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Abstract

We present a novel approach to face recognition by constructing facial identity
structures across views and over time, referred to as identity surfaces, in a Kernel
Discriminant Analysis (KDA) feature space. This approach is aimed at addressing
three challenging problems in face recognition: extracting the non-linear discriminant
features, recognising faces across multiple views, and recognising moving faces over
time. First, the KDA is developed to compute the most significant non-linear basis
vectors with the intention of maximising the between-class variance and minimising
the within-class variance. We applied KDA to the problem of multi-view face recog-
nition, and a significant improvement has been achieved in robustness and accuracy.
Second, identity surfaces are constructed to model the variance of facial appearance
caused from rotation in depth. Recognition can then be conveniently performed by
computing the pattern distances from the identity surfaces. Third, video-based on-
line face recognition is performed by computing and matching object onto identity

surfaces which encode the spatio-temporal dynamics of moving faces.

1 Introduction

Face recognition, as an important visual perceptual task, has been of great interest in recent

years both theoretically and practically for applications including integrated surveillance,



visually mediated interaction, human-machine interface, multimedia and teleconferencing.
Various approaches have been proposed to address the problem under different assumptions
and conditions.

Template based methods were adopted in many previous studies. Early work by Baron
[1] presented a Neural Network based approach to face recognition using raw images as sys-
tem input. Recognition was performed based on the correlation of the resulting sequence
of patterns with all model patterns. Brunelli and Poggio [5] presented and compared a ge-
ometrical feature based algorithm and a template based algorithm. They claimed that the
results obtained for the testing sets show about 90% correct recognition using geometrical
features and perfect recognition using template matching. In their subsequent research,
Sung and Poggio [27] generated 6 face prototypes and 6 near-face-nonface prototypes as
templates to match a new image pattern. A well-tuned Neural Network was employed
to synthesise these matching results. Another approach using Support Vector Machines
(SVMs) was presented by Osuna and Poggio, by which the most representative examples,
known as Support Vectors, are extracted automatically [21, 22].

The high dimensionality of raw images is a problem in computation. To address this,
Principal Component Analysis (PCA) has been widely adopted to reduce dimensionality
and extract abstract features of faces. Sirovich and Kirby [26] first used PCA, also known as
the Karhunen-Loeve transform, for face representation. Turk and Pentland [29] proposed
the eigenface method which used a similar method to code face images and capture face
features. PCA has also been used extensively in other face models such as the the Active
Shape Model (ASM) and Active Appearance Model (AAM) [9, 8.

It is worth noting that the features extracted by PCA are actually “global” features for
all face classes, thus they are not necessarily representative for discriminating one face class
from others. Linear Discriminant Analysis (LDA), which seeks to find a linear transfor-
mation by maximising the between-class variance and minimising the within-class variance
[12], proved to be a more suitable technique for class separation. Computationally, LDA
can be solved as an eigen-decomposition problem similar to PCA. Swets and Weng [28]
applied a subsequent LDA projection followed by PCA to derive the Most Discriminating
Features. Zhao et al. [34] used LDA as a representation for frontal-view face recognition.
Edwards et al. [11] adopted LDA to select discriminant parameters based on Active Ap-

pearance Models. They argued that these parameters can be used to decouple identity



variance from pose, lighting and expression variance.

Though LDA can provide a significant discriminant improvement to the task of face
recognition, it is still a linear technique in nature. When severe non-linearity is involved,
this method is intrinsically poor. Another shortcoming of LDA lies in the fact that the
number of basis vectors are limited by the number of face classes, therefore it would be less
representative when small set of subjects are concerned. To extract the non-linear principal
components, Kernel PCA (KPCA) was developed for pattern recognition [25]. Romdhani et
al. [23] adopted KPCA to construct a nonlinear models aiming at corresponding dynamic
appearances of both shape and texture across views. However, as with PCA, KPCA
captures the overall variance of all patterns which are inadequate for discriminant purposes.

It is important to point out that most of the previous work in face recognition is mainly
concerned with frontal-view. However, recognising faces across views is more challenging
than that at a fixed view, e.g. frontal view, because of the severe non-linearity caused
by rotation in depth, self-occlusion, self-shading and illumination change. The eigenface
method has been extended to view-based and modular eigenspaces with the intention
of recognising faces under varying views by Moghaddam and Pentland [20]. Li et al
[17] presented a view-based piece-wise SVM model of the face space. Cootes et al. [10]
proposed the view-based Active Appearance Models which employ three models for profile,
half-profile and frontal views. But the division of the face space in these methods is rather
arbitrary, ad hoc and often coarse.

Another limitation of the previous work is that the methods proposed for recognition are
largely based on matching static face images. Psychology and physiology research depicts
that the human vision system’s ability to recognise animated faces is better than that on
randomly ordered still face images (i.e. the same set of images, but displayed in random
order without the temporal context of moving faces). Knight and Johnston [15] showed that
recognition of famous faces in photographic negatives can be significantly enhanced when
the faces were shown moving rather than static. Bruce et al. [3, 4] extended this result
to other conditions where recognition is made difficult, e.g. by thresholding the images or
showing them in blurred or pixellated formats. Though some preliminary results obtained
from techniques such as the temporal signature method [14] , the subspace method [33]
and the identity trajectory method [16], have been reported, the issue of recognising the

dynamics of faces under a spatio-temporal context remains largely unresolved.



In this paper, we present a novel and comprehensive approach to modelling facial iden-
tities across views and over time. To remedy the linearity limitation of LDA, Kernel Dis-
criminant Analysis (KDA) is adopted, which employs the kernel technique to maximise the
between-class variance and minimise the within-class variance. To address the multi-view
face recognition problem, a spatio-temporal identity surface of each face class is constructed
in a kernel discriminant feature space. A video-based approach using pattern distances and
trajectory distances to the identity surfaces is presented to perform online face recognition
dynamically. The rest part of this paper is arranged as follows: The KDA method is intro-
duced in Section 2, then the issue of modelling faces using KDA is discussed in Section 3.
Identity surface construction and performance evaluation are presented in Section 4, while
Section 5 describes the approach to video-based face recognition. Experimental results are

given in Section 6 and conclusions in Section 7.

2 Kernel Discriminant Analysis

As stated in the previous section, both PCA and LDA are limited to linear problems, and
KPCA is designed to deal with the overall rather than the discriminant variance. In this
work, the Kernel Discriminant Analysis, a nonlinear discriminant approach based on the
kernel technique [25, 31, 32, 19, 2], is developed for extracting the nonlinear discriminant

features.

2.1 Centred Data

For a set of training patterns {} which are categorised into C' classes, ¢ is defined as a
non-linear map from the input space to a high-dimensional feature space. By this map
one assumes that an original nonlinear problem in the input space can be transformed to
a linear problem in the high-dimensional feature space and solved using the regular linear
techniques. However, computing ¢ explicitly may be problematic or even impossible. The
kernel technique provides a subtle solution to this problem. If the map ¢ satisfies the
Mercer’s condition [31, 32|, then the inner product of two vectors in the feature space can

be calculated through a kernel function

k(z,y) = (%) - (y)) (1)



which can be conveniently computed in the input space.

Let us first consider the centred data set, i.e.

Z@ZO (2)

where N is the total number of training patterns. Define the between-class scatter matrix

S, and within-class scatter matrix S,, in the feature space as
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where N, is the number of patters in the cth class, and p, is the mean vector of class c,

1 &

Assuming S, is not singular, one can maximise the between-class variance and minimise the
within-class variance of vectors ¢, in the feature space by performing eigen-decomposition

on matrix
S = S;ISb (6)

Assuming v is one of the eigenvectors of matrix S, and A is its corresponding eigenvalue,

ie.
Sv = \v (7)
Combining (6) and (7),
Syw = \S,v (8)
Then taking inner product with vector ¢,, on both sides of equation (8) yields
(Spyv-¢,,) = A(Spv-0,,),m=1,2,..,N 9)
A coefficient vector exists

a = (o, ag, ...,aN)T (10)



that satisfies
N
v = Z o, (11)
n=1
Substituting (3) (4) and (11) in (9) yields

= C i=1 j= 1
Deﬁnlng a N x N, matrix K. as

(Kc)ij = (@ - &;) = ki (13)
and a N, X N, matrix 1y, as
(Ine)ij =1 (14)

one obtains
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Defining N x N matrix as

c -1 /¢
1 1
A= — K. K — K. 1y K" 16
(L) (£ ) 1o
one derives

Aa =\ (17)

By eigen-decomposing matrix A, one yields the coefficient vector ae. Therefore, for a
new pattern x in the original input space, one can calculate its projection onto v in the

high-dimensional feature space by

Zaqu o(z Zaz z,z;) = 'k, (18)
where
k, = (k(x, x), k(z, ), ..., k(x, zx))" (19)
Constructing the eigen matrix
U =[ay, ..., ap] (20)

from the first M significant eigenvectors of A, the projection of x in the M-dimensional

KDA space is given by

y=U'k, (21)



2.2 Non-centred Data

In the general case, {¢(x;)},7 = 1,2,..., N, are not centred. A similar method to [24] is
adapted here. By defining

. 1
¢, = ¢; — N ;¢n (22)

one can use the method stated above since {¢,;},7 = 1,2, ..., N are now centred. The kernel

matrix K, can then be expressed by its non-centred counterpart K as follows:

(Kc)ij = d; ¢g )
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Using N x N matrix (K);; := k;; and 1y, one obtains
1 1 1
K=K - S1xK - K1y + 5 1vKly (24)

Therefore K, can be obtained as a sub-matrix of K. Then substituting K, with K, in
(16) and eigen-decomposing A, one obtains the matrix U in (20).
Similar to the centred case given in (18), projecting a new pattern & onto an eigenvector

v in the feature space is given by

(p(z) - 0) = Z ai(@() - p(z:) = kocx (25)

where

N
> k(@ z,) (26)



Defining an N x 1 vector 1’ with all entries equal to 1, one obtains

. 1 1 1
ko =k, — SK1' — Zkody + 551K ly (27)

Finally, the projection of @ in the M-dimensional KDA space is given by
y=U'k, (28)

We use a toy problem to illustrate the characteristics of KDA as shown in Figure 1. Two
classes of patterns denoted with circles and crosses respectively have a significant non-
linear distribution. We try to separate them with a one dimensional decision boundary
of PCA, LDA, KPCA or KDA. The upper row shows the patterns and the discriminant
curves computed by the four different methods. The lower row illustrates the intensity
value of the one-dimensional feature computed from PCA, LDA, KPCA and KDA. It can
be seen clearly that PCA and LDA are incapable of providing correct classification because
of their linear nature. Neither does KPCA do so since it is designed to extract the overall
rather than the discriminant variation though it is nonlinear in principle. KDA gives the
correct classification boundary: the discriminant curve accurately separates the two classes

of patterns, and the feature intensity correctly reflects the actual pattern distribution.

Figure 1: Solving a nonlinear classification problem with, from left to right, PCA, LDA,
KPCA and KDA.

3 Modelling Multi-view Faces Using KDA

Due to the severe non-linearity caused by rotation in depth, self-occlusion, self-shading and

illumination change, modelling the appearance of faces across multiple views is much more

8



challenging than that from a fixed view, e.g. frontal view. This is especially true when
the appearances of different people from the same view are more similar than those of the
same person from different views. In this paper, we focus on modelling the non-linearity

brought by the face rotation in depth using KDA.

3.1 Constructing Shape-and-Pose-Free Textures

The patterns used for face recognition are represented by shape-and-pose-free texture pat-
terns, which are extracted by fitting a multi-view dynamic face model onto multi-view
face images and warping them to the model mean shape in frontal view. The model is
trained on a set of multi-view face images taken from 12 subjects, 45 views of each sub-
ject ([—20° ,420° ] in tilt and [—40,+440] in yaw with an interval of 10° ) [13]. Each
image in the training set is associated with known pose in tilt and yaw and labelled semi-
automatically with a set of salient landmarks including the positions of eyes, nose, mouth
and face contour. More details of the model are discussed in [18].

Figure 2 shows the original face images, fitted multi-view face model overlaid on the face

1

images, and the warped shape-and-pose-free texture patterns.

Figure 2: Extract the shape-and-pose-free texture patterns of multi-view face images using

a multi-view dynamic face model.

'When one side of a face becomes partially invisible, the texture pattern is constructed from the visible

side using the bilateral symmetry of faces.



3.2 Variation from Face Classes vs. Variation from Pose

Although the shape-and-pose-free facial texture patterns from different views may be more
similar than their original forms, the underlying discriminant features for different face
classes have not been represented explicitly. Therefore such a representation in itself would
not be efficient for recognition. To illustrate this problem, we plot the shape-and-pose-free
face texture patterns in the PCA space in Figure 3. For the sake of conciseness, only the
patterns of four face classes are shown here. Figure 3(a) illustrates the variation of the
first PCA dimension with respect to the pose change. The horizontal axis gives the index
number of images in the order of —20° ~ +20° in tilt and —40° ~ +40° in yaw. The
orders are identical for all face classes. The patterns belonging to a same face class are
linked together. Figure 3(b) shows the distribution of the texture patterns in the first two
PCA dimension. It is noted that the variation from different face classes is not efficiently
separated from that for pose change, or more precisely, the former is even overwhelmed by

the latter.
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Figure 3: Face class separability under multiple views: Variation from different face classes
vs. variation from pose change. The horizontal axis in (a) gives the index number of pose

changing between [—20° ,+20° | in tilt and [—40° , +40° ] in yaw.
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3.3 Extracting the KDA Features of Faces

We apply KDA to the shape-and-pose-free face patterns of the same face classes as shown
in Figure 3. The Gaussian kernel is adopted,
2

ke, y) = eap(— 220 (29

where 202 = 1. The variation and distribution of the patterns are shown in Figure 4(a) and
4(b) respectively. Compared to the results of the PCA patterns in Figure 3, the improve-
ment on class separability is significant. It is worth pointing out that such separability is

achieved by using only two KDA dimensions.
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Figure 4: Distribution of the KDA patterns obtained from the same face images as in

Figure 3.

4 Recognising Faces Using Identity Surfaces

One of the most commonly used techniques for recognition is to compute the probabilities
of a set of known patterns or the similarities among templates of different classes before
selecting the optimal value using a simple metric. For example, the Euclidean distance
or the Mahalanobis distance can be adopted if the pattern distribution of each class is
compact enough and separable from others. However, usually this simplistic method cannot
provide satisfactory solutions to the problem of multi-view face recognition. The reasons

are twofold: First, the representation adopted, e.g. the KDA, may not generate a perfectly
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compact distribution of each face class while separates one from another. Second, the
distributions of each class cannot be guaranteed to be homogeneous.

When the distribution is irregular, the traditional statistical method for dealing with
this problem is to estimate a multi-modal density function for each class. But a very large
number of training examples are needed either for parametric or non-parametric modelling.
In this work, we do not constrain ourselves to such a strict condition. Instead, we present
a novel approach to construct an identity surface of each face class from a sparse sample

of multi-view face patterns.

4.1 Identity Surfaces

As stated above, one of the key problems of multi-view face recognition is how to sep-
arate two kinds of variations: variation from different subjects and variation from pose.
Observing the results presented in Figure 3(a) and Figure 4(a), we find that the features
from different face classes share a similar variation tendency with respect to pose change.
It suggests that a significant improvement to face identity modelling can be expected if
the pose information is exploited explicitly. Based on this idea, we developed a method of
multi-view face recognition using identity surfaces.

Assuming that only the appearance variation caused by rotation in depth is concerned,
i.e. the variation from expression, illumination and facial make-up is excluded, each face
class can be represented by a unique hyper surface based on the pose information. In other
words, the two basis coordinates stand for the head pose: tilt and yaw, and the other
coordinates are used to represent the discriminant features of faces, e.g. the KDA vectors.
For each pair of tilt and yaw values, there is one unique “point” for a face class. The
distribution of all the “points” of the same face class with regard to pose form a hyper
surface in the space spanned by the discriminant features and pose. We call this surface
an identity surface. Then face recognition can be performed by computing and comparing

the distances between a given pattern and a set of identity surfaces.

4.2 Constructing Identity Surfaces of Faces

If sufficient patterns of a face class in different views are available, the identity surface

of this face class can be constructed precisely. However, we do not require such a strict
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condition. In this work, we develop a method to synthesise the identity surface of a face
class from a small sample of face patterns which sparsely cover the view sphere. The basic
idea is to approximate the identity surface using a set of N, planes separated by a number
of N, predefined views. The problem can be formally defined as follows:

Suppose z,y are tilt and yaw respectively, z is the discriminant feature vector of a face
pattern, e.g. a KDA vector. A list (21, ¥Y01), (Zo2, Yo2), ---» (Ton,, Yon,) gives predefined
views which discretise the view sphere into NV, grids. On each grid, the identity surface of

a face class is approximated by a plane
z=ar+by+c (30)

Suppose the M; sample patterns covered by the ¢th plane are

(%‘1, Yi1, Zﬂ), (%‘2, Yi2, Zz'2), ) (sz‘Mi, YiM;» ziMi)a then one minimises

Np  M;
Q = > llaiwin + bitim + i — Zim|” (31)
subject to aZkam-l— biyor + ¢i = a;xor + bjyor + ¢;
k=0,1,..,N,,
plane i, j intersect at (zog, Yok)- (32)

This is a quadratic optimisation problem which can be solved using the interior point
method [30].

Figure 5 shows a real identity surface of a face class using 45 example views (—20° ~
+20° in tilt and —40° ~ +40° in yaw with an interval of 10° ) and the synthesised

identity surface using only 15 example views (same ranges but with an interval of 20° ).

4.3 Recognition by Pattern Distances to the Identity Surfaces

For an unknown face image, one first fits the multi-view dynamical face model [18] onto
the image and projects onto the KDA feature space to yield a face pattern (z,vy, zo) where
zo is the KDA vector and x,y are the pose in tilt and yaw, then the pattern distance to
one of the identity surfaces can be computed as the Euclidean distance between z, and the

corresponding point z on the identity surface
d = |zo — 2|l (33)
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Figure 5: The identity surface constructed from all 45 views (first row) and that synthesised
from 15 prototype patterns (second row). Only the first three KDA components are shown

here.

where z is given by (30).

It is important to note that the Euclidean distance may be more appropriate for LDA
or KDA while the Mahalanobis distance is more efficient when PCA or KPCA is adopted.
This is because that the discriminant feature is crucial in the former case while the general
variation of all patterns is concerned in the latter.

We constructed the identity surfaces of 12 subjects (one of them is shown in Figure 2)
in the KDA feature space from 15 views of each subjects, and then performed a test on
all face patterns (45 of each subject). The distances of the 45 patterns of the first subject
from the 12 identity surfaces are shown in Figure 6. In this experiment, the dimension
of KDA patterns are chosen as 10. The distances to the ground-truth identity surface
are highlighted with circles and solid line. It can be seen clearly that all the 45 patterns
have the shortest distances to the ground-truth identity surface, therefore are recognised

correctly.
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Figure 6: Recognising multi-view faces using distances to the identity surfaces. The solid

line denotes the results of the ground-truth subject.

4.4 Robustness and Efficiency Analysis

To compare with KDA, we constructed the identity surfaces in the PCA, KPCA, and
LDA feature spaces using the same set of face patterns. To make the results of different

representations comparable, we define the following criterion

d = iw: _dio (34)
- C
i=1 Zj:l dij

where C' is the number of face classes, M is the total number of test face patterns, d;; is the
pattern distance between the ith test pattern and the jth identity surface, and d;g is the
pattern distance between the ith test pattern and the identity surface of the ground-truth
face class. d;; and d;p are computed using (33).

Criterion d’ can be interpreted as a summation of normalised pattern distances to their
ground-truth identity surfaces over all test patterns. The smaller the d’, the more robust the
classification performance. Figure 7(a) shows the values of d’ for different representations,
PCA, KPCA, LDA and KDA, with respect to the dimension of the feature spaces. The
results indicate that KDA gives the most robust classification performance.

The recognition accuracies with respect to the dimension of feature spaces are shown in
Figure 7(b). It is interesting to note that the KDA features are very efficient. A 93.9%

recognition accuracy was achieved when the dimension of the KDA vector was only 2.
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Figure 7: Robust analysis.

5 Recognising Faces Dynamically in Video Sequences

Even for the human vision system, the performance of face recognition or facial analysis
is not very reliable on static tmages. However, the situation can be improved dramatically
when video input containing the faces concerned is available. Recall the description in
Section 1, psychological and physiological research suggests that modelling and recognising
moving faces dynamically have the potential for achieving a superior performance over that

on static images.

5.1 Video-Based Online Face Recognition

We argue that the performance of face recognition for a computer based vision system can

be dramatically enhanced if the facial dynamics is modelled in the following aspects:

1. Instead of the method of exhaustive scan, which is notoriously slow, focus of attention
can be performed efficiently using enriched dynamical information such as motion,

colour, and background.

2. Information from individual frames of a video input may be ambiguous, or even
controversial. However, the accumulated evidence from all frames can provide a

more reliable performance. This is the so-called identity constancy principle.
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3. It is interesting to note that the human vision system works in an interactive rather
than an open-looped manner. For example, when observing a moving face, we predict
the next likely position, pose, and appearance of the face as well as collecting the
information at the time being. Then the coincidence or difference between our pre-
diction and observation adjusts the perception we receive about the face. Therefore a
reinforced effect is achieved in this interactive manner. As for computer based vision
systems, an improved performance can be achieved if the model parameters, or even

the model itself, is adapted to the observations and measurements dynamically.

5.2 Recognising Faces Dynamically Using Identity Surfaces

For computer based vision systems, the issue of formulating and modelling the facial dy-
namics described in the previous sections is non-trivial and still largely under-developed.
However, significant improvement in terms of recognition accuracy and robustness may still
be achieved when the spatio-temporal information is modelled in a rather straightforward
way, e.g. simply accumulating the discriminant evidences with the spatio-temporal order
encoded in an input sequence. As a practical implementation, we formulate the following
approach to video-based online face recognition using identity surfaces.

As shown in Figure 8, when a face is detected and tracked in an input video sequence,
one obtains the object trajectory of the face in the feature space. Also, its projection on each
of the identity surface with the same poses and temporal order forms a model trajectory of
the specific face class. It can be regarded as the ideal trajectory of this face class encoded
by the same spatio-temporal information (pose information and temporal order from the
video sequence) as the tracked face. Then face recognition can be carried out by matching
the object trajectory with a set of model trajectories. Compared to face recognition on
static images, this approach can be more robust and accurate. For example, it is difficult
to decide whether the pattern X in Figure 8 belongs to subject A or B for a single pattern,
however, if we know that X is tracked along the object trajectory, it is very clear that it
is more likely to be subject A than B.

A complete process of this video-based face recognition includes:
registration Construct the identity surface for each face class from learning sequences;

Tracking Fit the multi-view dynamic model [18] on an input video sequence containing

17



faces to be recognised, and extract the discriminant features;
Recognition Compute the object and model trajectories and compare these trajectories.

In the following sections, we will discuss the registration and recognition process. Please
refer to [18] for more details of a Kalman filter based face tracking method using the

multi-view dynamic face model.

A gy,
LI,
AN

object trajectory

Figure 8: Identity surfaces for face recognition

5.3 Constructing Identity Surfaces from Learning Sequences

Before recognition is carried out, a face class should be registered with respect to the
system by one or more learning sequences containing the faces of this face class. We record
a small video clip of a subject while he/she rotates the head in front of a camera. After
applying the multi-view dynamic face model [18] on the video sequence, we obtain a set
of face patterns of this subject. Then these patterns are stored to construct the identity
surface of this face class, and, if necessary, to train (or re-train) the KDA.

To simplify computation, normally we do not use all the patterns of each subject to train
the KDA since the sizes of the kernel matrix K and K. are directly related to the number
of training examples. A pragmatic way to select the KDA training patterns is to factor-
sample the patterns from the training sequences so that the result patterns uniformly cover

the view sphere.
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After KDA training, all face patterns can be projected onto the feature space spanned by
the significant KDA base vectors. Then the method described in Section 4.2 is employed

to construct the identity surfaces.

5.4 Trajectory Matching

In the recognition stage, we apply the same multi-view dynamic face model on a novel
sequence containing faces to be recognised, then an object trajectory can be obtained
by projecting the face patterns into the KDA feature space. On the other hand, the
model trajectory can be built on the identity surface of each subject using the same pose
information and temporal order of the object trajectory. Those two kinds of trajectories,
i.e. object and model trajectories, encode the spatio-temporal information of the tracked
face. And finally, recognition is performed by matching the object trajectory to a set of
identity model trajectories.

A preliminary realisation of this approach is implemented by computing the trajectory

distance
t
i=1

where d,,,; is the pattern distance to the identity surface of the mth face class in the ith
frame computed using (33), and wj is the weight on this distance. Recognition is performed

by selecting the subject with minimum trajectory distance.

6 Experiments

We demonstrate the performance of this approach on a small scale multi-view face recog-
nition problem. Twelve sequences, each from a set of 12 subjects, were used as training
sequences to construct the identity surfaces. The number of frames contained in each se-
quence varies from 40 to 140. We randomly selected 180 images (15 images of each subject)
to train the KDA. The first ten KDA basis vectors were used to construct the identity sur-
faces. Then recognition was performed on new test sequences of these subjects. Figure 9
shows the sample images fitted by our multi-view dynamic model and the warped shape-
and-pose-free texture patterns from a test sequence. The object and model trajectories (in

the first two KDA dimensions) are shown in Figure 10. The pattern distances from the
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identity surfaces in each individual frame are shown on the left side of Figure 11, while the
trajectory distances shown on the right side. These results depict that a more robust per-
formance is achieved when recognition is carried out using the trajectory distances which
include the accumulated evidence over time, though the pattern distances to the identity
surfaces in each individual frame already provides good recognition accuracy on a frame

by frame basis.

Figure 9: Video-based multi-view face recognition. From top to bottom, sample images

from a test sequence with an interval of 10 frames, images fitted by the multi-view dynamic

face model, and the shape-and-pose-free texture patterns.

KDA1
o
KDA2
o

Figure 10: The object and model trajectories in the first two KDA dimensions. The object
trajectories are the solid lines with dots denoting the face patterns in each frame. The
others are model trajectories where the ones from the ground-truth subject highlighted

with solid lines.
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Figure 11: Pattern distances and trajectory distances. The ground-truth subject is high-
lighted with solid lines. By using KDA and identity surfaces, the pattern distances give
good recognition for individual frames. However, the trajectory distances provide a more
robust performance, especially its accumulated effects (i.e. discriminating ability) over

time.
7 Conclusions

In this paper, we have presented a comprehensive approach to extract the non-linear dis-
criminant features using KDA and to recognise faces across views and over time dynami-
cally using identity surfaces in the KDA feature space. The key issues of this work can be

summarised as follows:

1. PCA, LDA and KPCA have been widely used in face recognition. But PCA and LDA
are limited to the linear applications while KPCA intends to capture the overall rather
than the discriminant variance of all patterns though it is non-linear. To efficiently
extract the discriminant features of multi-class patterns with severe non-linearity,
the KDA is developed in this work. We applied this method to multi-view face
recognition, and significant improvement has been achieved both in robustness and

accuracy.

2. Recognising faces across views is more challenging than that from a fixed view because
of the severe non-linearity caused by rotation in depth, self-occlusion, self-shading,
and illumination change. To model the variance from rotation in depth, we propose
the method of identity surface which can be constructed from a sparse sample of

multi-view face images. Then recognition can be performed by computing the pattern
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distances or trajectory distances to a set of identity surfaces.

3. Psychological and physiological research suggests that modelling and recognising
moving faces dynamically have the potential for achieving a superior performance
over that on static images. Inspired by this idea, we present an approach to dy-
namic face recognition by computing and matching the object and model trajec-
tories. A more reliable recognition is achieved since these trajectories encode the
spatio-temporal information of a moving face and provide the accumulated evidence

of identity.

One of the main drawbacks of this approach is the intensive computation involved in
KDA. To obtain the KDA projection of an unknown pattern, one has to compute the
kernel functions of this pattern with all training examples. Actually this is a common
limitation of all kernel techniques such as KPCA and SVMs. Though some methods such
as the reduced set technique [6, 7] can be adopted for computation reduction, an additional
non-linear optimisation problem is usually introduced which is not guaranteed to provide
a global optimal solution.

In addition, some of the implementation such as trajectory matching is still simplistic in
its present form. The trajectory distance is computed as a weighted summation, therefore
it does not make any difference to the results of recognition if the information of each frame
comes either in a random order or in the temporal order as it being, though the temporal
order is still very useful in the tracking process (recall the difference in human vision
system described in Section 1). We believe it is an interesting issue for both psychological
and artificial vision research to exploit the underlying mechanism of this spatio-temporal

dynamics, and extensive further work needs to be conducted.
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