View Alignment with Dynamically Updated Affine Tracking
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Abstract transform in eigenspace, constructed from object images of
different views. However, due to its rigidity assumption and
We propose a framework for fast view alignment using the use of appearance-based templates, in general Eigen-
adaptive affine tracking. We address the issue of mod-Tracking fails to capture changes which are not sufficiently
elling both shape and texture information in eigenspace for affine, in particular it copes poorly with objects of irregu-
view alignment. We present an effective bootstrapping pro-lar shape such as human faces. Furthermore, to be able to
cess based on colour segmentation and selective attentionestablish image correspondence across different viewpoints,
We recover affine parameters with dynamic updates to theEigenTracking requires a training image set for a large num-
eigenspace using most recent history and perform predic-ber of views. This is impractical and computationally ex-
tions in parameter space. Experimental results are given to pensive. We propose an integrated scheme for view align-
illustrate our approach. ment which (1) uses both shape and texture in eigenspace in
a simple manner which could relax the rigidity assumption
without introducing too much computational cost, (2) en-
ables effective bootstrapping, (3) estimates parameters with

A view-based representation assumes that a piecewiséeleCt_ive attention in a dynamically updated,viewpgintcen—
linear vector space exists in which each view is represented'®d éigenspace, and (4) performs parameter prediction.
by a vector [1]. For object recognition in dynamic scenes )
using view-based representation, frame to frame view align-2 Encoding Appearance and Shape
ment is esse.ntlal. ThIS. requires establ|sh|r_1g image corre- of p images with' pixels given by a matrixA
spondences in successive frames of a moving object which

; : . : can be represented by the eigenspace of their covariance
may undergo both affine and viewpoint transformations [2]. matrix C where usuallyp < N. The image matrixA

However, to obtain consistent dense image correspondenc%an be decomposed using Singular Value Decomposition
is both problematic and expensive since changes in View'(SVD) which givesA = UXVT. The principal subspace

pIO',?t cotuldfr.esult in self-occl(;Jsmns ]\(Nh'CT) p.rOh'b'tt ;?.mh' cgomprising thek most significant eigenvectors is used for
piete sels oTimage correspondences Irom being establisneqy ., alignment. Therefore, in the remainder of this pa-

Alternatively, sparse correspondence can be established foE)er U is an N x k eigenvector matrix¥, is a k x k diag-
a carefully chosen set of feature points [3]. A different ap- onal matrix of eigenvalues ar is a p x k matrix. An

proach tha_t is computationally less expensive and does no‘magé Iis represented by projection onto eigenvectors
rely on reliable and fast feature detection in every frame .

uses holistic appearance-based templates. This assumes thiaf" _I ~ Zle cju; = Ue Wherek <PIS th? numbe_r
all points of interest of an object move coherently in space o eigenvectors actually used andives projection coefi-
and such an approximate rigidity assumption permits a rel- C1eNtS.

atively simplistic parametric model to be used for align-
ment. If the model is also built based on data from a large
set of viewpoints, it can in theory recover pose change as If image changes are approximately affine, correspon-
well. A good example of this approach is affine tracking dence for alignment can be achieved by treating an image
In €igenspace, known as ElgenTracklng [4] ElgenTraCkmg LThroughout this paper, we udeto represent an image vector rather
attempted to establish appearance-based correspondence @f, the Identity matrix. Furthermore, a pre-filtering process is often nec-

a moving rigid object by recovering a parameterised affine essary if global illumination is unstable [3].

1 Introduction

2.1 Appearance-based Affine Tracking




I(f(x,a)) = [I(f(x1,a)),I(f(x2,a))...[(f(xn,a))]" as variance between the appearance (image) and shape vec-
a function of an affine transform given by parameters tors in eigenspace can be adopted [7]. It is worth pointing
(ao,a1,a,as,a4,as)’, where out though that better results were actually achieved with
modelling the appearance and shape vectors in independent
£(x,a) = i ao i N i a1 a i i T =T i (1)  eigenspaces rather than with the concatenated eigenspace.
as aq G5 Y—Yc Once the landmarks have been learned from the training
set, we can recall the landmarks during the tracking pro-
cess. If a new image is aligned with the eigenspace the re-
construction from the coefficients in the eigenspace is given
by Uc. To recall the most likely landmark positions for
the new image based on what has been learned in training,
an inverse transformation between the eigenspace and the
training set (related by the SVD) is performed on the shape
components only:

x. = (z,y.)" is the centre position of the object template.
Alignment can then be accomplished by recovering both the
affine parameters and the projection coefficientsby min-
imising a cost functiomning a p [(I(f(x,a)) — Uc),a],
where p is a robust error norm ane is a scale factor
that controls the convexity of the norm [4, 5]. In our
scheme, we use the Geman-McClure error norm [6] given
by p(z,0) = z?/(c? + z?). Outliers will be considered
values_from the inflexion point of the norm, which are _resid- Xnew = X (VI ~Le) 3)
uals withz; > a/\/§. In general, the above cost function is

non-convex and minimisation can result in local minima. A vy —1¢ are thep coefficients which best reconstruct the
minimisation algorithm found to be effective in this case is new image ina |east_squares sense from the training data,
gradient descent with the continuation method of graduatedand v —! can be pre-computed off-line in order to speed
non-convexity [6]. It begins with a large value efwhere  yp the tracking process. Given sufficient training exam-
all the points are inliers. Thenis successively lowered, re-  ples with known landmarks, incorporating shape in the
ducing the influence of outliers. While it is not guaranteed ejgenspace could enable previously learnt feature positions
to converge to a global minimum, the method is effective to be recalled during tracking, therefore avoiding the need to
for visual tracking since continuity of motion provides good perform online feature detection and correspondence which

starting points. are computationally both expensive and problematic.
A dramatic reduction in computational cost is achieved

by avoiding image warping in every iteration. This is done
by adopting the following linear approximation to the above
cost function:

3 Bootstrapping

Colour-based segmentation can provide robust and very
. T fast focus-of-attention for the initialization of the affine pa-

I?,LH p [( VI f(a) +(I- Uc)) ’U] (2) rameters [8]. Here we adopt multi-colour Gaussian mix-

ture models to perform real-time object detection and focus

of attention. The mixture models were estimated in two-

. . dimensional hue-saturation colour space. Such representa-

2.2 Encoding Shape Using Landmarks tions are chosen to permit some level of robustness against
The difficulty in encoding shape is to be able to com- brightness change. Probabilities_are compu_t(_ad for pixels_in

pute correspondences quickly and sufficiently robustly. To &N image search space and the size and position of the object

achieve such a purpose, we propose to learn the coordinate®'® _estlmated from the resulting probability dlstnbutlor_w in

of known landmarks through training imagesLet A = the image plane [8]. An Qxamplg of colour-based, regl-tlme,

[I, L ... L] be the matrix with columns of training images C0&rse segmentation using a mixture of four Gaussians can

and letX = [x; x5 ... x,] be the coordinates of the land- be seen in Figure 1.

marks in these images. The landmarks are assumed to have

been located by hand and are the positions of facial feature3-1 ~Adaptive Attentional Window

points. We first took the approach to construct a concate-

nated matrixA* = [{I;,x;} {I>,x2} ... {I;,xp}]. The

new matrixA* is a modification ofA with additional fea-

ture vectors concatenated to the tail of each training image

vector. However, the large scale difference in variances of

A andX causes numerical problems. To obtain comparablesize of this window adapts to the size of the object. Affine

\r/zrrﬁn(::’mv;?esgglr?si?j?;g dszapreoggfﬁ) bgct:izvﬁi)grriiu;nrabl etransforms are performed relative to the center of the win-
' PP P dow which must coincide with the centroid of the object in

2The same training images are used for constructing the eigenspace. order to minimize the errors in estimated rotation and scale

whereV1 is the image gradienf,, I,]" [4].

The most computationally expensive operation in recov-
ering affine parameters is to recursively warp the image rel-
ative to its center in order to minimise the cost function of
Equation (2). To address this problem, the affine transfor-
mation is only computed within an attentional window. The
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Figure 2. Left: The attentional window esti-
mated using colour cues. Right: The main
facial feature region extracted using morpho-
logical operators.

3.3 Parameter Initialisation

Figure 1. Top row: An image and object fore-
ground probabilities in the image plane. Bot-
tom row: results of segmentation with multi-
resolution relaxation after 1 and 4 iterations.

Colour and morphological operators provide an initial
attentional window and approximate estimates of trans-
lational and scale parameters. These initial parame-
ter estimates are further refined by recursively applying
parameters. The centre of the attentional window is esti- SUccessive-Over-Relaxation [6] to the same initial image
mated using prediction (see Section 5). m_order to minimize the cost function (2). Robl_Jst norms
with a continuation method and a multi-resolution repre-
sentation were used in order to avoid local minima. At first,
only the translational parametefs,, a3) were optimised

Colour provides only a crude initial estimate for an at- in order to align the centre of the attentional window with
tentional window. An improved estimate is obtained in a the eigenspace. Subsequently, the scale paranfetets)
computationally efficient way by applying recursive non- were optimised. It was assumed that affine rotation was
linear morphological operations at multiple resolutions. negligible in the initial frame. An example of this parameter
The method can be seen as a combination of relaxationinitialisation process is shown in Figure 3. In this example,
and something similar in spirit to geodesic reconstruction the initial estimates provided by the colour model were un-
in morphology [9]. This “geodesic relaxation” algorithmis usually poor.
as follows:

(a) Compute log probabilities in a 1/4 sub-sampled image4 Adaptive Pose-Driven Affine Tracking
and normalise these probabilities to give a low resolution

3.2 Morphological operations

grey-scale “probability imageI®. (b) Apply grey-level The EigenTracking method made use of a fixed, global
morphological erosion t@°. This reduces noise and erro- eigenspace (GES) representation for reconstruction and
neous foreground and yields an imdge (c) LetI* = I°¢", tracking. This eigenspace was built by performing SVD on
then apply the following operation a fixed number of times: a relatively large, fixed training set. The alternative method
I* = $(I* ® low-pass-filter +1°) described in this section yields faster and more accurate re-
where® denotes convolution. construction. It involves the use of local eigenspace (LES)

The resulting imagé* (see Figure 1) is used to fit a bound- representations built using subsets of the original training
ing box which is then used as an initial attentional window. set. In particular, at each time framethe ¢ training im-
The iterative process is fast because good results are obages which are “closest” to the previous affine-normalised,
tained in a few iterations using low resolution images. tracked imagd;_;, are selected. A new LES is then com-
To give an initial estimation of the affine scale parame- puted from these images. The imagé&; ; can also be
ters(a;,as), morphology and colour are used to estimate included in the set used to compute the LES and this helps
the eye-mouth region within the attentional window (see to compensate for temporary changes not represented in the
Figure 2). The process is as follows: original training set (e.g. unusual facial expressions).
(a) Perform vertical erosion on the 1/2 sub-sampled and The computation of a new LES in (potentially) ev-
thresholded attentional windod® to give I¢". (b) ery frame might seem prohibitively expensive. However,
Perform geodesic reconstruction Bf" with I¥" as the the iterative matching algorithm typically converges more
reference image to givd™*c. (c) ComputeI*"? = quickly when reconstructions are performed using an LES.
opening (Iwin — 17ec) In practise, this faster convergence more than compensates
for the expense of computing the LES. The overall result is



the information of the projection coefficients and their re-
lationship with the training set. The coefficientsy =

[y1 Y2 ... yp|" whose linear combination of the training set
minimises the Euclidean distancainy, || I;—; — Ay ||%,
are given by:

y=VXlc, y= (ATA)flATI 4)

As we are working with normalized images, minimising the
Euclidean distance is identical to maximising the dot prod-
uct. Note that we can obtain the dot products if the coeffi-
cients in the eigenspaeeare known, that is:

ATl = (ATA)y = VXc 5)

The position of the maximum component Af'I corre-
sponds to the “closest” image in the training set. It can be
easily shown that this is mathematically equivalent to [11].
However, our approach establishes correspondence between
the eigen-coefficient and the training images directly and is
Figure 3. Affine parameter initialisation: The less expensive for computing the GES
attentional window is overlaid with a smaller
box indicating estimated translation and scale
parameters. Below each frame is the located
region (left) and its reconstruction (right).
faster and gives more robust tracking. Thselected train-
ing images are usually images with similar 3D pose and f

using only a few eigenvectors. In order to achieve goot
enough reconstruction, enough eigenvectors are retained
account fo95% of the variance in the training set.

In order to compute an LES, the'closest” training im- Figure 4. Left two images: EigenTracking with-
ages must be selected. An obvious way in which to per-  out dynamic updates fails due to insufficient
form this selection is to measure the Euclidean distance be-  training views. Right two images: The adap-
tweenI;_; and each of the training images and to select tjve scheme.
theq nearest images. These distance measurements can be
efficiently approximated using projections onto the precom- 5  Prediction of Six Affine Parameters
puted GES [10]. Further efficiency can be obtained using a

multi-resolution scheme in which_; is sub-sampled and In order to cope with displacements of more than a few
projected onto a precomputed GES of equally low resolu- (3-4) pixels between frames, it was necessary to use predic-
tion. tion. In each frame, the affine parameters were predicted

If an ordering can be imposed on the training set, how- and these predictions were used to initialise the iterative op-
ever, an alternative scheme becomes possible. The closesimisation algorithm. The six affine parameters were pre-
match in the training set is then used to index into this or- dicted using a Kalman filter [12]:
dered set and thgimages for the LES are selected using the
predetermined orderifg For example, if the training set Xp+1 = I'xp + Bny, 2z = Hxy + 1 (6)
consists of a sequence of a head rotating from left to right
then time imposes a natural ordering. The nearest matchwherex andz were 12-dimensional state and measurement
then yields an estimation of head pose and the LES is com-vectors andh;, andr; were zero-mean white noise with co-
puted from images of similar pose. variance matrice®); andRy. The dynamic system model

Another way to derive find the closest matches uses

4ComputingC = cjcz...cp = UTA requireskp N multiplications.
3Many strategies have been suggested for performing such a neareswith SVD of A, computingC = VT needs jusk?p operations which
neighbour search. See [11] for a recent discussion. is more efficient sincé < N.




used assumed constant velocityThe elements of the vec-  to be able to overcome the problem when changes in pose
torsx andz corresponded to the affine parameters and theirwere not sufficiently captured by the training data (see ex-
velocities. amples in Figure 4).

Appropriate noise covariance matrices were estimated
using the EM algorithm with the following least-squares ap-
proximations of observation noise and state noise:

r, ~ zp — Hx, n;~ (B'B)'B'(x/,, —I'xy)

wheret denotesa posteriori estimation and~ denotesa
priori estimation. The estimated covariance noise between |
the affine parameters was also verified visually by plotting
pairwise parameter observations. An alternative approach
is to derive an optimal estimate based on the Kalman fil-
ter's underlying cost function. Estimation of the state vec-
tor x;41 based upon previous measurements is equivalent
to minimising cost function:

E(X;:H) = %(XZH - X;—1)T(P71)(XZ+1 —Xp_1)

+5 (2 — Hxyy )T (R™Y) (2 — Hx[ )

The first term specifies the temporal constraint while the
second expresses the data conservation, where all errors are
measured using the Mahalanobis distance. We propose ap-
ply one robust norm to the second term in order to derive a

robust Kalman filter. Efficient minimization of this function Figure 5. This sequence demonstrates the ad-
could be performed using a technique such as Iteratively ~vantage in using adaptive scheme with non-
Recursive Least Squares (IRLS) [13]. rigid expression changes. The first row shows

The human head will inevitably move in ways which are ~ the overlaid results from EigenTracking whilst
not predictable using these simple dynamic models. An the second row shows the results from the
effective way in which to detect this “unpredictability” is adaptive scheme with shape encoded.
to run one iteration of the optimisation algorithm used for ] ] )
tracking. Only if the direction in affine parameter space of ~ Figure 6 shows view alignment from a 260 frame se-
this iteration step agrees with that of the Kalman prediction duénce with both affine and pose variations. The training
are the predictions utilised. This works well if not many Sethad 100 images and 54 eigenvectors were used in a GES
outliers are present because with the continuation method®@Pturing 9% of the variance. However, with the adaptive
used the initial estimation of the affine parameters with high Scheéme using LES, only 6 eigenvectors were needed to re-
o could be quite different from the final one with law cover sufficiently accurate parameters for alignment.

Figure 7 gives an indication of savings in computational
6 E . t d Di . cost when the adaptive scheme is applied. It shows the

Xperiments an IScussion time taken in seconds to perform the minimisation (Equa-

The system was initially implemented in Matlab and tion (2)). The first column shows the time required for each
took an average of 14 sec/frame. In C, it could run at nearframe using GES with 54 eigenvectors. The second column
2 sec/frame on a standard 200MHz PC. Applying IRLS to Shows the time required for each frame with LES but with-

the minimisation process can solve an approximation of the@Utthe previous history at-1. The third column shows the
robust formulation in near real-time. result from augmented LES using- 1 tracked data. The

Figure 5 shows the ability of the new adaptive scheme to Mmean cost for GES was 29 sec/frame, 15 sec/frame for LES

align a face undergoing non-rigid expression change. Simi-and 12 ;ec/frame far—1 augme_nted LES. _
lar problems occur when the assumption of affine transfor-  In this paper we present an integrated scheme for view
mation is no longer valid. The adaptive scheme was shownalignment. We exploit the transformation between the train-

— _ _ ing set (TS) and the eigenspace in a computationally in-
_Pairwise plots of the affine parameter measurements typically revealed o, o nsjve manner in order to establish the correspondence
trajectories in the 6-dimensional affine parameter space which were ap-

proximately linear or piecewise linear. Therefore, it seemed reasonable tobetW_een the Iandmarks in the TS and the image. A dy-
use a constant velocity model. namically adaptive scheme was adopted to compensate the




Figure 6. A sequence with attentional windows and face boxes overlaid.
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Figure 7. Convergence times required by the minimisation process.

small changes in illumination and the nonlinear transforma- [7] N. Sumpter, R. Boyle, and R. Tillett, “Modelling collective
tions that cannot be recovered with global affine transforma-
tions. Different approaches were experimented for updating
with frame-based updates gave the best results. However, if [g]
the training images are ordered, it is possible to update the
eigenspace which would be even more desirable [14]. Our
current scheme did not include a pre-filtering process to ad- [g]
dress changes in global illumination. This can be addressed
by estimating the illumination in the new image dynami-
cally with the homomaorphic filtering and then apply it to
the training set. Other way to resolve the problem is to use
an additional basis to represent all the possible illumination
situations [15]. Gabor wavelets representation can also bqll]
employed which gives certain degree of invariance to global
illumination change [3].
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