: (1) by using learned feature represen-

tations for note classifiers and (2) by jointly training the classifiers for multiple

notes. Firstly, mid-level features are learned on spectrogram frames via deep

belief networks (DBNs) of one or two layers and then used to feed into the

SVM classifier. The networks are fine-tuned with the error from the SVM for

each piano note (single-note training). Secondly, multiple SVM classifiers are

trained at the same time (multiple-note training). A two-state HMM is adopted

to temporally smooth the SVM output for each note. Experiments show that
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better transcription results can be achieved by using the learned feature from a

DBN, especially the one-layer DBN, in comparison to the normalised spectro-

gram used by Poliner and Ellis [2007]. Multiple-note training improves training

speed and classification performance in comparison to single-note training. The

classification approach outperforms compared piano transcription methods.

Böck and Schedl [2012] propose a method to simultaneously detect onsets

and pitches of piano notes based on a recurrent neural network. The compressed

input of the neural network is obtained by filtering two magnitude spectrograms

of di↵erent window lengths with semitone filter-banks. The system is built on

a Bidirectional Recurrent Neural Network (BRNN) which models both the past

and future context of the notes. A Long Short-Term Memory (LSTM) unit is

used to ensure that the BRNN only use input values inside the memory cell.

The system has three bidirectional hidden layers with 88 LSTM units each. The

regression output layer has 88 units for all piano pitches. Onsets of each pitch

are detected by applying a standard local maximum peak picking algorithm on

the smoothed neural network output. Solo piano music pieces from di↵erent

piano datasets are used for training and testing. Evaluation indicates that the

reduction on note detection errors is mainly related to the single regression

output layer which detects piano notes simultaneously.

2.2.6 Note tracking

Automatic music transcription methods usually work in two steps. In the first

step, the music piece is segmented into frames of equal intervals, and pitches

are estimated in each frame. In the second step, estimated pitches of adjacent

frames are grouped together to form note events, then hence onsets and o↵sets.

There are also note-level systems which directly model the discrete note events.

In the following, we first introduce some basic methods for converting frame-wise

results into note events, then we illustrate several note-level systems.

Thresholding

For some methods, for example matrix-factorisation-based methods, a threshold

is applied to obtain a binary output [Wang et al., 2008, 2009, Grindlay and Ellis,

2011]. The threshold is usually adapted to the maximum value of each piece

[Vincent et al., 2010, O’Hanlon and Plumbley, 2013]:

Thre = �max
k,t

Ha
k,t. (2.14)

the optimal value for parameter � is usually determined by training.

39



Tavares et al. [2016] provide an unsupervised way to choose the threshold

for NMF-based piano transcription. Ideally for an activation matrix, its values

are sparse with only a few notes active at any given time, and high activation

values are related to true positives. The system assumes that the envelope of a

histogram of the activation matrix has the rough shape of a reverse sigmoid. In

order to find the elbow of the envelope, the method uses 10 threshold candidates

equally located between the maximum and minimum values in the activation

matrix (from 0 to 1 for normalised activations). For each piece, the candidate

with least second di↵erential is found as the elbow:

ie = argmin
i
[(thi+1

� thi)� (thi
� thi�1)], (2.15)

where thi indicates the number of active pitches using the ith threshold candi-

date. While using the elbow value as a threshold leads to a low mean F-measure

with high Recall and low Precision rates, then the optimal threshold is adjusted

to ie+0.3 with tests on three datasets. In the experiments, the method provides

better results than using a threshold trained on a di↵erent dataset.

Minimum-duration pruning

After thresholding, notes are detected in the time-pitch representation by con-

verting pitches found in consecutive frames into notes. There are some short

false-alarm notes brought by fluctuations of the activations. Minimum duration

pruning is applied to remove those short notes that fail to reach a duration

threshold [Dessein et al., 2010].

HMM smoothing

Hidden Markov models (HMMs) [Rabiner, 1989] are frequently employed to

provide a smooth output at the post-processing step. In order to decrease the

search space, HMMs are usually applied in a pitch-wise fashion, either using

two states per pitch to detect that a note is active or not [Poliner and Ellis,

2007, Benetos and Dixon, 2012a], or using states corresponding to several stages

of a note (attack, decay, sustain and release) which follow a certain sequence

[Ryynänen and Klapuri, 2005, Cheng et al., 2015b]. Pitch-wise HMM parame-

ters (state transitions and priors) are learned on symbolic representations, such

as a ground-truth training set or MIDI files, while the observation probability is

set based on the frame-wise transcribed results. The most likely state sequence

is estimated using the Viterbi algorithm.
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Note-level methods

Several note-level systems are built with temporal evolution modelling. The

HTC [Kameoka et al., 2007] and HTTC [Miyamoto et al., 2008] methods model

the observed power envelope of a single source by weighted Gaussian function

kernels. Chen et al. [2012]’s preliminary work uses an exponential model for en-

ergy evolution of notes. Berg-Kirkpatrick et al. [2014] represent the energy evo-

lution of a piano note by a trained envelope. Ewert et al. [2015] represent both

time-varying timbre and temporal evolution of piano notes by time-frequency

patches. In these systems, a note event is represented by a single amplitude

parameter for its whole duration with the modelled temporal evolution, which

provides promising transcription results. In addition, Cogliati and Duan [2015]

propose a note level system informed by detected onsets, which also approxi-

mates decays of piano partials with a sum of two decaying exponentials. The

HTC and HTTC methods have been already described in Section 2.2.3. We will

introduce the other four systems in detail as follows.

Chen et al. [2012] extend the hierarchical eigeninstrument model of Grind-

lay and Ellis [2011] for multi-instrument music transcription using note-level

templates. In this method, musical notes are assumed to consist of a relatively

invariant attack, and a decay that depends on the overall duration of the note.

In order to represent notes with various durations for each pitch of di↵erent

sources, the system applies a parametric transformation step, controlling the

spectral evolution and amplitude envelope. In the parametric form, a non-

linear time warp is used to match notes of varying durations and to describe

the nonuniformity across attack and decay. In addition, the overall amplitude

decay is formulated by an exponential decay function. The method provides

a significant improvement compared to a frame-level system, with better note-

level transcription results on real woodwind excerpts and piano music pieces.

Berg-Kirkpatrick et al. [2014] present a probabilistic model comprising dis-

crete musical events. The generative system is built on three models. For each

pitch, there are (1) an event model, including discrete note events having a

velocity and duration, (2) an activation model, generated based on the event

model and an envelope parameter, and (3) a spectrogram model, generated by

the activations and spectral parameters of the pitch. The observed spectrogram

is reconstructed by adding the component spectrograms of all pitches. A block-

coordinate ascent procedure is performed to estimate the unknown parameters.

The spectral and envelope parameters are learned on isolated, synthesised, pi-

ano sounds. The event parameters are learned by counting note occurrences in

numerous symbolic music data. The pre-learned parameters are updated dur-

ing the decoding to predict transcriptions with fitted parameters. The approach
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outperforms state-of-the-art methods on piano music transcription, especially

on onset-wise metrics.

Ewert et al. [2015] present a novel transcription method based on non-

negative matrix deconvolution with the variable note lengths modelled by a

dynamic system. The system assumes that recordings of individual notes of

played instruments are available, and uses the spectrogram of the whole note

as a time-frequency patch. Frames in a patch are identified with states in a

dynamic system. The system performs transcription by operating the following

two steps iteratively. First, the best fitting state sequence is tracked pitch by

pitch using dynamic programming to form notes with various lengths. Then

note objects of all pitches are updated jointly in a global optimisation, with

frames of each note object sharing the same activation parameter. The joint

estimation helps to avoid degenerate local minima caused by parameter decou-

pling in the first step. The system is tested on 10 MIDI files from a piano

playing competition.5 Both the test dataset and training dataset (individual

piano notes) are generated by Native Instruments Vienna Concert Grand VST

plugin using MIDI files. The note-wise onset F-measure achieves as high as 88%

in the experiment.

Cogliati and Duan [2015] propose a note-level spectrogram factorisation

method exploiting the temporal evolution of piano notes. The method detects

note onsets from the audio spectral flux using an artificial neural network. The

audio signal is segmented by the detected onsets. In each segment, partials of

notes lasting from the previous segment are set to zeros; only partials of notes

starting at the current segment are processed by a greedy search algorithm.

Notes are successively added with the lowest cost. An additional note is valid

only if the cost function decreases by more than 5%; otherwise the search stops.

During dictionary learning, a sum of two decaying exponentials is used to ap-

proximate the amplitude evolution of active partials. Frequency bins fitting this

parametric evolution are retained; and noisy bins are set to zeros. In addition,

a new cost function is proposed for spectrogram similarity. The cost function

weights the reconstruction error according to the energy present in the original

spectrogram, which works better than the L1-norm, L2-norm and KL-divergence

in the experiments.

2.3 Techniques for NMF-based AMT systems

In this section, we review techniques applied to non-negative matrix factorisa-

tion for automatic music transcription (AMT). First we present a general frame-

5
http://www.piano-e-competition.com
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work for AMT systems based on NMF in Section 2.3.1, including front-end,

post-processing of standard AMT systems, and parameter estimation methods

in the NMF framework. Then in Section 2.3.2 we specify constraints used to im-

pose sparsity, smoothness and harmonicity/inharmonicity, which lead to more

meaningful decompositions. In Section 2.3.3, we introduce the Bayesian exten-

sion of NMF, and show ways of using prior information to enforce constraints,

especially methods which impose temporal continuity on activations.

2.3.1 A general framework for NMF-based AMT

An AMT system starts from an audio signal and ends with a symbolic represen-

tation, in the form of a time-pitch representation. NMF is the key part of the

system, which works on the time-frequency representation matrix of the signal,

and provides an activation matrix as a mid-level representation of the sym-

bolic output. The general framework of an NMF-based AMT system consists of

three main parts: the front-end providing the time-frequency representation of

the signal, the NMF model for estimating unknown parameters, and the post-

processing step with a binary output, as shown in Figure 2.8. We will describe

each part individually in the following sections.

Time-frequency representation

The front-end of an NMF-based transcription system produces a non-negative

time-frequency (TF) representation of the signal. NMF decomposes the TF

representation into a linear combination of spectral bases with non-negative

constraints. The transform F to produce the TF representation should also

exhibit linearity, that is F(ax + by) = aF(x) + bF(y), or at least F(ax +

by) ⇡ aF(x)+ bF(y). Among various transform methods, we focus on three TF

representations as follows.

Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform (STFT) is a common TF representation with

a linear frequency scale. As reviewed by Bay et al. [2009], most AMT systems

employ STFT as a front-end. To obtain a spectrogram by STFT, the signal is

segmented into overlapping frames by a window function. The discrete Fourier

transform is performed on each frame to get the short-time spectrum.

This method is a fundamental transform method with many available im-

plementations. The frequency bins are linearly spaced, giving an intuitive TF

image. AMT systems usually work on the magnitude spectrogram or power

spectrogram. Only a few papers use the complex spectrogram with complex

NMF [Kameoka et al., 2009, Kirchho↵ et al., 2014].
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Figure 2.8: A general framework for NMF-based transcription.
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Constant-Q Transform (CQT)

Constant-Q transform (CQT) provides a TF representation on a log-frequency

scale. The Q in CQT indicates the quality factor, defined as [Brown, 1991]:

Q = fk/�fk, (2.16)

where fk and �fk are the central frequency and the frequency resolution of the

kth bin, respectively. Then the window length of the kth bin is given by

N [k] =
fs
�fk

= (
fs
fk

)Q, (2.17)

where fs is the sampling rate. In the constant-Q transform, the central frequen-

cies of the frequency bins are geometrically spaced and the Q value is constant.

The geometrically spaced frequency bins are in line with the musical scale, be-

cause the fundamental frequencies (f0s) of musical pitches are equally spaced

in the log frequency scale. Constant Q means that the window sizes of the fre-

quency bins are inversely proportional to their centre frequencies. This results

in varying time and frequency resolutions along the frequency axis, with better

frequency resolution at low frequencies and better time resolution at high fre-

quencies. This frequency scale is closer to human auditory perception than the

STFT [Schörkhuber and Klapuri, 2010].

Because of the geometrically spaced frequency bins in the CQT, the intervals

between f0s and harmonics are constant for all pitches, which allows the note

spectra to be shiftable along the log-frequency axis. However, simply shifting a

spectrum for all pitches is not practical for AMT, because the spectra of di↵erent

pitches usually have di↵erent harmonic distributions. This shift-invariant char-

acteristic has been used successfully to shift templates among a small frequency

range [Benetos and Dixon, 2012a].

Some e�cient implementations of CQT can be found in [Schörkhuber and

Klapuri, 2010, Fillon and Prado, 2012, Schörkhuber et al., 2014].

Equivalent Rectangular Bandwidth-scale (ERB-scale) TF representa-

tion

The ERB-scale TF representation is an auditory-motivated TF representation,

with the ERB scale defined by [Moore and Glasberg, 1996]

fERB = 9.26 log(0.00437fHz + 1). (2.18)

As applied in musical source separation [Vincent, 2006, Duong et al., 2010] and

automatic music transcription [Vincent et al., 2008, Bertin et al., 2009a, 2010,
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Vincent et al., 2010], the ERB-scale TF representation is computed as follows.

The signal x(t) is passed through a bank of filters Hf (t), providing subband

signals xf (t) of the f th filter:

xf (t) =
X

⌧

Hf (t)x(t� ⌧). (2.19)

The centre frequencies of the filters are linearly spaced on the ERB scale. The

distribution of the filters is approximately linear in the low frequency range

(below 500 Hz), and approximately constant-Q at high frequencies (above 2000

Hz) [Necciari et al., 2013]. The main-lobe bandwidth of each filter is set to four

times the frequency di↵erence between the centre frequencies of adjacent filters.

The magnitude frequency response Gf of the f th filter can then be analytically

computed as a combination of sine cardinal (sinc) functions.

It is shown that in comparison to the STFT, the ERB scale provides a

representation of better temporal resolution in the higher frequency range with

smaller size [Vincent et al., 2008]. In addition, tests on AMT show that better or

at least similar performance can be achieved at lower computational cost using

the ERB-scale representation [Vincent et al., 2008, O’Hanlon and Plumbley,

2013, Benetos and Weyde, 2015b].

‘The ERBlet transform’, an alternative implementation of an invertible

ERB-scale representation, is available in [Necciari et al., 2013].

Non-negative matrix factorisation

After obtaining the TF representation, for example the spectrogram, the tran-

scription systems employ NMF to represent the spectrogram V as a linear com-

bination of spectral bases W:

Vft ⇡

RX

r=1

WfrHrt, (2.20)

where V 2 RF⇥T , W 2 RF⇥R and H 2 RR⇥T are non-negative matrices, and

f , t and r are indices of the frequency bin, time frame and latent component,

respectively. R is chosen in order to perform a low-rank matrix approximation

(R(F + T )⌧ FT ).

Cost functions

We denote V̂ = WH as the reconstruction. NMF estimates W and H by min-

imising the distance between V and V̂. This distance is called the cost function

or the objective function [Lee and Seung, 1999], which is initially represented
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Table 2.2: The usage of the �-divergences in AMT

Cost function literature

Euclidean distance [Vincent et al., 2008] (Weighted EUC)
KL-divergence [Hennequin et al., 2010, Rigaud et al., 2012, 2013a,b]

[Yoshii and Goto, 2012]
IS-divergence [Bertin et al., 2009b, Yoshii and Goto, 2012]
�-divergence [Dessein et al., 2010]

as:

D(V|V̂) =
X

f,t

(Vft log(V̂ft)� V̂ft). (2.21)

There are two other cost functions, Euclidean distance and Kullback-Leibler

(KL) divergence, discussed in [Lee and Seung, 2000], shown as follows,

DEuc(V|V̂) =
X

f,t

(Vft � V̂ft)
2, (2.22)

DKL(V|V̂) =
X

f,t

(Vft log
Vft

V̂ft

� Vft + V̂ft). (2.23)

In addition, the Itakura-Saito (IS) divergence is also widely-used [Févotte et al.,

2009]:

DIS (V|V̂) =
X

f,t

(
Vft

V̂ft

� log
Vft

V̂ft

� 1). (2.24)

These three cost functions are included in a �-divergence family, with � =

2, 1, 0 for the Euclidean distance, KL divergence and IS divergence, respectively

[Dessein et al., 2010]. The �-divergence is defined as follows:

d�(x|y) =

8
>>><

>>>:

1
�(��1) (x

� + (� � 1)y� � �xy��1) � 2 R \ {0, 1}

xlogx
y � x+ y � = 1

x
y � logx

y � 1 � = 0

(2.25)

Systems with di↵erent cost functions are summarised in Table 2.2.

The scaling property of the �-divergence is usually analysed when choosing

the cost function, which can be derived from the definition in Equation 2.25:

d�(�x|�y) = ��d�(x|y). (2.26)

The Itakura-Saito divergence (� = 0) is known to be scale-invariant, which

means that small and large coe�cients of V are weighted equally in the cost

47



function [Févotte et al., 2009]. When � > 0, more emphasis is put on the

frequency components of higher energy, and the emphasis increases with �.

When � < 0, the e↵ect is the converse [Dessein et al., 2010].

We apply a simple test of di↵erent � 2 {2, 1, 0} using an isolated piano

tone from the ‘ENSTDkCl’ subset of the MAPS database [Emiya et al., 2010].

The piano tone with the fundamental frequency of 440Hz (MIDI index 69) is

produced by a Disklavier piano. The waveform and spectrogram (normalised

to a maximum of 1) of the signal are shown in Figure 2.9. A rank-one NMF

is performed on the amplitude spectrogram with di↵erent � 2 {2, 1, 0}, and

the maximum of the activation is normalised to 1. The spectral basis is also

normalised to a maximum of 1 after the iterations for an intuitive comparison.

The results are illustrated in Figure 2.10, which are basically in line with the

analysis in previous literature. The activation of � = 2 resembles more the

envelope of the partial with largest energy, as shown in the fundamental fre-

quency amplitude in the spectrogram of Figure 2.9. By contrast, the activation

of � = 0 is equally sensitive to energy changes of all frequencies, therefore the

trajectory fluctuates. The activation of � = 1 is somewhere in between. It

smoothly represents the decaying energy of the signal.

Update rules

There are several ways to estimate parameters in NMF. Here we employ mul-

tiplicative update rules for parameter estimation. The rules can be obtained

by choosing an adaptive step in gradient descent [Lee and Seung, 2000]. The

derivative of the cost function D with respect to (w.r.t) ✓, r✓D(✓), is written

as a di↵erence of two non-negative functions:

r✓D(✓) = r+
✓ D(✓)�r�

✓ D(✓), (2.27)

where r+
✓ D(✓) and r�

✓ D(✓) are the absolute values of the positive and negative

parts of the derivative, respectively. The multiplicative algorithm is given by:

✓  ✓.
r

�
✓ D(✓)

r

+
✓ D(✓)

. (2.28)

For the �-divergence, the derivative is derived as:

r✓D(✓) = (V̂ ��1
� V V̂ ��2)r✓V̂ . (2.29)

48



Figure 2.9: The waveform and spectrogram of a tone with f0 of 440Hz.
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Figure 2.10: Spectral bases and activations obtained using di↵erent cost func-
tions.
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Then the updates for W and H with �-divergence are as follows [Févotte, 2011],

H  H.
WT [(WH).(��2).V ]

WT [WH].(��1)
, (2.30)

W  W.
[(WH).(��2).V ]HT

[WH].(��1)HT
. (2.31)

The update rules are iterated alternately until convergence.

Optimisation

Parameter estimation is achieved by finding the minimum of the cost function.

Optimisation methods can help to find the global minimum or at least a bet-

ter local minimum when the problem is non-convex. We will discuss the local

minimum problem of matrix-factorisation-based methods in Chapter 3, and in-

troduce an optimisation method to deal with this problem.

Post-processing

The activations indicate the volumes of di↵erent pitches. In order to provide a

binary output, we can simply apply a threshold on the activations. After that

minimum-duration pruning is commonly used to reduce erroneous notes with

short duration. To smooth the output, many systems apply Hidden Markov

Models to track the optimal state sequences. Readers are referred to Sec-

tion 2.2.6 for our summaries of these methods.

2.3.2 Constraints

The non-negative constraint allows NMF to provide part-based and meaningful

decompositions, but the result is not unique. It is related to the cost function,

estimation method, initialisation, scaling, constraints and so on. In this section,

we will discuss several commonly-used constraints. Besides non-negativity, spar-

sity and continuity are also proper assumptions for many real-world applications.

For music, another primary characteristic is the harmonic (or quasi-harmonic)

structure in the spectrum.

Bertin et al. [2010] summarise three ways to enforce constraints: adding

penalty terms to cost functions, using parametric models and choosing prior

distributions in the statistical Bayesian NMF. In this section, we review the

first two methods for constraints. We individually describe incorporating priors

in the Bayesian extension of NMF in Section 2.3.3.
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Sparsity

Sparsity is the most common constraint for NMF, which can be enforced on

either decomposed matrix, depending on the specific application. We usually

assume the activation of each time frame is sparse in AMT.

Hoyer [2004] proposed to project the column of W or the row of H to achieve

a desired level of sparsity after each iteration. The sparsity is measured by the

relation between the L1 norm and the L2 norm:

g(x) =

p

n� ||x||1/||x||2
p

n� 1
, (2.32)

where Lp-norm is given by ||x||p := (
Pn

i=1 |xi|
p)1/p, and n is the dimension of

the vector x. The method is used for multiple pitch estimation with modified

sparsity measures [Cont, 2006, Cont et al., 2007].

An alternative method is to add a penalty term to the cost function [Eggert

and Körner, 2004], which is adapted from non-negative sparse coding [Hoyer,

2002]:

Cs(H) =
X

r,t

g(Hrt),

C = D(V|WH) + �sCs(H), (2.33)

where g(x) = |x| is the L1-norm regularisation for measuring sparsity and �s

controls the degree of sparsity. Because all values are non-negative in NMF, the

L1-norm function can be expressed as g(x) = x. Note that the scaling problem

of choosing �s can be fixed by normalising Wr. Similarly, the L0-norm and L2-

norm are applied in [Peharz and Pernkopf, 2012] and [Smaragdis and Brown,

2003] for sparsity constraints, respectively.

In the equivalent probabilistic model (PLCA), the sparsity is enforced by

applying a power larger than 1 to the distribution [Benetos and Dixon, 2012a]:

Hrt  H�s
rt . (2.34)

where �s is larger than 1. When we normalise the sum of the activations in

each frame to be 1, the activations in NMF can be seen as probabilities. So

the method in Equation 2.34 can also be applied in normalised NMF to enforce

sparsity.

Continuity

We review methods to enforce temporal continuity and spectral continuity on

the activations and spectral bases, respectively.
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Temporal continuity

To enforce temporal continuity, Virtanen [2007] proposed to add a penalty on

the activations H to the cost function :

Ct(H) =
RX

r=1

1

�2r

TX

t=2

(hr,t � hr,t�1)
2. (2.35)

This constraint prevents a large change between activations in adjacent frames.

The standard deviation estimate �r =
q

(1/T )
PT

t=1 h
2
rt is used for normalisa-

tion, so the cost is not a↵ected by scaling. The IS divergence of amplitudes of

adjacent frames is also used as a penalty to impose temporal continuity, which

is also scale-invariant [Févotte, 2011]. The cost function is written as:

C(W,H) = D(V|WH) + �tCt(H), (2.36)

where �t controls the degree of continuity.

Another temporal flatness term is proposed for temporal continuity, moti-

vated by spectral flatness [Becker et al., 2014]. The proposed term is presented

as:

Ct(H) =
RX

r=1

1
T

PT
t=1 Hrt

T

qQT
t=1 Hrt

. (2.37)

Spectral continuity

Two spectral terms are employed to enforce spectral continuity to penalise large

spectral variations [Becker et al., 2014], which take the same forms as the pre-

vious temporal terms. One is the spectral-wise squared di↵erence motivated

by the temporal squared di↵erence, Equation 2.35. The other penalty is the

inverted spectral flatness descriptor, written as:

Csp(W) =
RX

r=1

1
F

PF
f=1 Wfr

F

qQF
f=1 Wfr

. (2.38)

This penalty term is also added to the cost function:

C(W,H) = D(V|WH) + �spCsp(W), (2.39)

where �sp controls the degree of spectral continuity.
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Harmonic constraints

A pitched sound generates frequency components at or near the multiples of

its fundamental frequency, i.e. the harmonics or partials, with a comb-shaped

spectrum. In NMF-based systems, the harmonic structure is constrained by each

spectral basis wr. In this section, we show several ways to enforce harmonicity

or inharmonicity.

Training templates

The harmonic structure of a pitch can be obtained by template training. A

template is an average of the spectral distribution over the duration of the note,

which is usually learned on an isolated note. When we have access to sound

samples of the sources, we can train the templates first and then keep them

fixed to perform supervised NMF, or semi-automatic transcription [Kirchho↵,

2013].

The previously-trained templates can be adapted to the test data. Benetos

et al. [2014] proposed a template adaptation system to match the test dataset.

The system first transcribes the test music pieces with trained templates. Then

activations of high values are fixed, and corresponding templates are updated

using the test data. Finally music pieces are transcribed again with the adapted

templates.

Parametric models

The harmonic structure can be parameterised as a harmonic comb, with peaks

at harmonic positions. The spectral basis is given as:

Wfr =
X

k

akrg(f � fkr), (2.40)

where Wfr is the value of spectral basis r in the f th frequency bin. k is the index

of the partial. fkr and akr are the frequency and amplitude of the kth partial

of the rth spectral basis, respectively. g(f) represents the frequency response of

the window function. The frequency response covers the whole frequency range,

but usually only a certain range is used, such as the main lobe of the hamming

window [Rigaud et al., 2012, 2013a,b].

This parametric harmonic comb has been employed in music transcription

[Vincent et al., 2008, Hennequin et al., 2010, Yoshii and Goto, 2012, Rigaud

et al., 2013b], music source separation [Hennequin et al., 2011b] and piano sound

analysis [Rigaud et al., 2012, 2013a]. The harmonicity or inharmonicity of the

music sounds is enforced by the relation between f0r and fkr. Usually three
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harmonic settings are considered [Vincent et al., 2008, Rigaud et al., 2013b]:

• harmonicity:

fkr = kf0r (2.41)

• inharmonicity with fixed inharmonicity factor B:

fkr = kf0r
p

1 +Bk2 (2.42)

• inharmonicity with pitch-variant inharmonicity factor Br:

fkr = kf0r
p

1 +Brk2 (2.43)

With the explicitly modelled window response, this model can update the

fundamental frequencies f0 directly, to represent vibrato [Hennequin et al., 2010]

or for stretched tuning [Rigaud, 2013]. The inharmonicity parameter, especially

for piano tones, is also analysed by adding an inharmonic penalty to the cost

function in [Rigaud et al., 2012, 2013a,b]. The inharmonic penalty is given by:

Ch =
X

r

1

Kr

KrX

k=1

(fkr � kf0r
p

1 +Brk2)
2, (2.44)

where Kr is the number of partials considered for pitch r, and Br is the in-

harmonicity factor for pitch r. The influences of inharmonicity on transcription

systems are tested in di↵erent systems for piano music. The experiments suggest

that the inharmonic constraints even decrease the transcription performance

[Vincent et al., 2008], while Rigaud et al. [2013b] show that the results are sen-

sitive to the initialisations of the Br and f0r, and a pitch-wise inharmonicity

parameter can help the transcription performance on piano music.

Adaptive spectral basis

A spectral basis can be represented as a linear combination of narrowband

spectra [Vincent et al., 2008, Bertin et al., 2009a, 2010, Vincent et al., 2010],

Wfr =
X

m

ErmPrmf (2.45)

where, Prmf is the mth narrowband spectrum and Erm is the weight of the

narrowband spectrum. Each narrowband spectrum Prmf contains a certain

number of partials to enforce spectral smoothness as well as to enable adaptation

to di↵erent instruments. In [Vincent et al., 2008], the subbands are uniformly

spaced on the ERB scale, with the centre frequency of the first subband at
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the fundamental frequency fr1 and subsequent subbands linearly spaced, for

example by 3 ERB. The subband spectral shape is defined as the symmetric

approximation of the response of the gammatone filter of the corresponding

bandwidth.

In comparison to the weighted sum of each partial, the number of free pa-

rameters of this model is reduced. It keeps the harmonic structure and flexibility

to adapt to various instruments, and also helps to enforce spectral smoothness.

2.3.3 Bayesian extension of NMF

In previous sections we illustrate how NMF works with penalty terms and deter-

ministic constraints. In this section we introduce a Bayesian extension of NMF,

which interprets NMF from a statistical perspective and o↵ers a principled way

to incorporate prior knowledge.

Initially in NMF, Lee and Seung explained the cost function

D(V|WH) =
X

f,t

(Vft log(WH)ft � (WH)ft) (2.46)

as a generative model, in which Vft is generated by adding Poisson noise to

the product (WH)ft [Lee and Seung, 1999]. The cost function is related to the

likelihood of generatingV from basesW and activationsH. The correspondence

between the cost functions and probabilistic generative models is analysed in

[Abdallah and Plumbley, 2004, Virtanen et al., 2008, Cemgil, 2009, Schachtner

et al., 2014, Smaragdis et al., 2014], which is given by

� log p(V|WH) = aD(V|WH) + b, (2.47)

where a and b are constants with respect to WH, and a > 0. This means

that minimising the cost function D(V|WH) is equivalent to maximising the

log likelihood log p(V|WH). We adapt a summary of the relation between the

cost functions and generative models from [Smaragdis et al., 2014] as shown in

Table 2.3. In AMT,V, V̂ indicate the observed and reconstructed spectrograms,

respectively.

In the probabilistic model, parameters W and H can be estimated by the

maximum a posteriori (MAP) method.

(W,H) = argmax
W,H

log(P (W,H|V)). (2.48)
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Table 2.3: Relation between divergences and generative models, adapted from
[Smaragdis et al., 2014]

Divergence Generative model
D(vt|v̂t) p(vt|v̂t)
Squared Euclidean Distance Additive Gaussian
1

2�2
P

f (Vft � V̂ft)2
Q

f N(Vft|V̂ft, �
2)

Generalised KL Divergence PoissonP
f (Vft log

Vft

V̂ft
� Vft + V̂ft)

Q
f P (Vft|V̂ft)

IS Divergence Multiplicative GammaP
f (

Vft

V̂ft
� log Vft

V̂ft
� 1)

Q
f G(Vft|↵,↵/V̂ft)

The posterior density is given by Bayes’ rule:

p(W,H|V) =
p(V|W,H)p(W,H)

p(V)
, (2.49)

where p(W,H) = p(W)p(H), p(W) and p(H) indicate the prior distributions

and are assumed independent [Bertin et al., 2010]. It shows that the Bayesian

inference of the model is equivalent to NMF, if ignoring the prior [Cemgil, 2009].

Prior knowledge is enforced by hierarchical structure in Bayesian NMF

[Cemgil, 2009]:

p(V|⇥) =

Z
dWdH

X

s

p(V|S)p(S|W,H)p(W,H|⇥), (2.50)

where ⇥ is the hyperparameter and S is the latent component, with the assump-

tion of independence between p(W) and p(H), p(W,H|⇥) = p(W|⇥)p(H|⇥).

There are several ways to enforce the prior information on spectral bases p(W|⇥)

or activations p(H|⇥). A Gamma prior is used for spectral bases of drums

[Virtanen et al., 2008]. More generally for pitched notes, the spectral bases

are harmonically-spaced. A deterministic harmonic structure is suitable for

this prior, as shown in Section 2.3.2. For temporal continuity on activations,

Gamma-chain [Virtanen et al., 2008] and inverse-Gamma distributions [Bertin

et al., 2009a] are used, with more details to be discussed in the next subsection.

If the hyperparameter ⇥ is arbitrarily fixed or trained, parameters can be es-

timated by an EM-based algorithm [Bertin et al., 2010] or multiplicative updates

[Virtanen et al., 2008, Bertin et al., 2009a]. In this case the prior can be seen as

a penalty term [Bertin et al., 2009a]. If the hyperparameters are unknown and

need to be estimated, a variational Bayes method can be applied [Cemgil, 2009].

Yoshii and Goto [2012] propose a model in which Bayesian hyper parameters

are estimated using variational Bayes, while the NMF parameters are estimated

by multiplicative optimisation. Beside incorporating priors, Bayesian NMF can
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employ statistical features of Bayesian models, such as non-parametric models

[Ho↵man et al., 2010, Yoshii and Goto, 2012].

Dynamic models

In basic NMF, the activations of di↵erent time frames are assumed independent.

Temporal continuity is achieved by post-processing the gains or by a constraint

in the cost function as shown in Section 2.3.2. In Bayesian NMF, temporal

continuity can be modelled by the prior for the activations. These models are

called dynamic models [Smaragdis et al., 2014], which are represented as:

ht ⇠ p(ht|ht�1, ✓), (2.51)

vt ⇠ p(vt|Wht), (2.52)

where ht is the activation vector at time frame t. The second equation repre-

sents a probabilistic view of the NMF model, with E[V|WH] = WH. The first

equation indicates that the activation of the current frame is related to previous

frames by a Markov model, where ✓ denotes the prior parameters. Gamma-chain

constraints are used for the activation continuity [Virtanen et al., 2008, Yoshii

and Goto, 2012], and an inverse-Gamma distribution is employed in [Bertin

et al., 2009a, 2010], defined as:

p(hrt|hrt�1) = IG(hrt|↵r, (↵r + 1)hrt�1), (2.53)

where IG is the inverse-Gamma distribution, and ↵r is arbitrarily fixed to con-

trol the degree of smoothness.

Other approaches apply Hidden Markov Models for temporal continuity

[Ozerov et al., 2009, Nakano et al., 2010, Mysore et al., 2010, Mohammadiha

et al., 2013]. With a probabilistic representation, the idea is formulated as:

qt ⇠ p(qt|qt�1), (2.54)

ht ⇠ p(ht|qt), (2.55)

where qt is the hidden state at time frame t. This model can use higher-level in-

formation with hidden states [Smaragdis et al., 2014]. Benetos and Dixon [2013]

use a probabilistic version (temporally-constrained PLCA) for multi-instrument

music transcription. The unknown parameters of the matrix factorisation meth-

ods and HMM are estimated jointly in this model.
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2.4 Evaluation metrics

In order to evaluate the performance of the AMT methods, two levels of metrics

are commonly used, frame-level metrics (for multiple f0 estimation) and note-

level metrics (for note tracking). As transcription systems are now pursuing

higher-level representations, more systems are expected to include the instru-

ment information in the output. In this case, instrument-based evaluation is

also performed. We will introduce these three levels of metrics in the following.

They are also described in an annual evaluation campaign ‘Music Information

Retrieval Evaluation eXchange’ (MIREX) for Multiple Fundamental Frequency

Estimation & Tracking [MIREX, 2016].

2.4.1 Frame-level evaluation

For a frame-level evaluation, performance is evaluated frame by frame with an

interval of 10ms. If a detected f0 is in a range of ±3% of the ground truth

frequency, it is labelled as a correct detection. The overall accuracy (Acc) is

indicated using the definition in [Dixon, 2000]:

Acc =
Ntp

Ntp +Nfp +Nfn
(2.56)

where Ntp is the number of true positives, Nfp and Nfn are the numbers of false

positives and false negatives respectively. The frame-wise precision (P ), recall

(R) and F-measure (F ) are also used as accuracy metrics, defined in [Vincent

et al., 2010] as:

P =
Ntp

Nsys
, R =

Ntp

Nref
, F =

2⇥R⇥ P

R+ P
(2.57)

where Nsys = Ntp + Nfp denotes the number of detected pitches and Nref =

Ntp +Nfn is the number of ground-truth pitches.

Apart from the accuracy, the metrics below are defined for the frame-based

evaluation as well [Poliner and Ellis, 2007], including the rates of total errors

(Etot), substitution errors (Esubs), missed detections (Emiss) and false alarms
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(Efa):

Esubs =

PT
t=1 min(N t

ref , N
t
sys)�N t

tpPT
t=1 N

t
ref

(2.58)

Emiss =

PT
t=1 max(0, N t

ref �N t
sys)PT

t=1 N
t
ref

(2.59)

Efa =

PT
t=1 max(0, N t

sys �N t
ref )PT

t=1 N
t
ref

(2.60)

Etot = Esubs + Emiss + Efa (2.61)

where t is the frame index and T is the total number of frames.

2.4.2 Note-level evaluation

To perform a note-level evaluation, the output is represented as a list of note

events, where each note event consists of an onset, an o↵set and a pitch. In the

MIREX public evaluations for Multiple Fundamental Frequency Estimation &

Tracking [MIREX, 2016], a note is considered correctly detected if the note is

within the following ranges of ground truth.

pitch range ±3%

onset range ± 50ms

o↵set range ± max {20% of the duration, 50ms }

The algorithms are evaluated in terms of onset-only and onset-o↵set using

the note-wise accuracy metrics, which are defined in a similar way to (2.56)

and (2.57). The onset-only precision, recall, F-measure and overall accuracy are

denoted as Pon , Ron , Fon and Accon , respectively. The onset-o↵set metrics are

Po↵ , Ro↵ , Fo↵ and Acco↵ .

2.4.3 Instrument-level evaluation

To evaluate a system at the instrument level, the output notes need to be labelled

with their corresponding instruments. Then, the performance for each instru-

ment can be measured using previous frame-wise and note-wise metrics. Con-

sidering that the contribution of each instrument is often monophonic, melody

extraction evaluation metrics are also used for this task [Bay et al., 2012]. The

evaluation metrics are calculated over all frames and all instruments, given as
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Table 2.4: Public evaluation results on frame-wise accuracy (Accf ) and onset-
only note-level F-measure Fon .

Year Baseline method Accf Fon

2011 [Yeh et al., 2010] 0.683 0.560
2013 [Cheng et al., 2013] 0.620 0.507
2014 [Duan et al., 2010] 0.553 0.451
2014 [Böck and Schedl, 2012] - 0.547
2014 [Dressler, 2011] 0.680 0.659
2015 [Benetos and Weyde, 2015a] 0.654 0.601
2016 [Benetos and Dixon, 2012a] 0.486 0.503

follows:

P =

P
i,t N

i,t
tpcP

i,t N
i,t
tp +N i,t

fp

(2.62)

R =

P
i,t N

i,t
tpcP

i,t N
i,t
tp +N i,t

fn

(2.63)

F =
2⇥ P ⇥R

P +R
(2.64)

Acc =

P
i,t N

i,t
tpc +N i,t

tnP
i,t N

i,t
tp +N i,t

fp +N i,t
tn +N i,t

fn

(2.65)

where Ntp , Ntn , Nfp and Nfn are the numbers of true positives, true negatives,

false positives and false negatives for pitched/unpitched detection, Ntpc denotes

the number of correct f0 in Ntp , and i and t are the instrument index and the

frame index, respectively.

2.4.4 Public evaluation

Some systems reviewed in this chapter have been submitted to the Music In-

formation Retrieval Evaluation eXchange (MIREX) for the task of Multiple

Fundamental Frequency Estimation & Tracking [MIREX, 2016]. We show the

results of the latest submissions based on the reviewed systems in Table 2.4.

The frame-wise accuracies Accf is evaluated on 40 test pieces and note-level

F-measures (onset-only) Fon is evaluated on 34 test pieces.

2.5 Conclusions

In this chapter, we first give a brief introduction to sound generation and per-

ception, by which we know that human perception of a musical tone is related
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to its fundamental frequency, harmonics (partials) and spectrum. Then in Sec-

tion 2.1.2 we specify acoustical features of piano tones which are related to the

excitation mechanism and physical structure of the piano. We review AMT

systems according to the level of information employed by the system in Sec-

tion 2.2. First we introduce systems detecting a pitch using its period, harmon-

ics (partials) and spectrum, respectively. Then we review systems using high

level information, i.e. musicological models, for transcription, and also several

typical classification-based methods. At last, we present post-processing meth-

ods to generate note events and note-level systems which model discrete note

events directly. In Section 2.3, we present a general framework for NMF-based

transcription in detail, with commonly-used constraints. In Section 2.4 we sum-

marise commonly-used evaluation metrics of three levels (frame level, note level

and instrument level), and give a summary on public evaluation results.

In Chapter 3, we will address the local minimum problem of matrix de-

composition methods as indicated in Section 2.3.1. We work on an existing

transcription system based on the PLCA, the probabilistic counterpart of NMF,

with an optimisation method. Based on the theoretical analysis in Section 2.1.2,

we will study piano decay in Chapter 4, and model temporal evolution for piano

notes for transcription in Chapter 5 and Chapter 6.
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Chapter 3

A Deterministic Annealing

EM Algorithm for AMT

In this chapter, we use a deterministic annealing EM (DAEM) algorithm to

deal with the local minimum problem of PLCA and show the improvement in

transcription performance by doing so. Matrix factorisation methods (such as

NMF and PLCA) are initialisation-sensitive and tend to converge to a local

minimum. There are several approaches to address this local minimum prob-

lem. Hofmann [1999] proposes a model based on a tempered EM algorithm to

avoid overfitting in probabilistic latent semantic analysis. Bertin et al. [2009b]

use the tempering scheme to favour the convergence of the Itakura-Saito (IS)

divergence to global minima. Experiments on music transcription show that

the IS-NMF can provide a good result by choosing a suitable temperature pa-

rameter. The deterministic annealing EM algorithm is proposed to optimise

the parameter estimation of EM-based methods [Ueda and Nakano, 1998]. It

has been used in a harmonic-temporal-structured clustering (HTC) model for

audio feature extraction [Kameoka et al., 2005], and to estimate the parameters

of Gaussian mixture models (GMMs) and hidden Markov models (HMMs) for

speaker and speech recognition [Itaya et al., 2005]. In the latter method DAEM

is shown to be e↵ective for GMM and HMM-based acoustic models. Smaragdis

and Raj [2007] state that using ‘annealing’ in PLCA helps to get ‘meaningful’

decompositions and quick convergence.

Here we focus on an existing PLCA-based transcription model [Benetos and

Dixon, 2012a], and apply the DAEM algorithm to tackle the local minimum

problem. In the proposed model, the PLCA update rules are modified by in-

troducing a ‘temperature’ parameter. At higher temperatures, general areas of

the search space containing good solutions are found. As the temperature is
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gradually decreased, distinctions in the data are sharpened, resulting in a more

fine-grained optimisation at each successive temperature.

We describe transcription systems based on PLCA in Section 3.1. In Sec-

tion 3.2 we introduce the baseline transcription system and modify the update

rules according to DAEM. The proposed method is tested in three transcrip-

tion subtasks and compared to the baseline method in Section 3.3. Finally

conclusions and discussions are indicated in Section 3.4.

3.1 PLCA and shift-invariant PLCA

Two basic PLCA models, PLCA and shift-invariant PLCA, are presented in

[Smaragdis et al., 2008]. For automatic music transcription, the spectrogram is

decomposed in PLCA as:

V (!, t) ⇡ P (!, t) = P (t)
X

p

P (!|p)P (p|t) (3.1)

where V (!, t) is the input spectrogram, P (!, t) the approximated spectrogram,

! is the frequency bin, and t is the frame number. P (t) is the energy of each

time frame, P (!|p) is the spectral basis corresponding to pitch p, and P (p|t)

the gain function.

To build a shift-invariant PLCA model, the spectrogram needs to be pre-

sented on a logarithmic frequency scale, such as the constant-Q transform. As-

suming that the energy distributions of adjacent pitches are similar for any

given instrument, the spectral basis can be shifted in frequency very easily, as

the pattern of partial spacings is the same for all pitches, due to the logarithmic

frequency axis. The spectrogram is approximated by:

V (!, t) ⇡ P (!, t) =
X

z

P (z)P (!|z) ⇤! P (f, t|z)

=
X

z

P (z)
X

f

P (! � f |z)P (f, t|z)
(3.2)

where P (!|z) and P (f, t|z) are the spectral templates and time-dependent

shifted variant f of component z, ‘⇤’ indicates the convolution, and P (z) is

the prior distribution of the components.

In many recent systems the PLCA model is extended by introducing an

instrument distribution, with templates trained per pitch per instrument. The

spectrogram is approximated by:

V (!, t) ⇡ P (!, t) = P (t)
X

p,s

P (!|s, p)P (s|p, t)P (p|t) (3.3)
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where P (!|s, p) represents the spectral templates corresponding to each instru-

ment s and pitch p, P (s|p, t) the instrument contribution to each pitch in the

tth frame, and P (p|t) the pitch probability distribution for each frame.

The parameters of the PLCA models are estimated by iteratively decreasing

the KL divergence of the input spectrogram V (!, t) and the reconstruction

P (!, t) using the EM algorithm. The KL divergence is convex in one variable,

but not convex in multiple variables [Lee and Seung, 2001]. In this case, the

EM algorithm can only guarantee to find a local minimum for these parameters,

so the results depend on the initialisation. The use of spectral templates is an

e↵ective way to deal with the initialisation sensitivity of the algorithm. Taking

the model described in Equation 3.1 for example, if the templates are fixed as

constant, the gain function will be convex. This means that when we formulate

the model as the product of the spectral bases and a gain function, we obtain a

unique gain function corresponding to a fixed set of templates. On the one hand,

the templates lead to a stable decomposition for automatic music transcription;

on the other hand, the templates also limit the performance of the transcription.

However, when encountering the extended model as described in Equation 3.3,

the instrument contribution and the pitch contribution still face the risk of

converging to local minima, even with fixed templates.

3.2 Transcription system based on DAEM

To deal with the local minimum problem of PLCA models, we derive update

rules according to the deterministic annealing EM algorithm [Ueda and Nakano,

1998], which introduces a temperature parameter into the EM algorithm. The

temperature parameter is employed on the posterior probability density in the E-

step. Then by gradually reducing the temperature, the EM steps are iteratively

executed until convergence at each temperature, leading the result to a global or

better local minimum. We apply this method to a baseline PLCA-based model

proposed in [Benetos and Dixon, 2012a]. The temperature parameter is applied

to the posterior probability density of the instrument distribution with fixed

templates.

3.2.1 The baseline PLCA model

Benetos and Dixon [2012a] propose a model that adds an instrument distribution

variable to shift-invariant PLCA. The time-frequency representation of the input

signal is computed with the Constant-Q Transform [Schörkhuber and Klapuri,

2010] using 120 bins per octave. Templates are trained for 10 instruments

allowing shifts within a semitone range, in order to deal with arbitrary tuning
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Table 3.1: Note ranges (in MIDI index) of instruments, adapted from Benetos
and Dixon [2012b].

instrument lowest note highest note

1 Bassoon 34 72
2 Cello 26 81
3 Clarinet 50 89
4 Flute 60 96
5 Guitar 40 76
6 Horn 41 77
7 Oboe 58 91
8 Piano 21 108
9 Tenor Sax 44 75
10 Violin 55 100

and frequency modulations. The model is formulated as:

P (!, t) = P (t)
X

p,s

P (!|s, p) ⇤! P (f |p, t)P (s|p, t)P (p|t) (3.4)

where P (!, t) is the approximated spectrogram, P (t) is the energy distribu-

tion of the spectrogram. P (!|s, p) are the templates of instrument s and pitch

p, P (f |p, t) selects the shifted variant for each p, P (s|p, t) is the instrument

contribution for each pitch, and P (p|t) is the pitch probability distribution for

each time frame. The templates P (!|s, p) are trained using the MAPS dataset

[Emiya et al., 2010] and RWC dataset [Goto et al., 2003], covering the instru-

ments shown in Table 3.1.

The update rules are derived from the EM algorithm. For the E-step, the

posterior probability density is:

P (p, f, s|!, t) =
P (! � f |s, p)P (f |p, t)P (s|p, t)P (p|t)P

p,f,s P (! � f |s, p)P (f |p, t)P (s|p, t)P (p|t)
(3.5)

For the M-step, each parameter is estimated.

P (f |p, t) =

P
!,s P (p, f, s|!, t)V (!, t)

P
f,!,s P (p, f, s|!, t)V (!, t)

(3.6)

P (s|p, t) =
(
P

!,f P (p, f, s|!, t)V (!, t))↵1

P
s(
P

!,f P (p, f, s|!, t)V (!, t))↵1
(3.7)

P (p|t) =
(
P

!,f,s P (p, f, s|!, t)V (!, t))↵2

P
p(
P

!,f,s P (p, f, s|!, t)V (!, t))↵2
(3.8)
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The templates P (!|s, p) are not updated as they are previously trained and

kept fixed. The parameters ↵1 and ↵2 used in Equation 3.7 and 3.8 are used to

enforce sparsity, where ↵1,↵2 > 1. We follow the original setting, ↵1 = 1.3 and

↵2 = 1.1, from Benetos and Dixon [2012a]. The final piano-roll matrix P (p, t)

and the pitches assigned to each instrument P (p, t, s) are given by:

P (p, t) = P (p|t)P (t) (3.9)

P (p, t, s) = P (s|p, t)P (p|t)P (t) (3.10)

For post-processing, instead of using an HMM, the note events are extracted

by performing thresholding on P (p, t) and using minimum-length pruning (delet-

ing notes shorter than 50ms). The instrument-wise note events are detected in

the same way using P (p, t, s).

3.2.2 The DAEM-based model

Despite using fixed templates, there are still two free parameters, the instrument

contribution and the pitch contribution, to estimate in the baseline method.

They face the risk of converging to local minima. Here, we use the DAEM

algorithm instead of the EM algorithm to derive update rules. In the E-step,

the posterior probability density in Equation 3.5 is modified by introducing a

temperature parameter ⌧ :1

P⌧ (p, f, s|!, t) =
(P (! � f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/⌧P
p,f,s(P (! � f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/⌧

(3.11)

And the update rules are extended by adding a ⌧ -loop:

1. Set ⌧  ⌧max(⌧max > 1).

2. Iterate the following EM-steps until convergence:

E-step: calculate P⌧ (p, f, s|!, t).

M-step: estimate P (f |p, t), P (s|p, t) and P (p|t) by replacing P (p, f, s|!, t)

with P⌧ (p, f, s|!, t) in Equation 3.6, 3.7 and 3.8, respectively.

3. Decrease ⌧ .

4. If ⌧ � 1, repeat from step 2; otherwise stop.

The process starts from a high temperature (⌧max > 1), then the temperature

is reduced by gradually decreasing ⌧ . At each value of ⌧ , we apply the EM-

steps until convergence. At higher temperatures, the distributions are smoothed

1The parameter used in [Ueda and Nakano, 1998] is �, and the temperature is indicated
by 1/�. The reason for using ⌧ here is because we want to indicate the temperature directly
by ⌧ and distinguish the proposed method from the �-divergence.
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and general areas of the search space containing good solutions are found. As

the temperature is gradually decreased, distinctions in the data are sharpened,

resulting in a more fine-grained optimisation at each successive temperature.

Considering the properties of this particular model, we simplify the posterior

probability density to:

P⌧ (p, f, s|!, t) =
P (! � f |s, p)P (f |p, t)P (s|p, t)1/⌧P (p|t)P

p,f,s P (! � f |s, p)P (f |p, t)P (s|p, t)1/⌧P (p|t)
(3.12)

The convolution of the templates and the pitch impulse distribution, giving the

terms P (!� f |s, p)P (f |p, t), works as the shift-invariant templates here. These

are not modified by the temperature parameter, as the templates are fixed

during the iterative process.2 In addition, having observed that the instrument

distribution P (s|p, t) is dependent on the pitch distribution P (p|t) in this model,

we only modify one of them in the posterior probability density.

In the experiment, the parameter ⌧ took the values 10/i, i 2 {8, 9, 10}.

When ⌧ finally decreases to 1, the update rules agree with the original ones.

3.3 Experiments

3.3.1 Datasets

We used the Bach10 Dataset [Duan et al., 2010] and the MIREX Multi-F0 De-

velopment Dataset (MIREX dataset) [MIREX, 2016] to test the performance

of the proposed method. The Bach10 dataset consists of 10 quartet record-

ings performed on violin, clarinet, saxophone and bassoon. Ground truth for

the Bach10 dataset was automatically generated for each individual instrument

by YIN [de Cheveigné and Kawahara, 2002] with some manual corrections by

Duan and Pardo. The MIREX dataset is an excerpt from a woodwind quintet

recording, played on bassoon, clarinet, flute, horn and oboe. The ground truth

for this dataset was manually created by Benetos and Grindlay.

3.3.2 Evaluation

The performance of the proposed system is evaluated in three subtasks: multiple

F0 estimation, note tracking and instrument assignment. The corresponding

metrics are referred to Section 2.4 for details. We compare the performance

of the proposed method to that of the baseline PLCA model introduced in

Section 3.1 (mentioned as BD(2012) below). We provide results for the three

subtasks on the two di↵erent datasets in the following section.

2This was also confirmed by test experiments where the power 1/⌧ was also applied to the
pitch impulse distribution P (f |p, t), giving similar transcription results to Equation 3.12.
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Table 3.2: Multiple F0 estimation results (see Section 2.4 for explanation of
symbols).

Dataset Methods P R F Acc Etot Esubs Emiss Efa

Bach10 BD(2012) 0.784 0.791 0.787 0.650 0.311 0.116 0.093 0.102
Proposed 0.819 0.796 0.807 0.677 0.282 0.098 0.106 0.078

MIREX BD(2012) 0.748 0.537 0.625 0.455 0.486 0.158 0.305 0.023
Proposed 0.769 0.561 0.649 0.480 0.461 0.146 0.292 0.023

Both BD(2012) 0.781 0.768 0.772 0.632 0.327 0.120 0.112 0.094
Proposed 0.814 0.775 0.793 0.659 0.299 0.102 0.123 0.074

The proposed system was also submitted to the task of multiple fundamental

frequency estimation and tracking in MIREX 2013.3 Readers are referred to

Table 2.4 for results and comparison to other submissions.

3.3.3 Results

Multiple F0 estimation

The results for multiple F0 estimation using the Bach10 and MIREX datasets

are shown in Table 3.2. It can be seen that the proposed method outperforms

the BD(2012) method in terms of accuracy (Acc) on both individual datasets

by at least 2.5 percentage points, leading to an overall accuracy of 0.659 (up

2.7 percentage points). The total error decreases by 2.8 percentage points. On

the Bach10 dataset improvements are mainly due to a reduced false alarm rate

(Efa), which decreases from 10.2% to 7.8%. This is also reflected by increased

precision (P ) and stable recall (R). The improvement for the MIREX dataset

mainly comes from reduction in both substitution error (Esubs) and missed

detection error (Emiss) rates, leading to higher precision and recall.

In order to determine if the increase in accuracy (Acc) is significant we ran a

Friedman test for this subtask. The resulting p-value of 0.0009 < 0.01 indicates

that the di↵erence is highly significant. The distribution of Acc of the ten files

in the Bach10 dataset is shown in Figure 3.1a.

Note tracking

For the note tracking subtask, we found that the F-measure was improved by

almost 5 percentage points for onset-only evaluation and around 4 percentage

points for onset-o↵set evaluation for both datasets, as shown in Table 3.3. We

ran a Friedman test with regard to the F-measures (Fon and Fo↵) for this

3
http://www.music-ir.org/mirex/wiki/2013:Multiple_Fundamental_Frequency_

Estimation_%26_Tracking_Results.
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Table 3.3: Note-tracking results

(a) onset-only accuracy

Dataset Methods Pon Ron Fon Accon

Bach10 BD(2012) 0.319 0.339 0.328 0.197
Proposed 0.399 0.354 0.374 0.231

MIREX BD(2012) 0.628 0.420 0.503 0.336
Proposed 0.690 0.459 0.551 0.380

Both BD(2012) 0.347 0.346 0.344 0.209
Proposed 0.427 0.364 0.391 0.245

(b) onset and o↵set

Dataset Methods Po↵ Ro↵ Fo↵ Acco↵

Bach10 BD(2012) 0.217 0.230 0.223 0.126
Proposed 0.281 0.249 0.263 0.152

MIREX BD(2012) 0.487 0.326 0.391 0.243
Proposed 0.537 0.357 0.429 0.273

Both BD(2012) 0.242 0.239 0.238 0.137
Proposed 0.305 0.259 0.279 0.163

BD(2012) Proposed
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Figure 3.1: Box-and-whisker plots of (a) accuracy; (b) onset-only F-measure;
and (c) onset-o↵set F-measure; for the Bach10 dataset.
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subtask. For both onset-only and onset-o↵set metrics, the p-values are less than

0.01, showing that—here, too—the di↵erences are significant. The distributions

of Fon and Fo↵ for the Bach10 dataset are shown in Figures 3.1b and 3.1c.

The note tracking evaluation shows that both methods under consideration

perform better on the MIREX dataset, whereas according to the frame-based

evaluation they perform better on the Bach10 dataset. This result has the same

trend as the results from other methods on the same data,4 and is likely to stem

from the unusual co-occurrence of trills and legato notes that dominates the

MIREX piece.

Instrument assignment

The results for instrument assignment for the two datasets are shown in Ta-

ble 3.4. In this subtask, we cannot identify a systematic advantage of either

method, with the F-measure means over all instruments being very close (20.7%

and 20.9% on the Bach10 dataset, and 35.1% and 34.3% on the MIREX dataset).

Slight di↵erences between the methods for particular instruments do not show

a consistent advantage of one method either; we will therefore focus on the

proposed method in the rest of the discussion. The most obvious di↵erences in

F-measure occur between instruments. For example, the results for the Bach10

dataset show that instrument assignment works better for the clarinet and bas-

soon than for the violin and saxophone. Also, since the note templates include

instruments not present in the pieces, false positives occur for these instru-

ments, with the largest ratio of false positives occurring for horn (18.6%) and

piano (16.4%). The problem instrument in the MIREX dataset is the oboe, to

which few notes are assigned, leading to a low F-measure of around 12-13%.

Notes are detected in three instruments that do not feature in the music, with

the largest ratio of false positives found in the piano (47.9%) and guitar (34.5%).

No false positives were detected for saxophone or violin.

The discrepancy between the multiple F0 estimation results and the com-

paratively low results for instrument assignment is due to the fact that often the

correct pitch is detected, but assigned to a wrong instrument or combination of

instruments. That is, note templates from di↵erent instruments are combined

to approximate the observed spectra. The proposed method provides a better

reconstruction of the observed data using combinations of templates at the cor-

rect pitches, resulting in better performance for frame level and note tracking

tasks.
4as published on the MIREX website [MIREX, 2016].
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Table 3.4: Instrument assignment results

(a) Bach10

F-measure Violin Clarinet Saxophone Bassoon Mean

BD(2012) 0.175 0.313 0.092 0.246 0.207
Proposed 0.190 0.275 0.127 0.243 0.209

(b) MIREX

F-measure Bassoon Clarinet Flute Horn Oboe Mean

BD(2012) 0.292 0.444 0.485 0.409 0.125 0.351
Proposed 0.294 0.420 0.489 0.385 0.129 0.343

3.4 Conclusions and discussions

We examine the utility of an optimisation method in a PLCA-based AMT sys-

tem. The optimisation method, deterministic annealing EM, is based on the

EM algorithm and aims to tackle the local minimum problem. The key idea is

to decrease the ‘temperature’ gradually, which means to increase the sparse ex-

ponent gradually in the AMT system. The transcription experiments show that

the proposed method outperforms the baseline method on tasks of multi-pitch

estimation (accuracy increases by 2.7 percentage points) and note tracking (F-

measure increases by 4 percentage points). Although results on an additional

instrument assignment task show no significant di↵erence between the methods,

they reveal that both methods use mixtures of instrument templates to approx-

imate observed spectra in the test data. In this work we have used DAEM

with only one configuration of three temperature steps set by considering the

strategy in [Ueda and Nakano, 1998] and the result of a small preliminary test.

In the future, we would like to explore di↵erent configurations to see whether

we can further improve the transcription results.

In a preliminary experiment, we update both the spectral bases and gain

functions of the basic PLCA model in Equation 3.1 based on DAEM. The cost

function is smaller than that obtained using the EM algorithm, but the tran-

scription results are not always better, because it becomes di�cult to associate

the updated spectral bases to pitches in this case. In comparison to the results

in Section 3.3, we find that the previously-trained templates are important and

work as a good initialisation for the spectral bases. The risk of updating the

templates during the iteration is that an updated template might no longer ac-

cord with its labels (pitch, instrument). Due to the di↵erent ways a note can

be played and di↵erences in sound transmission, templates will never match

observations precisely. Spectral decomposition algorithms compensate for this
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mismatch by finding mixtures of templates which provide a better approxi-

mation of the data (see Section 3.3.3). In order to capture the variations of

instrument sounds, we would like to refer to information from musical acoustics

and physics. In Chapter 4, we will focus on piano tones to explore the decay

patterns in detail.

The use of the temperature parameter ⌧ that is central to the DAEM algo-

rithm in Equation 3.11 is similar to the use of the sparsity parameters in Equa-

tion 3.7 and Equation 3.8. In fact, the sparsity method used here is related

to the tempered EM algorithm [Grindlay and Ellis, 2012]. Both the DAEM

and sparsity equations ‘put an exponent on a distribution’. When the expo-

nent is larger than one, the distribution becomes sharper and sparser; when the

exponent is smaller than one, the distribution is smoothed, as in the case of

high-temperature stages of DAEM.

The PLCA model is a probabilistic variant of NMF, which is used in a

probabilistic framework. In the remainder of this thesis, we develop our own

transcription approach based on NMF, in consideration of the way that note

energy decays over time. The optimisation method can also be adapted to NMF.

In Chapter 5, we will use this exponential form for a sparsity constraint in an

NMF-based transcription system. The decreasing temperature is indicated by

the increasing exponent. The ‘annealing’ will be applied using a continuously

increasing exponent, which will reach the desired value at the end of iteration.
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Chapter 4

Modelling the Decay of

Piano Tones

In this chapter, we compare the temporal decay of individual piano partials in

real-world recordings to the theoretical decay patterns based on piano acoustics

revised in Section 2.1.2. We mainly focus on the decay behaviour associated

with coupled piano strings [Weinreich, 1977]. The acoustics of piano decay

is well understood and has been applied for synthesising piano sounds. For

instance, the digital waveguide is used in synthetic models to generate a set

of quasi-harmonic exponentially decaying sinusoids produced by a single string

[Smith, 1992]. A piano note with multiple strings is modelled using coupled

digital waveguides [Aramaki et al., 2001, Bensa et al., 2003], or using one digital

waveguide with resonators for partials of beats and double decay [Bank, 2000,

2001, Lee et al., 2010]. Recently, incorporating the decay information for piano

music analysis has also gained increasing attention. A non-negative source-

filter-decay model is proposed to analyse music sounds by assuming a frequency-

dependent decaying (decay response) [Klapuri, 2007]. The decay envelopes of

piano tones or partials are modelled for automatic music transcription with

promising results [Chen et al., 2012, Berg-Kirkpatrick et al., 2014, Cogliati and

Duan, 2015].

For estimating decay parameters, Välimäki et al. [1996] first propose to

estimate the decay rates of harmonics by linear regression on a logarithmic

magnitude scale. Karjalainen et al. [2002] present both linear and non-linear re-

gressions to estimate the decay of piano partials with noise, but the experiments

only include some examples of synthetic notes and no conclusion is drawn on

the general decay characteristics of piano notes. Here, we track the decay of real

piano tones from the RWC Music Database [Goto et al., 2003] in detail (first 30
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partials below the Nyquist frequency1 of 88 notes played in 3 dynamics). We

analyse fitness between theoretical models and real world data, and the influence

of the frequency range, pitch range and dynamic on decay patterns. The goal

of this work is to understand piano decay in real recordings and to gain insights

into how piano transcription systems can make use of decay information.

The methods for finding and modelling decays of partials are introduced in

Section 4.1. The experimental setup and results are described in Sections 4.2

and 4.3, respectively. Section 4.4 concludes this chapter.

4.1 Method

In order to track the decay of piano notes, we first find the frequencies of partials

for each note, taking inharmonicity into account. Then, the decay of the partials

is fitted to three typical patterns: linear decay, double decay (modelling the two

directions of polarization, vertical and horizontal) and curves (modelling beats

due to mistuning). We track partials below the Nyquist frequency, but only the

first 30 partials for a note if there are more than 30 partials.

4.1.1 Finding partials

Because of string sti↵ness, partials of piano notes occur at higher frequencies

than the harmonics (integer multiples of the fundamental frequency), which is

known as inharmonicity. The partial frequencies are given by [Fletcher et al.,

1962]:

fn = nf0
p

1 +Bn2, (4.1)

where fn is the nth partial of the note with fundamental frequency f0 and B is

the inharmonicity coe�cient which varies from note to note. Moreover, during

the course of a sounded note partial frequencies can diverge from their ideal

inharmonic frequencies due to the coupling between bridge and soundboard.

To get the frequencies of partials, we estimate B and f0 in a non-negative

matrix factorisation framework proposed by Rigaud et al. [2013a]. The model

represents each partial of a piano tone using the main lobe magnitude spectrum

of a Hanning window. In each iteration, the central frequency of each partial

is updated to fit the observed spectrum. An inharmonicity constraint is added

to the cost function by means of a sum of the mean square error between the

estimated partial frequencies and those given by the inharmonicity relation in

Equation 4.1. Then the inharmonicity coe�cient B is also updated by taking

all updated partial frequencies into account. We provide an implementation of

1The Nyquist frequency is half of the sample rate fs.
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Figure 4.1: (a) Partial frequencies of note A1 (55Hz), (b) Inharmonicity coe�-
cient B along the whole compass estimated for the piano of the RWC dataset.

this method for download.2 When detecting frequencies of partials, errors are

likely to arise at partials below the noise level, and even when the frequencies

of these partials are detected correctly, they tend to behave noisily. So only

partials above the noise level are tracked.

Figure 4.1(a) shows the detected frequencies of the first 30 partials of the note

A1 (55Hz). The estimated inharmonicity coe�cient along the piano compass

(all 88 piano notes) is given in Figure 4.1(b).

4.1.2 Tracking the decay of partials

The vibrations of the strings are influenced by many factors, which results in a

variety of decay patterns of piano notes. We fit the decay of partials with the

following three models: linear decay, multi-phase linear decay, and non-linear

2https://code.soundsoftware.ac.uk/projects/inharmonicityestimation
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curve decay based on the theoretical analysis of coupled oscillation of two piano

strings [Weinreich, 1977]. Partial decay of notes with three strings is also fitted

by these three models.

Linear decay is suitable for partials of single string notes, notes with well-

tuned strings and also notes with large mistunings, with examples shown in

Figure 4.2. Multi-phase linear decay is mainly used for double decay caused

by transmission direction changes and mistuned strings. It can also be applied

for partials with fast decay. In this case, the partial decays to the noise level

quickly, and the noisy part is detected as a second line, as shown in Figure 4.3.

Partials of notes with mistuned strings exhibit a decay with beats, and is fitted

by the non-linear curvy decay. Some high partials of single-string notes also

exhibit a decaying periodic curve because of false beating. Readers are referred

to Section 2.1.2 for related information on piano decay.

Time-frequency representation

A piano tone starts with a percussive sound with a sharp increase of energy

generated by the impact of the hammer on the string(s). In order to to discard

the attack onset, we use a sound clip beginning at the frame with largest energy

for each note. In the RWC dataset [Goto et al., 2003], each piano note lasts about

2 seconds. The length of the clip is set to 2 s, while if the clip is shorter than

2 s the length is restricted to its duration. The sampling rate is fs = 44100Hz.

Frames are segmented by a 4096-sample Hamming window with a hop-size of

441. A discrete Fourier Transform is performed on each frame with 2-fold zero-

padding. The power spectrogram is represented on the log scale:

SdB = 20 log10(S), (4.2)

where S is the magnitude spectrogram.

The energy of each partial is found according to the frequencies detected in

Section 4.1.1. Then the decays are fitted by the following models. The decay

rate is measured by the power change per second (dB/s).

Linear regression

In most situations, the decay of partials follows a linear function of time, which

is modelled by

y(t) = at+ b, (4.3)

where y is the linear function along time t, a is the decay rate and b is the initial

power. The regression parameters are estimated using ordinary least squares.

Figure 4.2 shows three kinds of decay which can be fitted in the linear model:
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Figure 4.2: Linear fitting for: (a) the 3rd partial of note D1 (f0 = 36.7Hz);
(b) the 2nd partial of note A[1 (f0 = 51.9Hz); (c) the 30th partial of note D[2
(f0 = 69.3Hz).

(a) is a partial of a single-string note; (b) is a partial of a note with well-tuned

strings; and (c) is a partial of a note with large mistuning between strings.

When the mistuning is large, there is more than one beat in the decay, but the

overall decay rate can be detected correctly using the linear model.

Multi-phase linear regression

A multi-phase linear model is employed to model double decay as well as fast

decay with noise. Despite the misleading name this is a non-linear regression

problem. The decay is modelled by two straight lines, formulated as follows:

y(t) =

8
<

:
a1t+ b1 : ts < t < tdp

a2t+ b2 : tdp < t < te
(4.4)

where y is the estimated function; a1, a2 and b1, b2 are the decay rates and the

initial energies of the two lines, respectively; tdp is the demarcation point of the

two lines; and ts and te are the starting time and the ending time, respectively.

Parameters are estimated using an existing method.3 The method first finds all

possible tdp values,

Figure 4.3(a) shows the fit for a partial with two parts, decay and noise.

This partial decays quickly, having a low initial amplitude due to the hammer

impulse position being near a node of the partial’s vibration mode, and the late

portion is noise which should be discarded. Fitting this decay with the multi-

phase model helps to automatically detect the ending time of the partial decay

and discard the noisy part. Figures 4.3(b) and (c) indicate two kinds of double

3http://research.ganse.org/datasci/mplr/
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Figure 4.3: Multi-phase linear fitting for: (a) the 7th partial of note B[0 (f0 =
29.1Hz); (b) the 4th partial of note B[2 (f0 = 116.5Hz); (c) the 1st partial of
note E5 (f0 = 659.3Hz).

decay. The rate change in (b) is caused by the transmission direction switching

from vertical to horizontal, while the reason for the double decay in (c) is a

small frequency di↵erence between the strings.

For double decay, the slope of the line which covers the larger part of the

time duration is recorded as the decay rate, i.e. the first part in Figure 4.3(b)

and the second part in Figure 4.3(c). We assume that the decay lasts longer

than noise in the situation of fast decay with noise, so the larger part strategy

also works in this case, i.e. the first decay rate in Figure 4.3(a).

Non-linear curve fitting

When there are small frequency di↵erences between the strings of a note, partials

decay with amplitude modulation as the vibrations of the di↵erent strings move

in and out of phase with each other. We use a non-linear curve fitting model to

fit these decays with beats. The objective function of the curve fitting is more

complex than the first two situations. Based on the theory of coupled strings

[Weinreich, 1977], the formula is simplified as follows:

y(t) = at+ b+A log10(| cos(ft+ ')|+ "). (4.5)

The derivation from the physical model [Weinreich, 1977] to the proposed model

is included in Appendix A. This function describes the coupled motion of two

strings. There are two parts: the decay part is still modelled by a linear function,

at+ b, and the remaining term models the amplitude modulation, where A and

f are the amplitude and frequency of the curve, respectively. ' is the initial

phase of the curve, and " = 0.01 is added to avoid taking the log of 0.
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Figure 4.4: Non-linear curve fitting for: (a) the 22nd partial of note D[1 (f0 =
34.6Hz); (b) the 10th partial of note G1 (f0 = 49Hz); and (c) the 10th partial
of note A1 (f0 = 55Hz).

Figure 4.4 gives three examples of decay with beats: (a) false beats of a high

partial of a single string note; (b) and (c) show beats with di↵erent frequencies,

which are caused by mistuning of the strings of each note.

The parameters are estimated using a non-linear least squares algorithm [Fox

and Weisberg, 2010]. This method requires a good initialisation and ranges for

parameters to get a reasonable result. The linear part (a, b) is initialised using

the result of the linear model. The amplitude A is initialised to 40 which is

the amplitude of purely resistive coupling in dB, as shown in Appendix A.

The period (1/f) consists of two lobes because of taking the absolute value in

Equation 4.5. If there is more than one trough found in the decay, as shown in

Figure 4.4(a) and (b), we initialise the curve period to be double the time gap

between two adjacent troughs. If only one trough is detected (Figure 4.4(c)),

we assume the position of the trough from the onset to be one quarter of the

period. The initial phase ' is usually initialised to 0, while sometimes manually

adjusted to a value between 0 and ⇡ according to the observation.

The coupling between 3 strings is far more complex than for 2 strings. It

is out of the scope of this chapter to explore the details of the motion of 3

strings, which we approximate using the models described above. It turns out

that the approximation is very close to our observations, as shown in the results

of Section 4.3.

4.2 Experiment

In this section, we introduce the dataset, metric for evaluation and the steps of

decay modelling.
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4.2.1 Dataset

We use the piano sounds from the RWC Musical Instrument Sound Database

[Goto et al., 2003]. The notes are played at three dynamics: loud (forte, f ),

moderate (mezzo, m) and soft (piano, p). Each set consists of 88 isolated notes,

covering the whole compass of the piano.

4.2.2 Metric

The coe�cient of determination (R-squared) is used for evaluating the fit be-

tween the data and model. It is defined as follows:

R2 = 1�
SS res

SS tot
= 1�

PT
t=1(ot � yt)2PT
t=1(ot � o)2

, (4.6)

where ot is the observation of time frame t, yt is the modelled function and

o = 1
T

PT
t=1 ot is the mean of the observations. SS tot is the total sum of squares,

which is proportional to the variance of the observed data, and SS res is the

residual sum of squares, explaining the di↵erence between the observations and

the modelled values. The larger R-squared is, the better the data is explained

by the model.

4.2.3 Modelling the decay

For each detected partial, we fit it to our models according to the process shown

in Figure 4.5. The process is referred to as the mixed model, in which the R2 of

the three models is computed one by one. We first compute the R2s of the linear

model and the multi-phase linear model. If the larger R2 of these two models

is over 0.9, we assume the decay is fitted well and no curve fitting is needed.

Otherwise, we continue to compute the R2 of the non-linear curve model. We

find the largest R2 of the three models as the R2 of the mixed model.

4.3 Results

We illustrate the results of decay tracking in this section. Then the estimated

decay rates are used to parameterise the decay response and to explore the

influence of dynamics.

4.3.1 R-squared

We compare the average coe�cient of determination, R2, between the linear

model and the combination of all three models (referred to as the mixed model
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Figure 4.5: Flowchart of partial decay modelling.

Table 4.1: Average R2 of the linear and mixed models. NP is the number of
partials above the noise level for each dynamic level.

Dynamics NP linear model mixed model

f 1572 0.721 0.867
m 1501 0.699 0.853
p 1187 0.644 0.824

as in Figure 4.5). The results are presented in Table 4.1, which indicate that

the mixed model has a better fit to the data by around 15 percentage points.

We also note that the performance is influenced by dynamics. If the note starts

at a lower energy, it will decay to the noise level more quickly, resulting in

fewer data available for modelling, not only fewer partials above the noise level,

but also shorter duration of notes. This reduction in data makes parameter

estimation more di�cult, resulting in worse performance for lower dynamics.

Although longer notes would help us to observe the decay pattern, we did not

look beyond 2 s, which is already longer than the duration of most notes in

normal music performance. It remains to be investigated how well our model

performs on shorter notes.

In order to provide a more detailed investigation of the results for di↵erent

notes, we divide the notes into 8 groups, with every adjacent 11 notes in a group.

The average R2 of each group is shown in Figure 4.6. We find that the mixed
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Figure 4.6: Average R2 of di↵erent note groups. f, m, p stand for dynamics,
while L and 3 indicate the linear and mixed models, respectively. The order of
labels in the legend corresponds to the order of lines from top to bottom.

model improves the performance of all note groups, with the biggest improve-

ment of around 0.2 occurring at Group 2 for all dynamics, corresponding to the

observation of clear beats in the decay of these notes. For most pianos, notes

in Group 1 have a single string per note, notes in Group 2 and the lower half of

Group 3 have two strings per note and the rest have 3 strings. Beats appear ex-

tensively in notes from Groups 2 and 3, hence the linear model performs poorly

on these notes and the largest improvements are attained by the mixed model.

Although we don’t explicitly model the details of motion in notes with three

strings, the results show that the decays of these notes are approximated quite

well by the mixed model.

4.3.2 Decay response

Figure 4.7 shows the decay rates of all partials along the whole compass of the

piano for notes played forte. The figure illustrates the well-known fact that high

frequency partials decay faster. The spread of observed decay rates is large,

and increases with frequency. Note that some frequencies in the low range,

around 80Hz (MIDI index 41) and 150Hz (MIDI index 50), exhibit particularly

fast decay rates. As partials from di↵erent notes may have the same frequency,
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Figure 4.7: Decay response: decay rates against frequency. Lower values mean
faster decay. The greyscale is used to indicate fundamental frequency, with
darker colours corresponding to lower pitches.

di↵erent decay rates of these partials could be used as a clue to decide which note

the partial belongs to. However, in musical performances, overlapped partials

increase the di�culty of tracking partial decay, which is a topic needing further

investigation.

4.3.3 Decay of di↵erent dynamics

Figure 4.8 shows the decay rates of the first five partials of notes played at

di↵erent dynamics. We observe that dynamics have no significant absolute

e↵ect on the decay rate. In the low pitch range, the decay rates of di↵erent

dynamics are almost identical, while in the high pitch range this is less clear,

partly due to higher measurement error because of fewer data for modelling.

4.4 Conclusions

We model the decay of piano notes based on piano acoustics theory. Two non-

linear models (a multi-phase linear model and a non-linear curve fitting model)

are used to fit double decay and beats of piano tone partials, respectively. The

results show that the use of non-linear models provides a better fit to the data,

especially for notes in the low register. The decay response of the piano shows
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that decay increases with frequency. The results also indicate that dynamics

have no significant e↵ect on the decay rate.

Based on the observation that linear regression fits data with R2
⇡ 70%

and works well for notes in the middle and high pitch ranges, we assume an

exponential decay in the next chapter for piano transcription. According to

analysis on decay response and dynamic influence, notes of di↵erent pitches will

be modelled with di↵erent decay rates, while notes of the same pitch played by

di↵erent dynamics share the same decay rate.

In [Cheng et al., 2015a], we track the decay after 200 ms of the onsets. We

think that 200 ms is too long for high-pitch notes, because they decay quickly.

In this chapter, we use the sound clip starting from the frame with the largest

energy for each note. We apply the model twice on slightly di↵erent data,

and get similar results and conclusions. We believe that the proposed model is

reproducible by following the method described in Section 4.1. For future work,

to extend the model to other instruments, such as guitar, harpsichord and harp,

would also be a good topic to explore.
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Figure 4.8: Decay rates for the first five partials for di↵erent dynamics
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Chapter 5

An Attack/Decay Model for

Piano Transcription

In this chapter, we demonstrate that piano transcription performance for a

known piano can be improved by explicitly modelling piano acoustical features.

The proposed method is based on non-negative matrix factorisation, with the

following three refinements: (1) introduction of attack and harmonic decay com-

ponents; (2) use of a spike-shaped note activation that is shared by these com-

ponents; (3) modelling the harmonic decay with an exponential function. Tran-

scription is performed in a supervised way, with the training and test datasets

produced by the same piano.

Several features associated with piano acoustics, such as inharmonicity, time-

varying timbre and decaying energy, are examined for their utilities for tran-

scription. Rigaud et al. [2013b] show that an explicit inharmonicity model leads

to improvement in piano transcription, while a note-dependent inharmonicity

parameter is needed for initialisation. Modelling time-varying timbre not only

provides a better reconstruction of the spectrogram, but also improves note

tracking results by imposing constraints between note stages (attack, sustain

and decay) [Benetos et al., 2013a, Cheng et al., 2015b]. For decaying energy,

Chen et al. [2012]’s preliminary work uses an exponential model for energy evo-

lution of notes. Berg-Kirkpatrick et al. [2014] represent the energy evolution

of a piano note by a trained envelope. Ewert et al. [2015] represent both time-

varying timbre and temporal evolution of piano notes by time-frequency patches.

Temporal evolution modelling allows a note event to be represented by a sin-

gle amplitude parameter for its whole duration, enabling the development of

note-level systems with promising transcription results [Chen et al., 2012, Berg-

Kirkpatrick et al., 2014, Ewert et al., 2015]. In addition, Cogliati and Duan
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Figure 5.1: An example of output from the proposed model.

[2015] propose a note level system informed by detected onsets, which also ap-

proximates decays of piano partials with a sum of two decaying exponentials.

Details of note-level systems can be found in Section 2.2.6.

The proposed method is also motivated by piano acoustics. Based on our

previous studies on piano decay in Chapter 4, we know that exponential decay

explains the major energy evolution for each partial in spite of various decay

patterns. Here, we further simplify the decay stage using an exponential decay

function and a harmonic template per pitch. We separately represent the attack

stage for the percussive onset of piano sounds, as analysed in Section 2.1.2.

These two stages are coupled by shared note activations. A supervised NMF

framework is used to estimate note activations, and hence activations of the

attack and decay stages (see Figure 5.1). The proposed model is a note-level

method, which can be understood as a deconvolution method with a patch

parameterised by two sets of templates and activations. Experiments show that

the proposed method significantly improves supervised piano transcription, and

compares favourably to other state-of-the-art techniques.

We explain the proposed model in Section 5.1. In the experiments (Sec-

tion 5.2), we not only investigate the performance of the proposed model in

piano transcription, but also estimate and analyse decay rates of notes with
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di↵erent dynamics. Conclusions are drawn in Section 5.3.

5.1 Method

The method is composed of three main steps. We first introduce the attack and

decay model for piano sounds. Parameters are estimated using a sparse NMF.

The second step is to detect onsets from the attack activations by peak-picking.

In the third step, o↵sets are detected for each pitch individually. Below we

explain each step in turn.

5.1.1 A model of attack and decay

A piano sound is produced by a hammer hitting the string(s) of a key [Weinreich,

1977]. It starts with a large energy, then decays till the end of the note. At the

attack stage, the strike of the hammer produces a percussive sound. It evolves

quickly to an almost harmonic pitched sound, and then immediately enters the

decay stage. We define a generative model for these two phases individually, in

which the attack sound is generated by:

V a
ft =

KX

k=1

W a
fkH

a
kt, (5.1)

where Va is the reconstructed spectrogram of the attack phase, as shown in

Figure 5.2(d), and Wa is the percussive template (Figure 5.2(e)). f 2 [1, F ]

is the frequency bin, t 2 [1, T ] indicates the time frame, and k 2 [1,K] is the

pitch index. The attack activations Ha (Figure 5.2(c)) are formulated by a

convolution:

Ha
kt =

t+TaX

⌧=t�Ta

Hk⌧P (t� ⌧), (5.2)

where H are spike-shaped note activations, shown in Figure 5.2(b), and P is

the amplitude attack envelope, with the typical shape shown in Figure 5.5. The

range of the attack envelope is determined by the overlap for computing the

spectrogram, with Ta equal to the overlap ratio (the ratio of the window size

and frame hop size).

For the decay part we assume that piano notes decay approximately ex-

ponentially based on studies in Chapter 4. The harmonic decay is generated

by

V d
ft =

KX

k=1

W d
fkH

d
kt, (5.3)

where Vd is the reconstructed spectrogram of the decay phase (Figure 5.2(g)),
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Table 5.1: Variable list

Descriptions Variables

Spectrogram X
Reconstruction V
Note activations H
Attack activations Ha

Decay activations Hd

Percussive templates Wa

Harmonic templates Wd

Attack envelope P
Decay factor ↵
Frequency index f 2 [1, F ]
Time index t 2 [1, T ]
Pitch index k 2 [1,K]

and Wd is the harmonic template (Figure 5.2(h)). Decay activations Hd in

Figure 5.2(f) are generated by convolving note activations with an exponentially

decaying function:

Hd
kt =

tX

⌧=1

Hk⌧e
�(t�⌧)↵k , (5.4)

where ↵k are decay factors, and e↵k indicates the decay rate per frame for pitch

k. In the NMF model, it is assumed that the energy of a note decays forever.

O↵sets are detected later based on the reconstructions. Then the complete

model is formulated as follows:

Vft = V a
ft + V d

ft

=
KX

k=1

W a
fk

t+TaX

⌧=t�Ta

Hk⌧P (t� ⌧) +
KX

k=1

W d
fk

tX

⌧=1

Hk⌧e
�(t�⌧)↵k ,

(5.5)

where V is the reconstruction of the whole note, as shown in Figure 5.2(i). All

variables in the attack/decay model are listed in Table 5.1.

Parameters ✓ 2 {Wa,Wd,H,P,↵} are estimated by minimising the dis-

tance between the spectrogram X and the reconstruction V by multiplicative

update rules [Lee and Seung, 2000]. The derivative of the cost function D with

respect to ✓ is written as a di↵erence of two non-negative functions:

r✓D(✓) = r+
✓ D(✓)�r�

✓ D(✓). (5.6)
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Figure 5.2: An example illustrating of the proposed model (note D3 with the
MIDI index of 50).
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The multiplicative algorithm is given by

✓  ✓
r

�
✓ D(✓)

r

+
✓ D(✓)

. (5.7)

We employ the �-divergence as the cost function. The update equations are

provided below.

W a
fk  W a

fk

PT
t=1

Pt+Ta

⌧=t�Ta
Hk⌧P (t� ⌧)(V ��2X)

PT
t=1

Pt+Ta

⌧=t�Ta
Hk⌧P (t� ⌧)V ��1

, (5.8)

W d
fk  W d

fk

PT
t=1

Pt
⌧=1 Hk⌧e

�(t�⌧)↵k(V ��2X)
PT

t=1

Pt
⌧=1 Hk⌧e�(t�⌧)↵kV ��1

, (5.9)

↵k  ↵k

PF
f=1

PT
t=1 W

d
fk

Pt
⌧=1 Hk⌧e

�(t�⌧)↵k(t� ⌧)V ��1

PF
f=1

PT
t=1 W

d
fk

Pt
⌧=1 Hk⌧e�(t�⌧)↵k(t� ⌧)(V ��2X)

, (5.10)

Hkt  Hkt

PF
f=1(W

a
fk

PTa

x=�Ta
P (x) +W d

fk

PT�1
x=0 e�x↵k)(V ��2

f(t+x)Xf(t+x))
PF

f=1(W
a
fk

PTa

x=�Ta
P (x) +W d

fk

PT�1
x=0 e�x↵k)V ��1

f(t+x)

,

(5.11)

Px  Px

PF
f=1

PT
t=1

PK
k=1 W

a
fkHkt(V

��2
f(t+x)Xf(t+x))

PF
f=1

PT
t=1

PK
k=1 W

a
fkHktV

��1
f(t+x)

, (5.12)

where x 2 [�Ta, Ta] is the frame index of the attack envelope P. The derivations

can be found in Appendix B, with the code available online.1 Normalisation

is applied to the attack envelope P (scaled to a maximum of 1) with fixed

activations H in the training stage. With trained templates, attack envelope

and decay rates, we update the activations H without normalisation in the

transcription stage.

5.1.2 Sparsity

To ensure spike-shaped note activations, we simply impose sparsity on activa-

tions H using element-wise exponentiation after each iteration:

Hkt  H�
kt, (5.13)

where � is the sparsity factor, usually larger than 1. The larger the factor is,

the sparser the activations are. This exponentiation form of sparsity constraint

is usually used in the PLCA-based model [Benetos and Dixon, 2012a]. We have

shown its utility in NMF in Section 2.3.2 with activations normalised to a maxi-

mum of 1. Here we use this sparsity form on activations without normalisation.

1
https://code.soundsoftware.ac.uk/projects/decay-model-for-piano-transcription.

92



In this case, sparsity is enforced by increasing activations above 1 and decreasing

activations below 1.

A preliminary test confirmed that the number of peaks in activations de-

creases as the degree of sparsity increases. We also apply an annealing sparsity

factor similar to Chapter 3, which means a continuously changing factor. We

set � to increase from 1 to �a 2 [1.01, 1.05] gradually within the iterations.

5.1.3 Onset detection

Di↵erent playing styles and overlapping between notes may cause a mismatch

between the observed attack energy and the trained attack envelope. This re-

sults in multiple peaks around onsets in the activations. Figures 5.3(a) and (b)

show note activations and attack activations of pitch G2 in a music excerpt,

respectively. Attack activations indicate the actual attack envelopes of notes

obtained by the proposed model. We detect onsets from attack activations by

peak-picking [Wang et al., 2008]. First, we compute smoothed attack activa-

tions for each pitch, using a moving average filter with a window of 20 bins.

Only peaks which exceed the smoothed attack activations by a threshold will

be retained as onset candidates, as shown in Figure 5.3(b). The threshold is

adapted to each piece with the parameter �

Thre = �max
k,t

Ha
k,t. (5.14)

We test various � 2 {�21dB,�22dB, . . . ,�40dB} in the experiment.

We find that there are still double peaks around onsets after thresholding.

In order to deal with this problem, we simply merge pairs of peaks which are too

close to each other. We set the minimal interval between two successive notes

of the same pitch to be 0.1 second. If the interval between two peaks is smaller

than the minimal interval, we generate a new peak. The time index of the new

peak is a weighted average (weighted by amplitudes) of the indices of the two

peaks, while its amplitude is the sum of that of the two peaks. Figure 5.3 (c)

shows detected onsets after merging double peaks. We apply the above process

again to get rid of triple peaks.

5.1.4 O↵set detection

We adapt the method of Ewert et al. [2015] to detect the o↵sets by dynamic

programming. For each pitch, there are two states s 2 {0, 1}, denoting state
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Figure 5.3: Example of onset detection showing how activations are processed.
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Figure 5.4: Costs and segments for pitch F3 (MIDI index 53).

‘o↵’ and ‘on’ respectively. The costs of the two states are defined below:

Ck(s, t) =

8
<

:

PF
f=1 DKL(Xft||Vft � V k

ft), s = 0
PF

f=1 DKL(Xft||Vft), s = 1
(5.15)

where Vk is the reconstruction of pitch k, and V � Vk is the reconstruction

excluding pitch k. DKL(a||b) denotes the KL-divergence between a and b. Then

we normalise the costs per pitch to sum to 1 in all frames:

fCk(s, t) = Ck(s, t)/
X

s̃

Ck(s̃, t). (5.16)

Figures 5.4 (a) and (b) show the costs and normalised costs for pitch F3 in a

music excerpt, respectively.
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We can find the optimal state sequence by applying dynamic programming

on the normalised costs. First, we recursively calculate the accumulated costs

from the previous states to the current state. The smaller accumulated cost at

each step gives the cost of the optimal path to each state, which is stored in an

accumulated cost matrix:

Ak(s, t) =

8
<

:
mins̃2{0,1}(Ak(s̃, t� 1) + fCk(s, t)w(s̃, s)), t > 1

fCk(s, t), t = 1
(5.17)

where w is the weight matrix. In our experiment, the weights are

w =

"
0.5 0.55

0.55 0.5

#
,

which favours self-transitions, in order to obtain a smoother sequence. The

indices of the optimal path are stored in the matrix E as follows:

Ek(s, t) = arg min
s̃2{0,1}

(Ak(s̃, t� 1) + fCk(s, t)w(s̃, s)), t > 1 (5.18)

Then we trace back the optimal path from the end of sequence, with the optimal

states given by

Sk(t) =

8
<

:
argmins̃2{0,1} Ak(s̃, t), t = T

Ek(Sk(t+ 1), t+ 1), t 2 [1, T � 1]
(5.19)

We find that when the activation of the pitch is 0 or very small, the costs

of the two states are the same or very close, and no state transition occurs. In

these frames, the pitch state is expected to be o↵, but dynamic programming

can not jump out from the previous state. Then it will be detected as state on.

In order to deal with this problem we need to exclude these parts before applying

dynamic programming. Figure 5.4(c) shows the segmentation by detected onsets

and the costs. Each segment starts at a detected onset and ends when the

di↵erence of the smoothed normalised costs is less than a set threshold (0.05 in

our experiment). We track the states of the pitch for each segment individually.

5.2 Experiments

This section is organised as follows. Experiments are described in Section 5.2.1.

We analyse performance of the proposed model with di↵erent sparsity factors

in Section 5.2.2, and compare to state-of-the-art methods in Section 5.2.3. In

Section 5.2.4, an unsupervised transcription is applied on repeated notes of
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single piano pitches to analyse performance of the proposed model in di↵erent

pitch ranges and dynamics. Decay rates of isolated piano notes of di↵erent

dynamics are compared in Section 5.2.5.

5.2.1 Experimental setup

We use audio files sampled at 44100Hz. To compute the spectrogram, frames

are segmented by a 4096-sample Hamming window with a hop-size of 882.2 A

discrete Fourier transform is performed on each frame with 2-fold zero-padding.

To lessen the influence of beats in the decay stage [Cheng et al., 2015a], we

smooth the spectrogram with a median filter covering 5 time frames (100ms).

During parameter estimation, we use the KL-divergence (� = 1) as the cost

function. The proposed model is iterated for 50 times in all experiments to

achieve convergence.

Datasets

The experiments are performed on three datasets, consisting of sounds from a

real piano (‘ENSTDkCl’) and a synthetic piano (‘AkPnCGdD’) in the MAPS

database [Emiya et al., 2010], and another 10 synthetic piano pieces (denoted

as ‘PianoE’)3 [Ewert et al., 2015]. Piano sounds in the ENSTDkCl subset are

recorded on a Disklavier piano. Piano sounds in the AkPnCGdD subset and Pi-

anoE dataset are synthesised using the Native Instruments Akoustik Piano and

Native Instruments Vienna Concert Grand VST plugins, respectively. The main

transcription experiment in Section 5.2.2 uses pieces in the ENSTDkCl subset,

and the comparison experiment in Section 5.2.3 is performed on pieces in all

three datasets. Both experiments use the first 30 seconds of each piece and train

parameters on isolated notes produced by the same piano in the test dataset.

In Section 5.2.4 the proposed method is used to detect onsets of repeated notes

of single pitches in the ENSTDkCl subset. We analyse decay rates of isolated

notes in three dynamics also in the ENSTDkCl subset in Section 5.2.5. Datasets

used in di↵erent experiments are summarised in Table 5.2.

5.2.2 The main transcription experiment

The training stage

We train percussive and harmonic templates, decay rates and the attack enve-

lope on the isolated notes. Note activations are updated with other parameters

2A 20ms hop size is used to reduce computation time. For frame-wise evaluation, tran-
scription results are represented with a hop size of 10ms by duplicating every frame.

3http://www.piano-e-competition.com.
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Table 5.2: Datasets used in the experiments

Experiment Datasets

Main transcription (Section 5.2.2) ENSTDkCl (music pieces)
Comparison experiment (Section 5.2.3) ENSTDkCl, AkPnCGdD

and PianoE (music pieces)
Unsupervised transcription (Section 5.2.4) ENSTDkCl (repeated notes)
Decay rate analysis (Section 5.2.5) ENSTDkCl (isolated notes)

Table 5.3: Experimental configuration for the training stage

Round one Round two

Initialisation Initialisation
Wd: random Wd: random
Wa, ↵, P: all ones Wa, ↵: all ones

P: mean of the results of round one
H: set based on the ground truth H: set based on the ground truth

update Wd, Wa, ↵, P update Wd, Wa, ↵

Parameters Parameters
K = 1 same as left
sparsity: unavailable

fixed.4

The training stage includes two rounds, as shown in Table 5.3. In the first

round, we first fix note activations (H) for each isolated note according to the

ground truth, then update all other parameters (Wa, Wd, P and ↵). The attack

envelopes are normalised to a maximum of 1 after each iteration. The attack

envelopes follow a certain shape and can be shared by all pitches. So we use

the average of the trained attack envelopes to reduce the number of parameters

and to avoid potential overfitting. The trained attack envelopes and the average

attack envelope are shown in Figure 5.5. In the second round, we fix the note

activations (H) and the average attack envelope (P), then update all other

parameters (Wa, Wd and ↵).

Transcription results

For transcription, we update note activations H, keeping parameters Wa, Wd,

P and ↵ fixed from the training stage. Note activations are updated using

Equation 5.11 with di↵erent sparsity factors. The experimental configuration is

shown in Table 5.4. Onset-only note tracking results (presented as percentages)

are shown in Table 5.5 with di↵erent sparsity factors. The last column indicates

4The proposed model runs at about 3 ⇥ real-time using MATLAB on a MacBook Pro
laptop (I7, 2.2GHz, 16GB).
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Figure 5.5: Attack envelopes.

Table 5.4: Experimental configuration I for the transcription experiments in
Section 5.2.2.

Initialisation
Wd, Wa, ↵, P: trained
H: random

update H only

Parameters
K = 88
sparsity: � range from 1 to 1.05
onset threshold: optimal threshold

the optimal thresholds. We find that all F-measures with di↵erent sparsity fac-

tors are above 80% with optimal thresholds, and the optimal threshold decreases

when sparsity increases. The top part of Table 5.5 contains results using fixed

sparsity factors. The best results are achieved without the sparsity constraint

(� = 1.00), with an F-measure of 82.24%. The performance decreases with in-

creasing sparsity factor. When the sparsity factor equals 1.05, the F-measure

drops to 80.51%. The second part of the experiment gives results for using an-

nealing sparsity. The best F-measure is 82.36% with the setting (1.00 ! 1.02)

and the worst F-measure is 81.76% with the setting (1.00 ! 1.05). The di↵er-

ence between the best and the worst F-measure is only 0.6 percentage points.

In general, results with annealing sparsity are slightly better than those with

fixed sparsity.

Figure 5.6 shows attack activations and detected onsets for di↵erent sparsity

factors for pitch G4 for the first 10 seconds of a piano piece. Note activations are

normalised to a maximum activation of 1 in that piece. With a small sparsity

factor, there are more peaks in attack activations, and it is more likely to have

false positives, as shown in Figure 5.6(a). In Figure 5.6(b), due to the high spar-

sity constraint, small peaks are more likely to disappear, resulting in an extra

missed detected note (around 8 seconds). False positive peaks can be discarded
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Table 5.5: Note tracking results with di↵erent fixed sparsity factors (above) and
annealing sparsity factors (below).

� Pon Ron Fon Aon �(dB)

1.00 88.52 77.70 82.24 70.54 -29
1.01 87.70 78.18 82.23 70.53 -30
1.02 87.67 77.36 81.80 69.87 -30
1.03 87.22 77.31 81.62 69.66 -31
1.04 86.95 76.84 81.26 69.17 -32
1.05 86.38 75.99 80.51 68.14 -33

1 ! 1.01 87.77 78.08 82.18 70.49 -30
1 ! 1.02 88.49 77.79 82.36 70.73 -30
1 ! 1.03 88.22 77.78 82.27 70.60 -31
1 ! 1.04 87.86 77.66 82.09 70.35 -32
1 ! 1.05 86.83 77.83 81.76 69.84 -34

in the onset detection stage by thresholding and merging onsets. On the other

hand if peaks disappear by imposing sparsity, they can not be recovered at later

stages.

We compute the performance using thresholds ranging from �40 to �21dB

to study how performance changes with the change of thresholds. Figure 5.7(a)

shows the results for di↵erent fixed sparsity factors. It is clear that precision

decreases with the increase of the threshold, while recall increases. The higher

the sparsity factor is, the more robust the results are to threshold changes.

When decreasing the threshold from the optimal value to smaller values (moving

towards �40dB), the F-measure drops from above 82% to below 75% without

sparsity, while the di↵erence in F-measure is within 2 percentages when � =

1.05. This is because small peaks in activations are already discounted when

imposing sparsity. Lowering the threshold does not bring many false positives.

Results with higher sparsity are less sensitive to reduction in the threshold.

However, when the threshold becomes larger, the results with low sparsity still

outperform those with high sparsity. With a larger threshold, the number of

true positives decreases. There are more peaks in activations when using lower

sparsity, so more true positives remain. This favours the assumption that the

true positives have larger amplitudes. Figure 5.7(b) shows the robustness of

using annealing sparsity factors. The transcription results are close to each

other. With annealing sparsity, the results are better and more tolerant to

threshold changes. The sparser the factor is, the robuster the result is to low

thresholds. The reductions in F-measure for di↵erent sparsity factors are similar

to those of the fixed sparsity when the threshold is increased.

100



1 2 3 4 5 6 7 8 9 10
Time [s]

0

0.5

1

1.5

2

A
m

p
lit

u
d
e

Attack activations
Ground Truth
Detected onsets

(a) Attack activations (� = 1.01)

1 2 3 4 5 6 7 8 9 10
Time [s]

0

0.5

1

1.5

2

A
m

p
lit

u
d
e

Attack activations
Ground Truth
Detected onsets

(b) Attack activations (� = 1.05)

Figure 5.6: Detected onsets with di↵erent sparsity for pitch G4 (MIDI index
67).
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Table 5.6: Note tracking results (onset-o↵set) and frame-wise results

� Po↵ Ro↵ Fo↵ Ao↵ Pf Rf Ff Af

1.00 45.29 40.28 42.39 27.74 82.90 74.43 77.54 63.74
1.01 44.68 40.48 42.27 27.80 81.19 77.70 78.61 65.24
1.02 43.66 39.24 41.14 26.97 80.14 79.21 78.96 65.75
1.03 42.84 38.67 40.49 26.53 78.89 80.58 79.03 65.89
1.04 42.27 38.07 39.91 26.11 77.97 81.34 78.94 65.84
1.05 41.49 37.27 39.10 25.52 77.22 81.62 78.66 65.53

1 ! 1.01 44.61 40.34 42.15 27.67 81.26 77.56 78.59 65.21
1 ! 1.02 44.55 39.96 41.92 27.70 80.17 79.39 79.06 65.93
1 ! 1.03 43.75 39.34 41.25 27.21 78.90 80.74 79.13 66.02
1 ! 1.04 42.64 38.46 40.28 26.47 77.72 81.95 79.12 66.03
1 ! 1.05 41.80 38.23 39.79 26.15 76.36 83.26 78.99 65.93

In the proposed model, the activation of each note decays after its onset, as

shown in the decay activations of Figure 5.1. Pairs of notes in close succession

are particularly hard to transcribe. When the second note has the same pitch

as the first, our model tends to fail to detect the second note because of the

remaining activation of the first note. Why exactly this happens still needs

further study. However, when the second note has a di↵erent pitch, our model

is particularly robust against the introduction of false positives at the attack

of the second note, while for standard NMF, there is always some interference

with the first note’s activation.

Table 5.6 shows note tracking results considering both onsets and o↵sets, and

frame-level results computed with the optimal thresholds in Table 5.5. For all

sparsity factors, the onset-o↵set F-measures are around 40%. Best performance

is 42.39% without sparsity (� = 1). All frame-level F-measures are above 77%,

and the best one is 79.13% with annealing sparsity � = 1! 1.03.

5.2.3 Comparison with state-of-the-art methods

We compare to two state-of-the-art transcription methods. Vincent et al. [2010]

applies adaptive spectral bases generated by linear combinations of narrow-band

spectra, so the spectral bases have a harmonic structure and the flexibility to

adapt to di↵erent sounds. The method is performed in an unsupervised way, to

indicate what can be achieved without training datasets. Benetos and Weyde

[2015a] employ 3 templates per pitch, and the sequence of templates is con-

strained by a probabilistic model. We use the version of Benetos and Weyde’s

method from the MIREX evaluation [Benetos and Weyde, 2015b]. We have
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access to the code and train templates on isolated notes of the corresponding

pianos. In the PianoE dataset, we also compare to the method of Ewert et al.

[2015]. This method identifies frames in NMD patterns with states in a dy-

namical system. Note events are detected with constant amplitudes but various

durations. The method uses template patterns trained on isolated notes. We

only have access to the published data in [Ewert et al., 2015].

Based on our previous analysis, we employ the following parameters for the

proposed model in comparison experiments. The sparsity factor is � = 1 !

1.04 by balancing among transcription results and the robustness to di↵erent

thresholds. Onsets are detected with threshold � = �30dB. In the first dataset

(ENSTDkCl), results of other methods are also reported with optimal thresholds

with best note-wise F-measures. Then the same thresholds are used for the two

synthetic piano datasets.

Results on piano pieces from the ENSTDkCl subset are shown in Ta-

ble 5.7(a). The proposed model has a note tracking F-measure of 81.80% and

a frame-wise F-measure of 79.01%, outperforming Vincent et al.’s unsupervised

method by around 10 and 20 percentage points, respectively. Results of Benetos

and Weyde’s method are in between.

Results on the synthetic piano AkPnCGdD are shown in Table 5.7(b). In

general, all methods perform better on this dataset than on the ‘ENSTDkCl’

dataset, especially on note tracking results. The proposed model has the best re-

sults (84.63% on note tracking F-measure and 80.81% on frame-wise F-measure),

outperforming all other methods by at least 5 percentage points.

Results on the other synthetic dataset PianoE are shown in Table 5.7(c).

Compared to the other datasets, note tracking results of all methods are good

but frame-wise results are poor. Ewert et al.’s method performs the best on

note tracking (88% on F-measure), and Benetos and Weyde’s method is the

second (83.80% on F-measure). The proposed model only outperforms Vincent

et al.’s method, with F-measures of 81.28% and 79.41% for these two methods

respectively. However, the proposed model remains the best on the frame-wise

F-measure (66.77%). Pieces in this dataset are from a piano competition. Many

notes have very short durations. The remaining energies of a short note in the

proposed model may interfere with later notes, causing false negatives.

A supervised neural network model also has been tested on the MAPS

database for piano transcription [Sigtia et al., 2016]. Besides an acoustic model,

the method employs a music language model to capture the temporal structure

of music. Although the method is not directly comparable, it is noticeable that

our method exceeds its results by at least 5 percentage points on F-measures.

When tested on the real recordings using templates trained on the synthetic pi-

ano notes, the proposed method has both frame-level and note-level F-measures
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Table 5.7: Comparison of transcription results with two state-of-the-art methods
on three public datasets.

(a) Transcription results on ENSTDkCl

Method Fon Aon Ff Af

Proposed 81.80 69.94 79.01 65.89
[Vincent et al., 2010] 72.15 57.45 58.84 42.71

[Benetos and Weyde, 2015b] 73.61 59.73 67.79 52.15

(b) Transcription results on AkPnCGdD

Method Fon Aon Ff Af

Proposed 84.63 74.03 80.81 68.39
[Vincent et al., 2010] 79.86 67.32 69.76 55.17

[Benetos and Weyde, 2015b] 74.05 59.57 53.94 38.65

(c) Transcription results on PianoE

Method Fon Aon Ff Af

Proposed 81.28 69.12 66.77 51.63
[Vincent et al., 2010] 79.41 66.39 58.59 42.45

[Benetos and Weyde, 2015b] 83.80 72.82 60.69 44.24
Ewert et al. [2015] 88
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Table 5.8: Experimental configuration II for test on repeated notes in Sec-
tion 5.2.4.

Initialisation
Wd, H: random
Wa, ↵, P: all ones

update all

Parameters
K = 1
sparsity: � = 1! 1.04
onset threshold: � = �30dB

of around 65%, outperforming the method of Sigtia et al. [2016] by 10 percentage

points on note-wise F-measure in a similar experiment.

5.2.4 Test on repeated notes for single pitches

We investigate the proposed model’s performance on di↵erent dynamics and

pitches in this experiment. We use 66 sound clips generated according to MIDI

files using the Disklavier piano in the subset ‘ENSTDkCl’ of the MAPS database

[Emiya et al., 2010]. Each of the clips consists of about 15 notes of a single pitch.

Notes in one clip have the same MIDI velocity, and repeat faster and faster. The

larger the velocity is, the louder the sound is. The sound clips are divided into

three dynamics: forte (loud), mezzo-forte (moderately loud) and piano (soft),

with 22 clips in each of three dynamics.

The experimental configuration for this experiment is shown in Table 5.8.

The activations are normalised to be the maximum of 1 after each iteration.

We adopt the optimal parameters from the previous transcription experiment.

All variables are updated during the iterations. We focus on onset-only note

tracking results in this experiment. Information in some clips with soft notes is

not aligned with the sounds. We manually correct onsets of these clips5 referring

to results of the onset detection method SuperFlux [Böck and Widmer, 2013].

Table 5.9 shows detailed results of note tracking (onset-only) of repeated

notes. We list the numbers of true positives, false positives and false negatives

rather than precision, recall to give an intuitive aspect on the results. In general,

the proposed model can find most onsets, indicated by small numbers of false

negatives. The results are better for loud or moderately loud notes, with average

F-measures of 88.53% and 85.38% respectively. In these two dynamics, many

false positives are detected in the low pitch range, while there are few false

5The manually corrected onsets are given in the following link
https://code.soundsoftware.ac.uk/projects/decay-model-for-piano-transcription.
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positives for notes in the middle and high pitch ranges (above MIDI index 50).

When notes are quiet, the average F-measure is smallest (76.61%). There is no

certain trend for performance associated with pitch ranges.

Figure 5.8 shows some examples of pitches in low and high range, which are

played in three dynamics. There are many false positives for low pitches, as

shown in the left sub-figures, possibly caused by time-varying timbre (beating

especially [Cheng et al., 2015a]), reverberation and so on. There are less false

positives for quiet low-pitch notes, as shown on the left of Figure 5.8(c). We

find that some peaks appear around o↵sets of notes. This is the sound of the

damper coming into contact with the string. This sound and the remaining

energy are easy to be detected as another quiet note. The system works quite

well for notes of high pitches, as shown in the right sub-figures. Most onsets are

correct and clearly detected. There are false positives around the o↵sets for the

quiet high-pitch note on the right of Figure 5.8(c). At the end of these clips,

notes are repeated very fast. We can find that some of these notes are merged

into one note, resulting in some false negatives.

In this experiment, we analyse the performance of the proposed model in

di↵erent dynamics and pitch ranges. Firstly, we find the di↵erences of perfor-

mance on notes in di↵erent dynamics. The louder the notes are, the better the

model performs. Secondly, the proposed model works better for notes in the

middle and high pitch ranges. As indicated in the results of Section 4.3.1, the

exponential decay has the worst results to fit the decay of tones in low pitch

range because of the beats. This can be one reason for the bad performance

for the low pitch range of the proposed model. Thirdly, the proposed model

tends to merge fast-repeated notes into one note. This kind of false negatives is

largely related to the simplification of ignoring note o↵sets at the first stage.
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(a) Forte

Spectrogram (MIDI index 29)

1 2 3 4 5 6
0

2

4

6

8

F
re

q
u

e
n

cy
 [

kH
z]

1 2 3 4 5 6
Time [s]

0

0.5

1

A
m

p
lit

u
d

e

Attack activations

Spectrogram (MIDI index 93)

1 2 3 4 5 6
0

2

4

6

8

F
re

q
u

e
n

cy
 [

kH
z]

1 2 3 4 5 6
Time [s]

0

0.5

1

A
m

p
lit

u
d

e

Attack activations

(b) Mezzo-forte
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(c) Piano

Figure 5.8: Examples of repeated note detection for low (left) and high (right)
pitches at three dynamic levels. Detected onsets are shown as brown impulses,
and ground truth onsets as red.

5.2.5 Analysing decay in di↵erent dynamics

In the isolated note collection, notes are also played in three di↵erent dynamics,

forte(f), mezzo-forte (m) and piano (p). We use the proposed model to analyse

the attack envelope and decay rates of notes in di↵erent dynamics. The process

is the same as the training stage in Section 5.2.2. The only di↵erence is that

in this experiment, to obtain more accurate decay rates, we end each clip at its
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Figure 5.9: Attack envelopes of di↵erent dynamics.

o↵set or when its energy decreases to 50 dB below the maximum energy. For

each dynamic, we first generate a note activation in form of a unit delta function

with onset information for each individual note, then fix the note activation and

update all other parameters. After obtaining the average attack envelope on

88 notes, we fix note activations and the average attack envelope to estimate

templates and decay rates again.

Figure 5.9 shows attack envelopes and average attack envelopes for di↵erent

dynamics. The attack envelopes of di↵erent pitches have clear similar shapes

in all three dynamics, as shown in the left sub-figures. For quiet notes, the

variance of the attack envelopes is larger than that of notes at the other two

dynamics (shown in Figure 5.9(e)). The average attack envelopes (shown in the

right sub-figures) resemble each other in a higher degree, especially between the

shapes of loud and moderately loud notes.

We analyse the decay rates under the assumption that the note energy decays
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Figure 5.10: Decay rates as a function of pitch for di↵erent dynamics.

exponentially. For notes played forte, there is a trend that higher pitched notes

decay faster, as shown in the blue circles in Figure 5.10. For notes of the other

two dynamics, the trend is less clear. When comparing decay rates of the same

pitch, we find that in the low pitch range (below 50 in MIDI index), the decay

rates of the notes at di↵erent dynamics are close to each other. Dynamics barely

influence decay in this pitch range. The decay rates corresponding to di↵erent

dynamics begin to vary for the notes in the following two octaves. In the high

pitch range (MIDI indices above 74), there are obvious di↵erences among the

decay rates, with the notes with higher energy decaying faster, while there is

still more consistency in decay rates of the same note in comparison to that of

other notes.

This experiment is to verify the assumption that notes of the same pitch de-

cay at the same rate despite dynamics. The result suggests that this assumption

is suitable for notes in the low and middle pitch ranges, but not for high-pitch

notes.

5.3 Conclusion and future work

In this chapter we propose an attack/decay model for piano transcription. We

model a piano note as having a percussive attack stage and a harmonic de-
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cay stage, and the decay stage is explicitly modelled as an exponential decay.

Parameters are learned using a sparse NMF, and transcription is performed

in a supervised way. We detect onsets on attack activations by peak-picking

and track pitch states by dynamic programming to find o↵sets. In the tran-

scription experiment, the proposed model provides promising transcription re-

sults, with around 82% and 79% for note tracking and frame-wise F-measures

in music pieces from a real piano in the ‘ENSTDkCl’ dataset. The best results

are achieved with low sparsity, but high sparsity favours the robustness of the

method to di↵erent thresholds. The annealing sparsity factor slightly improves

the performance and the robustness of the proposed model.

The comparison experiment shows that the proposed model outperforms two

state-of-the-art methods by a large margin on real and synthetic pianos in the

MAPS database. On a di↵erent synthetic dataset, the other methods perform

better on note tracking, while the proposed method remains best on frame-wise

metrics.

Tests on repeated notes of single pitches show that the proposed model works

better on louder notes. The assumption of exponential decay causes many false

positives on notes in the low frequency range. The simplification of ignoring

o↵sets in the NMF framework works well for long notes, but may cause false

negatives on short notes. In the last experiment, we find that notes in the low

pitch range have similar decay rates in di↵erent dynamics, while decay rates of

a high-pitch note vary with di↵erent dynamic levels, with louder notes decaying

faster. The decay rates of loud notes also show a trend that high-pitch notes

decay faster.

The proposed model can also be understood as a deconvolution method

by parametric patches, or as an extension of the method proposed by Berg-

Kirkpatrick et al. [2014] using parametric envelopes. As a deconvolution

method, the major problem is lack of sensitivity to note o↵sets, which usu-

ally causes false negatives. The silver lining is that we can build a note-

level system by deconvolution, which has provided good transcription results

[Berg-Kirkpatrick et al., 2014, Ewert et al., 2015]. In comparison to other

deconvolution-based methods, the proposed model uses parametric patches,

which reduces the parametric dimensionality. Secondly, we can generate ar-

bitrarily long patches using static spectra and decay rates, so the proposed

model can be applied when the training dataset only contains short notes. This

makes the model more practical to available datasets. Thirdly, parameterising

the decay stage also provides us with a way of analysing decay rates of piano

notes.

The proposed model shows that building a note-level transcription system

is more powerful than a frame-level system and reasonable parameterisation
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(based on piano acoustics) makes the model more compact and practical. In

the future, we would like to represent a note’s decay stage by a decay filter

instead of a decay rate, which is more in line with studies on piano decay in

Chapter 4. Secondly, the good performance on piano music transcription is

partly due to the availability of the training datasets. We would like to build

an adaptive model, which could work in a more general scenario, hence more

automatically. Finally, we are keen to find a way to control note o↵sets in the

proposed model.
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Chapter 6

Modelling Spectral Widths

for Piano Transcription

In this chapter we make a preliminary investigation of spectral widths of partials

of piano notes as a cue for automatic transcription. A piano note has di↵er-

ent spectral distributions over its duration: it is percussive and noisy in the

attack part and quasi-harmonic in the decay part. We focus on the change of

the spectral width during the evolution of the sound, and use it for improving

piano transcription. In order to model the spectral width in a transcription

system, we first parameterise a partial by its frequency and spectral shape as

modelled by a Gaussian function, with the spectral width defined as the stan-

dard deviation of the Gaussian function. Then we present a model for piano

tones with time-varying spectral widths in an NMF framework. The results on

isolated notes suggest that the spectral width is large in the attack part, then

it decreases and remains stable in the decay part. However, there are no sig-

nificant di↵erences on the performance brought by using spectral widths in the

transcription experiment. We also analyse the spectral width distributions at

onsets and in the decay parts for notes in the musical pieces and show several

directions of future work.

From the previous two chapters, we know that amplitudes of piano tones

decay with fluctuations caused by beats. As a result, two notes played at the

same dynamic level, but with di↵erent durations, will have di↵erent ending

amplitudes. In order to find a more constant indicator for note tracking, Kirch-

ho↵ et al. [2014] study the relative phase o↵sets between partials of harmonic

sounds. The method is tested on a monophonic saxophone signal and shows

the phase o↵sets remain stable in the sustained part. In a similar attempt to

find a constant indicator for note activation, we use a parametric model to rep-
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resent the spectral widths for piano tones, with each partial represented by its

frequency and the parameters of a Gaussian function. Hennequin et al. [2010]

and Rigaud [2013] use similar parametric models to estimate the frequencies

for vibratos and inharmonic tones, respectively. Here we fix the frequencies,

but estimate the standard deviation of the Gaussian function to indicate the

spectral distributions of di↵erence stages of piano tones.

The rest of the chapter is structured as follows. In Section 6.1, we introduce

the spectral width and represent piano tones in an NMF framework with spectral

width modelled. In Section 6.2, we evaluate the proposed system in a piano

transcription experiment and compare it to a baseline NMF system. Section 6.3

concludes this chapter and summarises future work.

6.1 The proposed model

6.1.1 Modelling spectral widths

Consider a harmonic signal of 10 partials at a fundamental frequency of 100Hz

(f0 = 100Hz):

x(t) =
10X

h=1

sin(2⇡f0ht), (6.1)

where x(t) is the amplitude of the signal in time t, and h indicates the number

of the partial. The theoretical magnitude spectrum of this signal is shown in

Figure 6.1(a), consisting of 10 harmonic peaks at multiples of f0. However, the

spectrum computed by the discrete Fourier transform is shown in Figure 6.1(b).

The di↵erence is due to the window function. When computing the short-

time Fourier transform, the signal is first segmented and weighted by a window

function, then a discrete Fourier transform is performed on the short-term signal.

The spectrum of each frame is represented as a convolution of the spectrum of

the signal and the window response:

F [x(t)w(t)] = X(f) ⇤W (f), (6.2)

where X(f) = F [x(t)] and W (f) = F [w(t)] are the Fourier transforms of the

signal x(t) and window function w(t), respectively.

We choose the Gaussian window for computing the STFT, because the

Fourier transform of the window is also a Gaussian function, which has con-

venient mathematical properties. The Gaussian response is represented by the

Gaussian function with a maximum of 1 as follows:

G(f |�) = exp

✓
�

f2

2�2

◆
,�3�  f  3� (6.3)
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(a) The theoretical spectrum
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(b) The spectrum calculated with a Gaussian window

Figure 6.1: Spectra of the signal in Equation 6.1

where � is the standard deviation, and the function is restricted to a range of

±3�, as shown in Figure 6.2. In this chapter, we define the spectral width of a

Gaussian response as its standard deviation to avoid introducing another term.1

6.1.2 Modelling piano notes

The beginning of a piano note is percussive and noisy. After the attack stage,

the spectral width gradually reduces to a stable value and remains the same for

the rest of the tone. The spectrum of pitch k in the f th frequency bin and the

tth frame V k
ft is modelled by the convolution of the spectral basis wk and the

window response G(f |�kt), scaled by the current activation Hkt:

V k
ft = [wk ⇤G(f |�kt)]fHkt =

3�ktX

f 0=�3�kt

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt, (6.4)

where the spectral basis (wk 2 RF ) has peaks only at the partial frequencies.

The whole spectrum is formulated as a sum of the spectra of all pitches:

Vft =
KX

k=1

V k
ft =

KX

k=1

3�ktX

f 0=�3�kt

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt. (6.5)

1Usually the spectral width is defined as a half width at half maximum. For a Gaussian
function, this value is slightly larger than the standard deviation.
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Figure 6.2: The response of a Gaussian window

Parameter estimation

In order to simplify the implementation, we restrict the Gaussian function to a

fixed range, within ±L frequency bins. Then the model is formulated as follows:.

Vft =
KX

k=1

V k
ft =

KX

k=1

LX

f 0=�L

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt. (6.6)

The parameters are estimated using multiplicative update rules with �-

divergence. We use the KL-divergence (� = 1) as the cost function. The

update rules are listed below, with detailed derivation shown in Appendix C.

Wfk = Wfk

PT
t=1

PL
f 0=�L exp

⇣
�

f 02

2�2
kt

⌘
HktV

��2
(f+f 0)tX(f+f 0)t

PT
t=1

PL
f 0=�L exp

⇣
�

f 02

2�2
kt

⌘
HktV

��1
(f+f 0)t

, (6.7)

Hkt = Hkt

PF
f=1

PL
f 0=�L W(f�f 0)k exp

⇣
�

f 02

2�2
kt

⌘
V ��2
ft Xft

PF
f=1

PL
f 0=�L W(f�f 0)k exp

⇣
�

f 02

2�2
kt

⌘
V ��1
ft

, (6.8)

�2
kt = �2

kt

PF
f=1

PL
f 0=�L W(f�f 0)kf

02 exp
⇣
�

f 02

2�2
kt

⌘
V ��2
ft Xft

PF
f=1

PL
f 0=�L W(f�f 0)kf 02 exp

⇣
�

f 02

2�2
kt

⌘
V ��1
ft

. (6.9)

6.2 Piano transcription experiment

We evaluate the proposed method using the ‘ENSTDkCl’ subset of the MAPS

database [Emiya et al., 2010], in which the piano recordings are produced by

a Yamaha Disklavier upright piano. We trained the spectral templates using

isolated notes played forte. The polyphonic musical pieces (the first 30 seconds)
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are then transcribed with the trained templates.

6.2.1 Pre-processing

Computing STFT

The sample rate of the audio is fs = 44100Hz. To compute the STFT, each

frame is weighted by a Gaussian window covering 4096 samples with a standard

deviation of N = 4096/6 samples. In the time domain, the standard deviation

of the window function is � = N/fs. The hop size is 882 samples. In order to

locate the partial frequencies at the frequency bins, we need a high frequency

resolution. Hence, we perform a 4-fold zero padding before computing the spec-

trum using a discrete Fourier transform (DFT).

The theoretical value of the spectral width

The Fourier transform of the window function g�1(t) = 1
p

2⇡�2
1

e�t2/(2�2
1) with

standard deviation of �1 is given by

G(f) = F [g�1 ](f) = e�2⇡2�2
1f

2

. (6.10)

If we set the variance of G(f) to �2
2 , then e�f2/(2�2

2) = e�2⇡2�2
1f

2

. So we can

derive that �2 = 1
2⇡�1

. We know from the previous section that �1 = N/fs.

Then the standard deviation (spectral width) is �2 = fs
2⇡N . The frequency

resolution is the ratio of the sample rate fs and the size of the DFT n↵t. We

conclude that the spectral width covers n↵t

2⇡N frequency bins. When we compute

the STFT, n↵t = 16384 and N = 4096/6. So the theoretical value of spectral

width is � = 3.82 frequency bins.

6.2.2 Template training

We train spectral templates on isolated notes in forte from the ‘ENSTDkCl’

subset [Emiya et al., 2010]. For each pitch, we update the spectral template,

activations and spectral widths via Equations 6.7, 6.8 and 6.9 with K = 1 for 30

iterations. The range of the Gaussian response is set to be within ±30 frequency

bins (L = 30).

Initialisation

In order to enforce a harmonic-comb shape for templates, we initialise the tem-

plates with the peaks of the mean spectrum. For each pitch, we first normalise

the spectrum of each frame to a maximum of 1, and compute the average of the
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normalised spectra. Then we detect peaks of the average normalised spectrum

and use them as the initialisation of the spectral basis.

The activations are randomly initialised and the spectral widths are ini-

tialised with the theoretical value � = 3.82.

Trained examples

There are four examples of tones of di↵erent pitches shown in Figure 6.3. We find

several noticeable characteristics of the spectral width. (1) The spectral width

is large around the onset, and is smaller and remains stable for the remaining

duration of the note, as shown in Figure 6.3(a–c). (2) We can observe a small

peak in the spectral width at the o↵set, as shown in Figure 6.3(b). (3) When the

activation is small, the spectral width is ambiguous. The first case happens in

frames before the onset and after the o↵set of a note, where the spectral width

is theoretically undefined, hence expectedly noisy. The second case happens

within the duration of the note with low amplitude. This usually occurs on

high pitches. For example, as shown in Figure 6.3(d), when the amplitude is

20 dB lower than the maximum amplitude, the spectral width appears noisy.

We show the average spectral widths of all 88 notes in Figure 6.4(a). For

each clip, we discard some of the silent part before the onset to make all notes

start at 0.4 s, and notes end at around 2.5 s. It is clearly shown in Figure 6.4(b)

that the stable average spectral width is above 6 frequency bins, and there is a

major peak near the o↵set. Figure 6.4(c) is the histogram of the spectral width

(below 20 frequency bins), indicating a mode of around 5.5 bins.

6.2.3 Post-processing

After obtaining the activations and spectral widths, we smooth both of them

using a median filter covering 5 time frames. The smoothed activations are

normalised to a maximum of 1 for each piece.

Onset and o↵set detection

Based on the training results, we know that spectral widths are less meaningful

when activations are small. So we first detect active frames by thresholding

on the activations for each pitch. We apply di↵erent thresholds for onsets and

o↵sets. A note starts when the activation is larger than the onset threshold,

and lasts till the activation decreases to below the o↵set threshold.
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(a) MIDI index of 25
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(b) MIDI index of 50
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(c) MIDI index of 75
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(d) MIDI index of 100

Figure 6.3: Spectrograms and extracted parameters: templates, activations and
spectral widths for notes of di↵erent pitches
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Figure 6.4: Trained spectral widths.
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Spectral width constraints

After detecting the active frames, we use the spectral widths to refine onsets.

We know that for isolated notes, the spectral width of a note is large around

the onset. Based on this information, we first check the detected onsets. If

the spectral width of an onset is smaller than M frequency bins, we delete the

onsets. We test M 2 {3, 4, 5} in the experiments.

Then we detect more onsets at frames where both the activation and spectral

width are large. When the normalised activation is larger than 0.3, and the

spectral width is larger thanN frequency bins, activation peaks are also detected

as onsets. We test N 2 {6, 7, 8} in the experiments.

6.2.4 Results

In the transcription experiment, we update the activations and spectral widths

with fixed spectral templates from the training stage. Spectral widths are ini-

tialised to 5.5 frequency bins, and activations are initialised randomly.

We use frame-wise metrics and onset-only note tracking metrics to evaluate

the systems. A detailed explanation of the metrics is given in Section 2.4.

Transcription results

In the experiment, we compare the proposed system to a standard NMF baseline

system (stdNMF). The standard NMF also uses fixed templates, which are

trained using a rank-one NMF on the isolated notes. For all methods, notes are

detected on activations with an optimal onset threshold and the o↵set threshold

of �40 dB below the maximum activation of each musical piece. The optimal

onset thresholds of the proposed system and the NMF system are �17 dB and

�19 dB, respectively.

Table 6.1(a) shows the onset-only note tracking results. The proposed sys-

tem by thresholding (SWA) has an F-measure of 76.98%. The ‘SWMX’ systems

delete onsets with spectral widths smaller than X frequency bins. Systems

SWM3 and SWM4 bring small improvements on the note tracking results. The

results suggest that few detected onsets have spectral width smaller than 4

frequency bins. When deleting onsets with spectral widths smaller than 5 fre-

quency bins, we find more true onsets are deleted than false onsets, resulting

in a high precision and a low recall. The F-measure declines by 2.3 percentage

points in this case.

The ‘SWNX’ systems add onsets whose spectral widths are larger than X

frequency bins and activations larger than 0.3. These systems slightly improve

the F-measure of note tracking, with decreased precisions and increased recalls.
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Table 6.1: Comparison of the proposed systems with a standard NMF

(a) Note tracking results (onset-only)

method Pon Ron Fon Aon

SWA 80.29 74.89 76.98 63.73
SWM3 80.30 74.89 76.99 63.73
SWM4 80.94 74.44 77.08 63.87
SWM5 84.85 67.41 74.69 61.02
SWN6 79.16 76.90 77.48 64.28
SWN7 80.14 75.47 77.24 64.05
SWN8 80.26 75.22 77.15 63.94
stdNMF 78.70 76.73 77.22 64.07

(b) Frame-wise results

method Pf Rf Ff Af

SWA 79.20 79.60 78.36 64.83
stdNMF 79.32 79.46 78.35 64.79

When the constraint on spectral width becomes larger, the di↵erence from the

SWA system is smaller, because the number of newly-detected onsets decreases

with the increasing spectral width.

The F-measure of the standard NMF is 77.22%. There are no significant dif-

ferences between the proposed systems and the NMF system. Only the proposed

system of SWN6 has a slightly better F-measure than that of stdNMF.

The frame-wise results are listed in Table 6.1(b). Because refining onsets

using spectral widths usually does not change the frame-wise results, we only

show results of the proposed ‘SWA’ system. The frame-wise results of the

proposed system and the NMF system are similar to each other, with F-measures

of 78.4%.

The results show that refining onsets using spectral widths barely brings im-

provements in transcription performance, and there are no significant di↵erences

between the proposed methods and the standard NMF.

Spectral width distributions

In order to find more sophisticated methods to deal with spectral widths, we

analyse their statistical characteristics. Figure 6.5 shows the distribution of

spectral widths at the onsets for di↵erent pitches. We find that not all onsets

have large spectral widths. The median spectral widths of most low-pitch notes

are below 6 frequency bins at the onsets. The value increases for notes with
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higher pitch. We suppose that it is related to the frequency interval between

partials. The adjacent partials are overlapped when the spectral width is larger

than a half of the fundamental frequency (frequency interval). Then the spectral

widths of the onsets are limited by the fundamental frequency. Note that the

observation of the spectral widths at onsets in training stage is di↵erent from

that in the transcription experiment. Because in the training stage we perform a

rank-one NMF, the percussive onset can only be represented by the note. Then

it usually has a large onset spectral width. In the transcription experiment,

the spread spectral distribution at the onset can by explained by other notes,

and the spectral width is influenced more by the adjacent frequency bins of the

partials.

For each pitch, the spectral widths also vary, depending on the number of

notes played at the moment. If there is only one note played, the spectral

width is large at the onset. If there are several notes played simultaneously,

the spectral width of one note can be small because the spread energy may be

represented by other notes.

This explains why we can not improve the results by simply deleting onsets

with small spectral widths. In the future, we can try to extend this model in

a CQT TF representation, which has constant spaces between partials for all

pitches. However, we would need to deal with anther problem of the model in

the CQT: the spectral widths of partials of a note change with frequency.

Figure 6.6 shows the distribution of spectral widths in the decay parts. In

the middle pitch range, the median value of the spectral widths is around 5

frequency bins. Notes in the low pitch range tend to have smaller spectral

widths, and the spectral width is less predictable for pitches above MIDI index

of 80. Even for notes of the same pitch, the range of the spectral width is large.

First we know that the spectral width is closely related to the activation. When

the activation is small, the spectral width is small too. Secondly the spectral

width is easily influenced by notes of other pitches. For example, in Figure 6.7

the note of pitch D4 (MIDI index 62) starts at around 0.5 s and lasts till the end

of the clip. When the note activations are relatively large (before 5 s as shown

in Figure 6.7(b)), the spectral widths in most frames are around 5 frequency

bins, as shown in Figure 6.7(a). The false peaks in the spectral width occur

because notes of other pitches start.

We summarise the reasons for slight improvements by adding more onsets

with large activations and spectral widths as follows. First, these onsets are

easy to detect; some of the added onsets have been already detected by thresh-

olding. Secondly, because the spectral width is influenced by the activation and

other notes, there are also false onsets detected along with the true onsets. In

the future, we need to reduce the dependence of the spectral widths on the
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Figure 6.5: Box-and-whisker plots of spectral widths (below 20 frequency bins)
at onsets, with pitch in MIDI index on the vertical axis.
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Figure 6.6: Box-and-whisker plots of spectral widths (below 20 frequency bins)
in decay stages, with pitch in MIDI index on the vertical axis.
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(a) Spectral width of pitch D4 (MIDI index of 62)
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(b) Activation of pitch D4 (MIDI index 62)

Figure 6.7: An example of the spectral width and activation for one pitch during
the first 6 seconds of the piece ‘alb se2’.

activations and impose constraints on spectral widths, such as continuity.

6.3 Conclusions and future work

In this chapter we study the spectral width for piano transcription. We first

model the spectral width of a partial by the standard deviation of the Gaussian

window response. Then we present the spectral basis by the convolution of

a comb-shaped spectral basis and a Gaussian function. So di↵erent spectral

distributions of the attack and decay parts can be modelled by di↵erent spectral

widths. All unknown parameters are estimated in the NMF framework.

In the training stage we find the spectral width is large in the attack part,

and is smaller and remain stable in the decay part. But the spectral width is

related to the activation, which is less meaningful when the activation is small.

In the transcription experiment, we find that the results of proposed systems

are similar to that of a standard NMF system. Refining onsets by the spectral

width shows no significant di↵erences in the transcription performance.

The spectral width distribution at onsets shows that the spectral width is

pitch-dependent at onsets in musical pieces, with a trend that higher pitch

notes have larger spectral widths at onsets. The spectral width distribution
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in the decay parts shows more than half of the spectral widths are around 5

frequency bins, but there are still large numbers of spectral widths outside the

range.

In this chapter, we have only an exploration on the spectral width. In

the future, in order to e↵ectively use the spectral width information, we first

would like to extend the method in a CQT TF representation, to deal with the

pitch-dependent spectral width for onsets. In addition, the length of the frames

compared to the decay time should be studied in detail to explain the spectral

widths of onsets. Thirdly, we need to decouple the dependence of the spectral

width on the activation. At last, we will experiment with imposing constraints

on spectral widths to reduce the influence by simultaneous notes.
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Chapter 7

Conclusions and Future

Work

In this thesis, we study piano acoustics for automatically transcribing poly-

phonic music. We focus on features such as the time-varying timbre and decay

amplitudes of piano notes, and model these acoustical features from di↵erent

aspects with the parametric NMF. This chapter first summarises the primary

work of the main chapters, then we show several directions worth future inves-

tigation.

7.1 Conclusions

In Chapter 3, we address the local minimum problem of a PLCA-based tran-

scription method with a deterministic annealing EM algorithm. The EM-based

update rules are modified by introducing a temperature parameter. A more

fine-grained optimisation can be found by gradually decreasing the tempera-

ture. The results show that the proposed method improves the transcription

performance. The optimisation method can also be adapted to the NMF-based

model, because of the similarity between these two matrix factorisation methods.

In Chapter 5, we use a similar annealing process in the proposed NMF-based

model.

In Chapter 4, we study piano decay in real recordings. We first find partials

by modelling their inharmonicity, and then track the decay of the partials. We

focus on three decay patterns with spectral power in dB: linear decay, double

decay and decay with amplitude modulations (beats) according to the theoreti-

cal studies on coupled piano strings [Weinreich, 1977]. We track first 30 partials

below the Nyquist frequency of 88 notes in three dynamic levels. The results
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verify that partials of higher frequencies decay faster, and the dynamic level has

less impact on the decay pattern.

In Chapter 5, we propose an attack/decay model for piano transcription,

with the spectra of the attack and decay parts represented by two individual

spectral templates for each pitch. This method also models the amplitude en-

velopes for the two parts. The attack envelopes are trained on isolated notes,

and we use the average attack envelope over all pitches. The decay envelope is

parameterised by an exponential decay function, with the decay rate trained for

each isolated note. The two parts are coupled by the note activations, which

means that the decay part always occurs after the corresponding attack part.

We detect onsets on attack activations by peak-picking and track pitch states

by dynamic programming to find o↵sets.

The attack/decay model provides promising transcription results and out-

perform two state-of-the-art methods on the MAPS database [Emiya et al.,

2010]. In the transcription experiments, we compare the fixed sparsity factors

and annealing sparsity factors, based on our studies in Chapter 3. Results in-

dicate that the annealing sparsity factor improves both performance and the

robustness of the proposed model slightly. The exponential decay is a simplifi-

cation of the observed decay patterns in Chapter 4, but it is su�ciently close

to reality to give the observed improvement in transcription results.

We test the proposed method on repeated notes of single pitches. Results

indicate that the assumption of exponential decay causes many false positives

on notes in the low pitch range, due to the beats in the decay. The simplification

of ignoring o↵sets at the first stage works well for long notes, but may cause

false negatives on short notes.

The onset-o↵set note tracking results in Chapter 5 suggest that it is hard

to detect o↵sets on decaying energies. In order to find a more stable indicator

for note tracking, we preliminarily study the spectral widths of piano partials

in Chapter 6. In the proposed model, the time-varying timbre of a piano note

in the attack and decay parts is parameterised by the same spectral basis with

di↵erent spectral widths. The spectral basis consists of peaks at frequencies of

partials. We assume that the spectral width is large at the attack part, but

is smaller and remains constant in the decay part. We represent the spectral

shape of a partial by a Gaussian function. The expected value of the Gaussian

function is the partial frequency and we use the standard deviation � to indicate

the spectral width. With this parametric spectral template, we can estimate

spectral widths directly in the NMF framework.

In the training stage the spectral widths of most isolated notes are in line

with our assumption: large in the attack part, and smaller and stable in the

decay part. But when the activation of the note is small, the spectral width is
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less predictable, especially for high-pitch notes. In the transcription experiment,

the results of proposed systems are similar to those of a standard NMF system.

No di↵erence in transcription performance is obtained by using the spectral

widths to refine the detected onsets.

In order to find the problems of this preliminary model, we analyse the

spectral distribution in the attack and decay parts in polyphonic music pieces

individually. The spectral width distribution at onsets shows that the spectral

width is pitch-dependent at onsets in musical pieces, with higher pitch notes

having larger spectral widths. The spectral width distribution in the decay

parts shows more than 50% of spectral widths are around 5 frequency bins, but

there are still large numbers of spectral widths outside this range.

The methods presented in this thesis are based on the matrix-factorisation

method. Because the time-varying timbre and decay of energy are not well fit-

ted by this kind of method, we extend the NMF method using cues from piano

acoustics. Based on the proposed methods we can design a combined transcrip-

tion system. Both models in Chapter 5 and 6 present the attack and decay parts

of piano sounds separately. We can use the representation in Chapter 6 for the

attack/decay model in Chapter 5: the attack part is represented by partials

with large spectral widths, and the decay part by partials with small spectral

widths. The method in Chapter 3 addresses the local minimum problem as an

optimisation problem. It could be generalised for parameter estimation in the

NMF framework.

7.2 Further work

Modelling the decay

In the attack/decay model (Chapter 5), we first simplify the note amplitudes to

decay exponentially. Based on the studies in Chapter 4, we know that the decay

is frequency-dependent, with upper partials usually decaying more quickly. We

would like to extend the exponential decay model to be frequency-dependent by

replacing the decay rate by a decay filter. Another simplification of the model

is that the amplitude of a note is assumed to decay till the end of the music

piece, so that we do not need to deal with o↵sets when we formulate the model

in the NMF framework. If we consider the parametric attack and decay parts

as a parametric patch, this simplification means that the parameter patches

are of the same length as the music pieces. In the future, we would like to

extend the model with note-varying durations, which are expected to improve

the transcription performance on piano pieces with many short notes.
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The idea of decay modelling can also be extended to existing methods. For

example, we find that the unsupervised transcription system [Vincent et al.,

2010] in the comparison experiment of Chapter 5 is a good baseline method.

Each template in this method is a weighted combination of narrow-band spectral

bases. We can extend the system with decay parameters to build an unsuper-

vised system. We can further model each narrow-band spectral basis to decay

at di↵erent rates to build a model which is closer to the real decay of piano

notes.

Modelling spectral widths

In Chapter 6, we present a preliminary study on spectral width. The most

distinguishing problem is that the spectral width is dependent on the note am-

plitude. The spectral width is only interpretable when the corresponding note

amplitude is large enough. We need to decouple the dependence of the spectral

width on the amplitude. Secondly, the spectral widths are fluctuating, and are

easily influenced by simultaneous notes. We expect that this problem could be

lessened by imposing constraints, such as sparsity and continuity, on activations

and spectral widths. In our analysis of the spectral width distribution of the

note onsets, we find that the spectral width of an note onset is related to the

interval between adjacent partials. We would like to extend the method with

a CQT TF representation, to deal with the pitch-dependent spectral widths of

onsets.

Extension to other pianos

We would like to extend the idea of modelling acoustic features of a particular

piano to a general model of an arbitrary piano in the future. The research

questions associated with this direction are: what are the primary di↵erences

between two pianos, and can we share the similar parts but only model the

di↵erences when the training dataset and the test dataset are produced by

di↵erent pianos?

From the concept of the source-filter model, a piano has 88 sources (one for

each pitch) and a filter (the soundboard). Modelling a piano with the source-

filter model is not suitable, as evidenced by our previous work [Cheng et al.,

2014]. For a particular piano, we can train spectral templates on each isolated

note. But for another piano, can we use the same trained templates, but intro-

duce a filter to model the di↵erence between the frequency responses of the two

pianos?

To illustrate the idea, we extended the model for spectral widths (Chapter 6)

with a filter to model the frequency response di↵erence. The filter is param-
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eterised using the auto-regressive moving average (ARMA) model [Hennequin

et al., 2011a]. We use the templates trained on the subset ENSTDkCl subset

(Disklavier piano) of the MAPS database [Emiya et al., 2010], and employ the

extended model on music pieces in the ENSTDkAm subset (Disklavier piano)

and the AkPnCGdD subset (synthetic piano). The estimated filters are shown

in Figure 7.1. We find that there are fewer high-frequency partials resonated in

the synthetic piano. Although in the preliminary test, we find no di↵erence in

transcription results with and without the filter, we would like to work further

on this direction in the future.

Extension to other instruments

The proposed methods are motivated by piano acoustics. We suppose that they

can be used on instruments with similar acoustical features. The attack/decay

model in Chapter 5 should be apt in struck-string (for example the dulcimer) or

plucked-string instruments (for instance the harpsichord and guitar), because

the sounds produce by these kinds of instruments also have percussive onsets

and then decaying energies. The spectral width model in Chapter 6 is more

general. All harmonic sounds should have stable spectral widths, so we imagine

this model could have application across a large range of instrumental sounds.
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(a) The filter between ENSTDkCl and ENSTDkAm
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(b) The filter between ENSTDkCl and AkPnCGdD

Figure 7.1: Filters for modelling the frequency response di↵erence between two
pianos.
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Appendix A

Beating in the dB scale

In [Weinreich, 1977], the beating of two strings is represented by Equation (20),

which is written as follows:

R(t) = exp(�2⌘t)⇥ (µ cosµt� ⌘sinµt)2/µ2, (A.1)

where the beating frequency is 2µ and the decay rate is 2⌘. We know that

(µ cosµt� ⌘sinµt)2 = (µ2 + ⌘2) cos(µt+ ')2, (A.2)

where ' = arg tan(⌘/µ). Then the equation can be rewritten as:

R(t) = exp(�2⌘t)⇥
µ2 + ⌘2

µ2
⇥ cos(µt+ ')2. (A.3)

We write the equation in the dB scale for curve fitting:

RdB(t) = 20 log10(exp(�2⌘t)⇥
µ2 + ⌘2

µ2
⇥ cos(µt+ ')2)

= 20 log10(exp(�2⌘t)) + 20 log10(
µ2 + ⌘2

µ2
) + 20 log10(cos(µt+ ')2))

= �40⌘ log10(e)⇥ t+ 20 log10(
µ2 + ⌘2

µ2
) + 40 log10(| cos(µt+ ')|).

(A.4)

We replace the parameters with a = �40⌘ log10(e) and b = 20 log10(
µ2+⌘2

µ2 ),

then the equation can be written as:

RdB(t) = at+ b+ 40 log10(| cos(µt+ ')|). (A.5)
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This equation represents the purely resistive coupling of the two strings. The

amplitude of the beating will change if this is not the case [Weinreich, 1977].

So we replace 40 by A, which is a parameter to estimate. We also replace µ by

f to intuitively represent the frequency, and a small value " is added to avoid

taking the log of 0. Then the final equation is written as:

RdB(t) = at+ b+A log10(| cos(ft+ ')|+ "), (A.6)

which is the form we use in Equation 4.5.
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Appendix B

Derivations for the

attack/decay model

As described in Chapter 5, the proposed model is formulated as follows:

Vft =
KX

k=1

W a
fkH

a
kt +

KX

k=1

W d
fkH

d
kt

=
KX

k=1

W a
fk

t+TaX

⌧=t�Ta

Hk⌧P (t� ⌧) +
KX

k=1

W d
fk

tX

⌧=1

Hk⌧e
�(t�⌧)↵k ,

(B.1)

where V is the reconstruction of the spectrogram, f 2 [1, F ] is the frequency

bin, and t 2 [1, T ] indicates the time frame. Wa and Wd are the percussive and

harmonic templates, and k 2 [1,K] is the pitch index. Ha are attack activations,

generated by the convolution of note activations H and the attack envelope P.

Hd are decay activations and ↵k are decay factors. In Chapter 5, we assume

the harmonic phase starts at the onset time, then the maximum value of the

trained attack envelope occurs at one frame before the onset.

We add a parameter Td to control the start time of the harmonic part. Decay

activations are therefore represented by:

Hd
kt =

t�TdX

⌧=1

Hk⌧e
�(t�(⌧+Td))↵k . (B.2)

This indicates that the harmonic part starts at Td frames after the onset. When

the music piece is too long, we also need a parameter as the maximal duration

Tmax . Then in the convolution, max(1, t � Tmax )  ⌧  t � Td. We set tm =
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max(1, t� Tmax ), then decay activations are represented as:

Hd
kt =

t�TdX

⌧=tm

Hk⌧e
�(t�(⌧+Td))↵k . (B.3)

Then the complete proposed model is formulated as follows:

Vft =
KX

k=1

W a
fk

t+TaX

⌧=t�Ta

Hk⌧P (t� ⌧) +
KX

k=1

W d
fk

t�TdX

⌧=tm

Hk⌧e
�(t�(⌧+Td))↵k . (B.4)

In Chapter 5, we use a simplified model with Td = 0 and Tmax = T , then tm = 1.

Here we work on the complete model.

The parameters are estimated by minimising the distance between the spec-

trogram and the reconstruction by multiplicative update rules [Lee and Seung,

2000]. The derivative of the cost function with respect to (w.r.t.) ✓ is written

as a di↵erence of two non-negative functions:

r✓D(✓) = r+
✓ D(✓)�r�

✓ D(✓). (B.5)

The multiplicative algorithm is given by ✓  ✓.r�
✓ D(✓)./r+

✓ D(✓). We minimise

the �-divergence between the spectrogram X and the reconstruction V, with

the �-divergence given as follows [Févotte, 2011]:

d�(x|y) =

8
>>><

>>>:

1
�(��1) (x

� + (� � 1)y� � �xy��1) � 2 R \ {0, 1},

xlog x
y � x+ y � = 1,

x
y � log x

y � 1 � = 0.

(B.6)

The derivative of the �-divergence w.r.t. ✓ is given by [Févotte, 2011]:

r✓D(✓) = r✓d�(X|V (✓))

= (V (✓)��1
�XV (✓)��2)r✓V (✓).

(B.7)

The update rule is [Févotte, 2011]

✓  ✓.
V (✓)��1

r

�
✓ V (✓) +XV (✓)��2

r

+
✓ V (✓)

XV (✓)��2
r

�
✓ V (✓) + V (✓)��1

r

+
✓ V (✓)

. (B.8)

The derivative of Vft w.r.t. W a
fk is

rWa
fk
Vft = r

+
Wa

fk
Vft =

t+TaX

⌧=t�Ta

Hk⌧P (t� ⌧), (B.9)
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then the update rule of W a
fk is

W a
fk  W a

fk

PT
t=1

Pt+Ta

⌧=t�Ta
Hk⌧P (t� ⌧)(V ��2

ft Xft)
PT

t=1

Pt+Ta

⌧=t�Ta
Hk⌧P (t� ⌧)V ��1

ft

. (B.10)

The derivative of Vft w.r.t. W d
fk is

rWd
fk
Vft = r

+
Wd

fk
Vft =

t�TdX

⌧=tm

Hk⌧e
�(t�(⌧+Td))↵k , (B.11)

then the update rule of W d
fk is

W d
fk  W d

fk

PT
t=1

Pt�Td

⌧=tm
Hk⌧e

�(t�(⌧+Td))↵k(V ��2
ft Xft)

PT
t=1

Pt�Td

⌧=tm
Hk⌧e�(t�(⌧+Td))↵kV ��1

ft

. (B.12)

The derivative of Vft w.r.t. ↵k is

r↵kVft = r
�
↵k

Vft = W d
fk

t�TdX

⌧=tm

Hk⌧e
�(t�(⌧+Td))↵k(t� (⌧ + Td)), (B.13)

then the update rule of ↵k is

↵k  ↵k

PF
f=1

PT
t=1 W

d
fk

Pt�Td

⌧=tm
Hk⌧e

�(t�(⌧+Td))↵k(t� (⌧ + Td))V
��1
ftPF

f=1

PT
t=1 W

d
fk

Pt�Td

⌧=tm
Hk⌧e�(t�(⌧+Td))↵k(t� (⌧ + Td))(V

��2
ft Xft)

.

(B.14)

We set x = t� ⌧ , then the reconstruction is given by replacing t with ⌧ + x

Vf(⌧+x) =
KX

k=1

W a
fk

t+TaX

⌧=t�Ta

Hk⌧P (x) +
KX

k=1

W d
fk

t�TdX

⌧=tm

Hk⌧e
�(x�Td)↵k (B.15)

We derive the ranges of the two summations with respect to x. In the first one

t� Ta  ⌧  t+ Ta ) t� Ta  t� x  t+ Ta, so �Ta  x  Ta. In the second

one the upper limit is ⌧  t� Td ) t� x  t� Td, so x � Td. The lower limit

is ⌧ � max(1, t � Tmax ). If t � Tmax > 1 ) t � x � t � Tmax , so x  Tmax . If

t � Tmax  1 ) ⌧ � 1, which gives no restriction to the range of x. Then the

range is determined by the following restriction: t  Tmax+1) ⌧+x  Tmax+1,

so 1  ⌧  Tmax +1�x) x  Tmax . Combining these two conditions, we have

Td  x  Tmax . With these two ranges, the reconstruction is rewritten as

Vf(⌧+x) =
KX

k=1

W a
fk

TaX

x=�Ta

Hk⌧P (x) +
KX

k=1

W d
fk

TmaxX

x=Td

Hk⌧e
�(x�Td)↵k (B.16)
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We replace ⌧ with t to obtain more consistent equations:

Vf(t+x) =
KX

k=1

W a
fk

TaX

x=�Ta

HktP (x) +
KX

k=1

W d
fk

TmaxX

x=Td

Hkte
�(x�Td)↵k (B.17)

The derivative of Vft w.r.t. Hkt is

rHktVf(t+x) = r
+
Hkt

Vf(t+x) = W a
fk

TaX

x=�Ta

P (x) +W d
fk

TmaxX

x=Td

e�(x�Td)↵k , (B.18)

then the update rule of Hkt is

Hkt  Hkt

PF
f=1(W

a
fk

PTa

x=�Ta
P (x) +W d

fk

PTmax

x=Td
e�(x�Td)↵k)(V ��2

f(t+x)Xf(t+x))
PF

f=1(W
a
fk

PTa

x=�Ta
P (x) +W d

fk

PTmax

x=Td
e�(x�Td)↵k)V ��1

f(t+x)

.

(B.19)

The derivative of Vft w.r.t. P (x) with Equation B.17 is :

rP (x)Vf(t+x) = r
+
P (x)Vf(t+x) =

KX

k=1

W a
fkHkt, (B.20)

then the update rule of P (x) is

P (x) P (x)

PF
f=1

PT
t=1

PK
k=1 W

a
fkHkt(V

��2
f(t+x)Xf(t+x))

PF
f=1

PT
t=1

PK
k=1 W

a
fkHktV

��1
f(t+x)

. (B.21)
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Appendix C

Derivations for modelling

spectral widths

In Chapter 6, we propose a parametric NMF model with time-varying spectral

widths for each pitch. The Gaussian function representing the spectral shape

for partials of pitch k at the tth frame is given by:

G(f |�kt) = exp

✓
�

f2

2�2
kt

◆
,�3�kt  f  3�kt (C.1)

where �kt is the time-varying standard deviation (spectral width), and the Gaus-

sian function has a maximum value of 1 and is restricted in a range of ±3�kt.

The spectrum of pitch k in the f th frequency bin and the tth frame V k
ft is

modelled by the convolution of the spectral basis wk and the Gaussian window

response G(f |�kt), scaled by the current activation Hkt:

V k
ft = [wk ⇤G(f |�kt)]fHkt =

3�ktX

f 0=�3�kt

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt, (C.2)

where the spectral basis (wk 2 RF ) only has peaks at the partial frequencies.

The whole spectrum is formulated as a sum over all pitches:

Vft =
KX

k=1

V k
ft =

KX

k=1

3�ktX

f 0=�3�kt

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt. (C.3)
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Parameter estimation

In order to simplify the implementation, we restrict the Gaussian function in a

fixed range, within ±L frequency bins. Then the model is formulated as follows:.

Vft =
KX

k=1

V k
ft =

KX

k=1

LX

f 0=�L

W(f�f 0)k exp

✓
�

f 02

2�2
kt

◆
Hkt. (C.4)

The parameters are estimated using multiplicative update rules with �-

divergence as in Appendix B. The derivative of the �-divergence w.r.t. ✓ is

given by the subtraction of two non-negative parts:

r✓D(✓) = (V(✓)��1
�XV(✓)��2)r✓V(✓), (C.5)

where X the observed spectrogram. The update rule for ✓ is

✓  ✓.
V(✓)��1

r

�
✓ V(✓) +XV(✓)��2

r

+
✓ V(✓)

XV(✓)��2
r

�
✓ V(✓) +V(✓)��1

r

+
✓ V(✓)

. (C.6)

We first derive the update rule for Wfk as follows:

V(f+f 0)t =
KX

k=1

LX

f 0=�L

Wfk exp(�
f 02

2�2
kt

)Hkt, (C.7)

@V(f+f 0)t

@Wfk
=

LX

f 0=�L

exp(�
f 02

2�2
kt

)Hkt. (C.8)

Then the update rule for Wfk is:

Wfk  Wfk

PT
t=1

PL
f 0=�L exp(� f 02

2�2
kt
)HktV

��2
(f+f 0)tX(f+f 0)t

PT
t=1

PL
f 0=�L exp(� f 02

2�2
kt
)HktV

��1
(f+f 0)t

. (C.9)

The derivative of the reconstruction Vft w.r.t. Hkt is given by:

@Vft

@Hkt
=

LX

f 0=�L

W(f�f 0)k exp(�
f 02

2�2
kt

), (C.10)

so the update rule for Hkt is:

Hkt  Hkt

PF
f=1

PL
f 0=�L W(f�f 0)k exp(�

f 02

2�2
kt
)V ��2

ft Xft

PF
f=1

PL
f 0=�L W(f�f 0)k exp(�

f 02

2�2
kt
)V ��1

ft

. (C.11)
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The derivative of the reconstruction Vft w.r.t. �2
kt is given by:

@Vft

@�2
kt

=
LX

f 0=�L

W(f�f 0)k

@ exp(� f 02

2�2
kt
)

@�2
kt

Hkt

=
Hkt

2(�2
kt)

2

LX

f 0=�L

W(f�f 0)kf
02 exp(�

f 02

2�2
kt

), (C.12)

so the variance �2
kt is updated by:

�2
kt  �2

kt

PF
f=1

PL
f 0=�L W(f�f 0)kf

02 exp(� f 02

2�2
kt
)V ��2

ft Xft

PF
f=1

PL
f 0=�L W(f�f 0)kf 02 exp(� f 02

2�2
kt
)V ��1

ft

. (C.13)
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