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Abstract

We propose a framework for fast view alignment using
adaptive affine tracking. We address the issue of mod-
elling both shape and texture information in eigenspace for
view alignment. We present an effective bootstrapping pro-
cess based on colour segmentation and selective attention.
We recover affine parameters with dynamic updates to the
eigenspace using most recent history and perform predic-
tions in parameter space. Experimental results are given to
illustrate our approach.

1 Introduction

A view-based representation assumes that a piecewise
linear vector space exists in which each view is represented
by a vector [1]. For object recognition in dynamic scenes
using view-based representation, frame to frame view align-
ment is essential. This requires establishing image corre-
spondences in successive frames of a moving object which
may undergo both affine and viewpoint transformations [2].
However, to obtain consistent dense image correspondence
is both problematic and expensive since changes in view-
point could result in self-occlusions which prohibit com-
plete sets of image correspondences from being established.
Alternatively, sparse correspondence can be established for
a carefully chosen set of feature points [3]. A different ap-
proach that is computationally less expensive and does not
rely on reliable and fast feature detection in every frame
uses holistic appearance-based templates. This assumes that
all points of interest of an object move coherently in space
and such an approximate rigidity assumption permits a rel-
atively simplistic parametric model to be used for align-
ment. If the model is also built based on data from a large
set of viewpoints, it can in theory recover pose change as
well. A good example of this approach is affine tracking
in eigenspace, known as EigenTracking [4]. EigenTracking
attempted to establish appearance-based correspondence of
a moving rigid object by recovering a parameterised affine

transform in eigenspace, constructed from object images of
different views. However, due to its rigidity assumption and
the use of appearance-based templates, in general Eigen-
Tracking fails to capture changes which are not sufficiently
affine, in particular it copes poorly with objects of irregu-
lar shape such as human faces. Furthermore, to be able to
establish image correspondence across different viewpoints,
EigenTracking requires a training image set for a large num-
ber of views. This is impractical and computationally ex-
pensive. We propose an integrated scheme for view align-
ment which (1) uses both shape and texture in eigenspace in
a simple manner which could relax the rigidity assumption
without introducing too much computational cost, (2) en-
ables effective bootstrapping, (3) estimates parameters with
selective attention in a dynamically updated, viewpoint cen-
tred eigenspace, and (4) performs parameter prediction.

2 Encoding Appearance and Shape

A set of p images withN pixels given by a matrixA
can be represented by the eigenspace of their covariance
matrix C where usuallyp < N . The image matrixA
can be decomposed using Singular Value Decomposition
(SVD) which givesA = U�VT. The principal subspace
comprising thek most significant eigenvectors is used for
view alignment. Therefore, in the remainder of this pa-
per,U is anN�k eigenvector matrix,� is a k�k diag-
onal matrix of eigenvalues andV is a p� k matrix. An
image1 I is represented by projection onto eigenvectorsuj ,
i.e. I � Pk

j=1 cjuj = Uc wherek < p is the number
of eigenvectors actually used andc gives projection coeffi-
cients.

2.1 Appearance-based A�ne Tracking

If image changes are approximately affine, correspon-
dence for alignment can be achieved by treating an image

1Throughout this paper, we useI to represent an image vector rather
than the Identity matrix. Furthermore, a pre-filtering process is often nec-
essary if global illumination is unstable [3].
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xc = (xc; yc)
T is the centre position of the object template.

Alignment can then be accomplished by recovering both the
affine parametersa and the projection coefficientsc by min-
imising a cost functionminc;a � [( I(f(x; a)) �Uc ) ; �],
where � is a robust error norm and� is a scale factor
that controls the convexity of the norm [4, 5]. In our
scheme, we use the Geman-McClure error norm [6] given
by �(x; �) = x2=(�2 + x2). Outliers will be considered
values from the inflexion point of the norm, which are resid-
uals withxi > �=

p
3. In general, the above cost function is

non-convex and minimisation can result in local minima. A
minimisation algorithm found to be effective in this case is
gradient descent with the continuation method of graduated
non-convexity [6]. It begins with a large value of� where
all the points are inliers. Then� is successively lowered, re-
ducing the influence of outliers. While it is not guaranteed
to converge to a global minimum, the method is effective
for visual tracking since continuity of motion provides good
starting points.

A dramatic reduction in computational cost is achieved
by avoiding image warping in every iteration. This is done
by adopting the following linear approximation to the above
cost function:

min
c;a

�
��rIT f(a) + (I�Uc) � ; �� (2)

whererI is the image gradient[Ix; Iy ]T [4].

2.2 Encoding Shape Using Landmarks

The difficulty in encoding shape is to be able to com-
pute correspondences quickly and sufficiently robustly. To
achieve such a purpose, we propose to learn the coordinates
of known landmarks through training images2. Let A =
[I1 I2 : : : Ip] be the matrix with columns of training images
and letX = [x1 x2 : : : xp] be the coordinates of the land-
marks in these images. The landmarks are assumed to have
been located by hand and are the positions of facial feature
points. We first took the approach to construct a concate-
nated matrixA� = [fI1;x1g fI2;x2g : : : fIp;xpg]. The
new matrixA� is a modification ofA with additional fea-
ture vectors concatenated to the tail of each training image
vector. However, the large scale difference in variances of
A andX causes numerical problems. To obtain comparable
variance, we scale each shape vectorxi by the maximum
norm. A more considered approach to achieve comparable

2The same training images are used for constructing the eigenspace.

variance between the appearance (image) and shape vec-
tors in eigenspace can be adopted [7]. It is worth pointing
out though that better results were actually achieved with
modelling the appearance and shape vectors in independent
eigenspaces rather than with the concatenated eigenspace.

Once the landmarks have been learned from the training
set, we can recall the landmarks during the tracking pro-
cess. If a new image is aligned with the eigenspace the re-
construction from the coefficients in the eigenspace is given
by Uc. To recall the most likely landmark positions for
the new image based on what has been learned in training,
an inverse transformation between the eigenspace and the
training set (related by the SVD) is performed on the shape
components only:

xnew = X (V��1c) (3)

V��1c are thep coefficients which best reconstruct the
new image in a least-squares sense from the training data,
andV��1 can be pre-computed off-line in order to speed
up the tracking process. Given sufficient training exam-
ples with known landmarks, incorporating shape in the
eigenspace could enable previously learnt feature positions
to be recalled during tracking, therefore avoiding the need to
perform online feature detection and correspondence which
are computationally both expensive and problematic.

3 Bootstrapping

Colour-based segmentation can provide robust and very
fast focus-of-attention for the initialization of the affine pa-
rameters [8]. Here we adopt multi-colour Gaussian mix-
ture models to perform real-time object detection and focus
of attention. The mixture models were estimated in two-
dimensional hue-saturation colour space. Such representa-
tions are chosen to permit some level of robustness against
brightness change. Probabilities are computed for pixels in
an image search space and the size and position of the object
are estimated from the resulting probability distribution in
the image plane [8]. An example of colour-based, real-time,
coarse segmentation using a mixture of four Gaussians can
be seen in Figure 1.

3.1 Adaptive Attentional Window

The most computationally expensive operation in recov-
ering affine parameters is to recursively warp the image rel-
ative to its center in order to minimise the cost function of
Equation (2). To address this problem, the affine transfor-
mation is only computed within an attentional window. The
size of this window adapts to the size of the object. Affine
transforms are performed relative to the center of the win-
dow which must coincide with the centroid of the object in
order to minimize the errors in estimated rotation and scale



Figure 1. Top row: An image and object fore-
ground probabilities in the image plane. Bot-
tom row: results of segmentation with multi-
resolution relaxation after 1 and 4 iterations.

parameters. The centre of the attentional window is esti-
mated using prediction (see Section 5).

3.2 Morphological operations

Colour provides only a crude initial estimate for an at-
tentional window. An improved estimate is obtained in a
computationally efficient way by applying recursive non-
linear morphological operations at multiple resolutions.
The method can be seen as a combination of relaxation
and something similar in spirit to geodesic reconstruction
in morphology [9]. This “geodesic relaxation” algorithm is
as follows:
(a) Compute log probabilities in a 1/4 sub-sampled image
and normalise these probabilities to give a low resolution
grey-scale “probability image”Io. (b) Apply grey-level
morphological erosion toIo. This reduces noise and erro-
neous foreground and yields an imageIer. (c) LetI� = Ier ,
then apply the following operation a fixed number of times:
I� = 1

2
(I� 
 low-pass-filter + Io)

where
 denotes convolution.
The resulting imageI� (see Figure 1) is used to fit a bound-
ing box which is then used as an initial attentional window.
The iterative process is fast because good results are ob-
tained in a few iterations using low resolution images.

To give an initial estimation of the affine scale parame-
ters(a1; a5), morphology and colour are used to estimate
the eye-mouth region within the attentional window (see
Figure 2). The process is as follows:
(a) Perform vertical erosion on the 1/2 sub-sampled and
thresholded attentional windowIwin to give Ier . (b)
Perform geodesic reconstruction ofIer with Iwin as the
reference image to giveIrec. (c) ComputeIend =
opening (Iwin � Irec)

Figure 2. Left: The attentional window esti-
mated using colour cues. Right: The main
facial feature region extracted using morpho-
logical operators.

3.3 Parameter Initialisation

Colour and morphological operators provide an initial
attentional window and approximate estimates of trans-
lational and scale parameters. These initial parame-
ter estimates are further refined by recursively applying
Successive-Over-Relaxation [6] to the same initial image
in order to minimize the cost function (2). Robust norms
with a continuation method and a multi-resolution repre-
sentation were used in order to avoid local minima. At first,
only the translational parameters(a0; a3) were optimised
in order to align the centre of the attentional window with
the eigenspace. Subsequently, the scale parameters(a1; a5)
were optimised. It was assumed that affine rotation was
negligible in the initial frame. An example of this parameter
initialisation process is shown in Figure 3. In this example,
the initial estimates provided by the colour model were un-
usually poor.

4 Adaptive Pose-Driven Affine Tracking

The EigenTracking method made use of a fixed, global
eigenspace (GES) representation for reconstruction and
tracking. This eigenspace was built by performing SVD on
a relatively large, fixed training set. The alternative method
described in this section yields faster and more accurate re-
construction. It involves the use of local eigenspace (LES)
representations built using subsets of the original training
set. In particular, at each time framet, the q training im-
ages which are “closest” to the previous affine-normalised,
tracked imageIt�1, are selected. A new LES is then com-
puted from theseq images. The imageIt�1 can also be
included in the set used to compute the LES and this helps
to compensate for temporary changes not represented in the
original training set (e.g. unusual facial expressions).

The computation of a new LES in (potentially) ev-
ery frame might seem prohibitively expensive. However,
the iterative matching algorithm typically converges more
quickly when reconstructions are performed using an LES.
In practise, this faster convergence more than compensates
for the expense of computing the LES. The overall result is



Figure 3. A�ne parameter initialisation: The
attentional window is overlaid with a smaller
box indicating estimated translation and scale
parameters. Below each frame is the located
region (left) and its reconstruction (right).

faster and gives more robust tracking. Theq selected train-
ing images are usually images with similar 3D pose and fa-
cial expression and can therefore be accurately represented
using only a few eigenvectors. In order to achieve good
enough reconstruction, enough eigenvectors are retained to
account for95% of the variance in the training set.

In order to compute an LES, theq “closest” training im-
ages must be selected. An obvious way in which to per-
form this selection is to measure the Euclidean distance be-
tweenIt�1 and each of the training images and to select
theq nearest images. These distance measurements can be
efficiently approximated using projections onto the precom-
puted GES [10]. Further efficiency can be obtained using a
multi-resolution scheme in whichIt�1 is sub-sampled and
projected onto a precomputed GES of equally low resolu-
tion.

If an ordering can be imposed on the training set, how-
ever, an alternative scheme becomes possible. The closest
match in the training set is then used to index into this or-
dered set and theq images for the LES are selected using the
predetermined ordering3. For example, if the training set
consists of a sequence of a head rotating from left to right
then time imposes a natural ordering. The nearest match
then yields an estimation of head pose and the LES is com-
puted from images of similar pose.

Another way to derive find the closest matches uses

3Many strategies have been suggested for performing such a nearest
neighbour search. See [11] for a recent discussion.

the information of the projection coefficients and their re-
lationship with the training set. Thep coefficientsy =
[y1 y2 : : : yp]

T whose linear combination of the training set
minimises the Euclidean distance,miny k It�1 �Ay k2,
are given by:

y = V��1c; y = (ATA)�1ATI (4)

As we are working with normalized images, minimising the
Euclidean distance is identical to maximising the dot prod-
uct. Note that we can obtain the dot products if the coeffi-
cients in the eigenspacec are known, that is:

ATI = (ATA)y = V�c (5)

The position of the maximum component ofATI corre-
sponds to the “closest” image in the training set. It can be
easily shown that this is mathematically equivalent to [11].
However, our approach establishes correspondence between
the eigen-coefficient and the training images directly and is
less expensive for computing the GES4.

Figure 4. Left two images: EigenTracking with-
out dynamic updates fails due to insu�cient
training views. Right two images: The adap-
tive scheme.

5 Prediction of Six Affine Parameters

In order to cope with displacements of more than a few
(3-4) pixels between frames, it was necessary to use predic-
tion. In each frame, the affine parameters were predicted
and these predictions were used to initialise the iterative op-
timisation algorithm. The six affine parameters were pre-
dicted using a Kalman filter [12]:

xk+1 = �xk +Bnk; zk = Hxk + rk (6)

wherex andz were 12-dimensional state and measurement
vectors andnk andrk were zero-mean white noise with co-
variance matricesQk andRk. The dynamic system model

4ComputingC = c1c2:::cp = UTA requireskpN multiplications.
With SVD of A, computingC = �VT needs justk2p operations which
is more efficient sincek� N .



used assumed constant velocity5. The elements of the vec-
torsx andz corresponded to the affine parameters and their
velocities.

Appropriate noise covariance matrices were estimated
using the EM algorithm with the following least-squares ap-
proximations of observation noise and state noise:

rk � zk �Hx�k ; nk � (BTB)�1BT(x+k+1 � �x+k )

where+ denotesa posterioriestimation and� denotesa
priori estimation. The estimated covariance noise between
the affine parameters was also verified visually by plotting
pairwise parameter observations. An alternative approach
is to derive an optimal estimate based on the Kalman fil-
ter’s underlying cost function. Estimation of the state vec-
tor xk+1 based upon previous measurements is equivalent
to minimising cost function:

E(x+k+1) =
1

2
(x+k+1 � x�k�1)T(P�1)(x+k+1 � x�k�1)
+ 1

2
(zk �Hx+k+1)T(R�1)(zk �Hx+k+1)

The first term specifies the temporal constraint while the
second expresses the data conservation, where all errors are
measured using the Mahalanobis distance. We propose ap-
ply one robust norm to the second term in order to derive a
robust Kalman filter. Efficient minimization of this function
could be performed using a technique such as Iteratively
Recursive Least Squares (IRLS) [13].

The human head will inevitably move in ways which are
not predictable using these simple dynamic models. An
effective way in which to detect this “unpredictability” is
to run one iteration of the optimisation algorithm used for
tracking. Only if the direction in affine parameter space of
this iteration step agrees with that of the Kalman prediction
are the predictions utilised. This works well if not many
outliers are present because with the continuation method
used the initial estimation of the affine parameters with high
� could be quite different from the final one with low�.

6 Experiments and Discussion

The system was initially implemented in Matlab and
took an average of 14 sec/frame. In C, it could run at near
2 sec/frame on a standard 200MHz PC. Applying IRLS to
the minimisation process can solve an approximation of the
robust formulation in near real-time.

Figure 5 shows the ability of the new adaptive scheme to
align a face undergoing non-rigid expression change. Simi-
lar problems occur when the assumption of affine transfor-
mation is no longer valid. The adaptive scheme was shown

5Pairwise plots of the affine parameter measurements typically revealed
trajectories in the 6-dimensional affine parameter space which were ap-
proximately linear or piecewise linear. Therefore, it seemed reasonable to
use a constant velocity model.

to be able to overcome the problem when changes in pose
were not sufficiently captured by the training data (see ex-
amples in Figure 4).

Figure 5. This sequence demonstrates the ad-
vantage in using adaptive scheme with non-
rigid expression changes. The �rst row shows
the overlaid results from EigenTracking whilst
the second row shows the results from the
adaptive scheme with shape encoded.

Figure 6 shows view alignment from a 260 frame se-
quence with both affine and pose variations. The training
set had 100 images and 54 eigenvectors were used in a GES
capturing 95% of the variance. However, with the adaptive
scheme using LES, only 6 eigenvectors were needed to re-
cover sufficiently accurate parameters for alignment.

Figure 7 gives an indication of savings in computational
cost when the adaptive scheme is applied. It shows the
time taken in seconds to perform the minimisation (Equa-
tion (2)). The first column shows the time required for each
frame using GES with 54 eigenvectors. The second column
shows the time required for each frame with LES but with-
out the previous history att�1. The third column shows the
result from augmented LES usingt � 1 tracked data. The
mean cost for GES was 29 sec/frame, 15 sec/frame for LES
and 12 sec/frame fort� 1 augmented LES.

In this paper we present an integrated scheme for view
alignment. We exploit the transformation between the train-
ing set (TS) and the eigenspace in a computationally in-
expensive manner in order to establish the correspondence
between the landmarks in the TS and the image. A dy-
namically adaptive scheme was adopted to compensate the



Figure 6. A sequence with attentional windows and face boxes overlaid.

Figure 7. Convergence times required by the minimisation process.

small changes in illumination and the nonlinear transforma-
tions that cannot be recovered with global affine transforma-
tions. Different approaches were experimented for updating
with frame-based updates gave the best results. However, if
the training images are ordered, it is possible to update the
eigenspace which would be even more desirable [14]. Our
current scheme did not include a pre-filtering process to ad-
dress changes in global illumination. This can be addressed
by estimating the illumination in the new image dynami-
cally with the homomorphic filtering and then apply it to
the training set. Other way to resolve the problem is to use
an additional basis to represent all the possible illumination
situations [15]. Gabor wavelets representation can also be
employed which gives certain degree of invariance to global
illumination change [3].
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