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Abstract

The characterisation and detection of events in visual scenes is difficult to define in a general
framework. What constitutes an event is generally defined by contextual semantics. Therefore past
approaches at event detection in visual surveillance have typically involved low-level segmentation
and/or tracking, thus restricting their generality. In this work, a general semantics-free method is
proposed for the extraction of visual events. The technique is based on the definition that an event is
any sort of visual change. It is therefore necessary to determine visual changes that occur at different
rates. Wavelet analysis is employed to detect different rates of pixel-wise change in the image, while
a Gaussian mixture background model is used to determine absolute temporal change in pixel values.
Clustering is then performed in a feature space for these pixel-wise change events. The result is a
grouping of low-level events into high-level events. We show results on an artificial shopping scenario.
Preliminary results are also presented on the extraction of high-level causal rules connecting events.

1. Introduction

In general terms, scene understanding for visual surveillance from a fixed camera is so am-
biguous as to be unattainable with current vision technology. Identification of people, vehicles,
objects, interactions between people, manipulation of objects and so on is made difficult primar-
ily by poor problem definition, lack of training examples for statistical learning, and the general
difficulty of automatically quantifying semantics, or meaning, in a situation. Furthermore, seg-
mentation in the image is difficult for surveillance applications due to the arbitrary and relatively
small size of objects in the image. Generally, significant high-level knowledge would be required
for successful segmentation.

It therefore comes as no surprise that most previous approaches have been based on low-level
segmentation or tracking of objects in the scene (Stauffer and Grimson, 2000; Morris and Hogg,
2000; McKenna et al., 2000; Haritaoglu et al., 2000). Immediately, the definition of a visual
event is constrained to moving objects of a certain size or shape. For example, in many cases
the definition of an event only concerns people in the scene (Morris and Hogg, 2000; McKenna
et al., 2000). The tracked trajectories of the objects are then generally used in some high-level
knowledge acquisition. Naturally some form of pixel grouping must be performed to obtain high-
level knowledge from the scene, but our point is that it should be performed robustly in stages,
rather than initially at a low level where insufficient information is available.

Of late, several attempts have circumvented the problem of segmentation and tracking by
learning localised or pixel-wise variations (Stauffer and Grimson, 1999; Chomat et al., 2000; Ng
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and Gong, 2000). The local models are then used to detect local visual events. Provided only
detection is required, this approach overcomes the problems of segmentation and definition of
the meaning of behaviour in the scene, which inevitably is problem-specific. However, pixel-
wise modelling is computationally expensive, and if high-level knowledge is required then pixel
grouping still must be performed.

Given that a pixel-based approach is preferable, a further issue is whether learning should
be supervised or unsupervised. Supervised learning is generally less difficult since the user can
supply examples of the background without any objects (ie: clean frames), and examples of
typical behaviours. In this way, semantics are introduced. However there are two difficulties
with supervised learning. First, training data or clean frames may be unavailable. Second,
it may be infeasible to manually label sufficient training data. That labelling also involves a
subjective element, especially when it comes to human behaviour. Due to these difficulties, and
in pursuit of the ultimate point-and-shoot surveillance system, an unsupervised learning approach
is preferable. This is true in particular for the application of behaviour or scene profiling, which
means accumulating information about the scene, rather than imposing prior models.

An assumption that most approaches do not explicitly discuss concerns temporal scale. The
spatial bounds of the image domain are pre-determined by the camera and grabbed image size,
however time extends forever. Thus the question arises: over what temporal scale should be-
haviour or events be defined?

We propose a method for unsupervised scene profiling that can learn, classify and detect high-
level visual events in an unsupervised manner. The algorithm does not require prior specification
of scene semantics. Based on the most general definition of an “event” as visual change in the
scene, the approach detects pixel-wise temporal change occurring at varying temporal scales.
These low-level detections are then characterised by a set of local features, and unsupervised
clustering is performed on the set of observed events. The result is a categorisation of events into
classes that can be labelled by a human as having some high-level meaning. The classification
enables events to be detected and classified on-line, information that can be used in high-level
reasoning.

In section 2, different types of scene change are discussed and a definition of an event is of-
fered. Section 3 describes the wavelet histogram method for detecting change at various temporal
scales. A method is described for detecting, classifying and interpreting events in section 4. The
experimental results on a test sequence are given in section 5, and the conclusion is found in
section 6.

2. Defining an “Event”
The problem at hand is behaviour or scene profiling, defined here as follows:

Given a fized camera and long-term video acquisition, learn to detect abnormal behaviour or events
in the scene.

Before moving on, let us expand on this definition. Long-term exposure may constitute years,
captured at frame rate. Therefore the system may not wantonly accumulate data or models.
Iterative optimisation algorithms should be avoided for timeliness constraints. The system must
learn to detect. The traditional method is to learn models of normal behaviour and events, then
test observations for deviations from these models. We assume the definition of “normal” to be
“regularly occurring”. Therefore the frequency of occurrence of an event may be low so long as
it is regular.

People generally have a conceptual understanding of the term “visual event” as relating to some
kind of visual change. Indeed, many past surveillance research approaches are based on motion
or change detection (Stauffer and Grimson, 2000; Morris and Hogg, 2000; McKenna et al., 2000;
Haritaoglu et al., 2000). However, these approaches immediately impose some semantics, either
explicitly or implicitly, by grouping pixels into high-level events. When performed at a low level,
the grouping implicitly requires definition of information such as spatial scale. More importantly,
the change detected by these approaches is generally defined as the absolute difference from a
reference frame. However, many dynamic scenes contain a rich variety of change occurring at
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different rates. In (Toyama et al., 1999), high-level visual change is classified into ten categories.
Consider the list of different events and the manner of visual change they cause, shown in Table 1.
It is clear that if the definition of visual change were restricted to absolute difference, then many
events would become indistinguishable or undetectable. For example, a person passing by and a
person stopping for a few minutes would not be differentiated at the pixel level by the dynamic
background modelling technique of (Stauffer and Grimson, 2000). It should be noted that the
events from the table can all occur at different times in the same region of the image. For
example, long-term lighting changes due to the weather are temporally superimposed with short-
and medium-term changes due to passers by at the same pixel.

| Event or Behaviour | Pixel Change |

person walks past short-term perturbation with frequency corresponding to
speed of moving edges and texture

sun goes down long-term smooth change

bag dropped instantaneous step change

item removed from background instantaneous step change

light switched on instantaneous step change everywhere

television switched on instantaneous step change then arbitrary change there-
after

person stops at vending machine medium-term perturbation due to moving edges and tex-
ture

trees moving in wind continual change of certain frequency

Table 1. Examples of some common scene events and a summary of their resultant pixel change.

In order to encompass the broad range of visual events experienced in everyday scenes, we
define an event as any kind of significant visual pizel-wise change. Although this definition allows
an automated system to detect all manner of events, it presents the challenge of finding a single
technique that can cope with these different types of change. The work of (Ng and Gong, 2000)
overcomes the restriction of absolute change models by augmenting the dynamic background
model with localised temporal models of pixel change. At each pixel, change models are matched
to novel observations over time to determine whether the observed change is normal or abnormal.
However, the method requires supervised learning and is computationally expensive, and works
at a fixed temporal scale.

We propose a temporal multi-resolution approach to change detection. Although pixel grouping
is inevitably required for high-level definition of events, in the first instance there is insufficient
information to perform robust segmentation. Therefore each pixel is analysed in isolation over
time to distinguish change occurring at different rates. Local features can then be attached to
occurrences of significant change, and unsupervised learning can determine classes of event in the
scene.

3. Temporal Multi-resolution Analysis of Visual Change

General low-level event detection requires a method to detect change occurring at different
temporal scales. The method must represent different super-imposed frequencies localised in
time. It must also be computationally efficient enough so be applied to the huge space-time
volume of image data. Clearly a time-frequency analysis algorithm is required. The Fourier
transform would be inappropriate since it gives no localisation in time. The Short-Term Fourier
Transform (STFT) would be more appropriate, but it is highly redundant which would contravene
the requirement for computational efficiency. The STFT also requires the selection of a time
window, again restricting temporal scale. Wavelets were designed to overcome these problems (
Akansu and Haddad, 1992; Wickerhauser, 1994), and are used in our approach. Wavelets are
essentially time-local band-pass filters that yield a multi-resolution time-frequency representation
of a signal. The lowest band is a low-pass filter which provides the absolute pixel values over
some time frame. The wavelet representation can then be used to form models of pixel change.



The approach taken is to form a Discrete Wavelet Transform (DWT) at each pixel over time.
Consider the intensity values of a single pixel over time. The input time series z(t) can be
decomposed into a set of basis functions called wavelets (?):

o(t) = [ [ 76,7 ()drds (1)

The basis functions v, ,(t) are scaled and translated versions of the mother wavelet 1)(t):
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Note that the scale s is inversely proportional to frequency, so that small scale means high
frequency. (s, 7) is the projection of z(t) onto 5 ,(2):

1(s,m) = [ 2O Ot (3

The wavelets themselves are localised in time and frequency. The integral of equation 1 is infinite,
so in practical applications s and 7 are sampled on a dyadic grid, resulting in discrete wavelets. If
z(t) itself is discrete, then the discrete wavelet transform is obtained. As the scale increases, the
wavelet projections 7y(s,7) have decreasing spatial resolution and highlight features of decreasing
frequency. The result is a set of band-bass filters with logarithmic frequency coverage. Since
a finite number of scales s = [1,..., L] must be used and the frequency coverage is iteratively
halved with scale increase, a low-pass filter called a scaling function is used to cover the remaining
low-frequency region.

To further illustrate, the input and output of a DWT is schematically shown in Figure 1. The
input sequence z(t) is shown in Figure 1(a). The output y(¢), shown in Figure 1(b), contains the
v(s, ) packed into the same array, with small scales (levels) having a higher sampling density, a
consequence of the fixed time-frequency bandwidth product for filters imposed by the Heisenberg
uncertainty principle. As a result, the output requirement of a DWT is the same as the input
(ie: T samples go in, T samples come out), and the computation is O(T') (Wickerhauser, 1994).
The DWT is satisfactory for our large volumes of data, because of the linear computation and
storage requirements.

Original Data, 1 Pixel

time ————————

(a) Input Data

Discrete Wavelet Transform, 1 Pixel, frequency domain

Low-pass filter output
/ frequency —=

[ [ [
LevelL ... Level 2 Level 1

(b) Frequency sub-division performed by DWT

Figure 1.  Input/Output relationship of the Discrete Wavelet Transform.

After the DWT is performed, the resulting frequency information can be stored in a time-
frequency histogram to characterise events occurring at different instants. A schematic example of
such a histogram is shown in Figure 2. For an image containing N pixels, the storage requirement
of the histogram is N.T.L, which quickly becomes unmanageable. A more feasible approach is to
accumulate frequency information at each pixel over time, which requires bins for each pixel and
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scale level only. This information can subsequently be used to determine which frequencies of
change occur over time in different regions of the image. Note that the DWT method described
here is a block processing method. For example, if 7' = 1 hour, then 1 hour’s worth of video data
would have to accumulate before the DWT can be performed. For an on-line system, a rolling
DWT would have to be used, which can compute the DWT on-line as image frames arrive.

Discrete Wavelet Transform, time domain

time ———————=

space

scale
(1/freq) ]

il

Figure 2.  Multi-resolution scene profiling histogram.

4. Extraction of Events from Visual Data

We are ultimately interested in events that can be assigned high-level descriptions, such as the
arrival of an automobile or a change in the weather. These events will naturally consist of many
pixel-wise change events. For an unsupervised scene profiling algorithm, the distribution of events
must be learned over time in some feature space. Here we describe a method for learning classes
of events in the scene. First, events are detected locally in space and time. These local events are
accumulated over time in an unsupervised learning algorithm, resulting in a set of event classes.
The class information is subsequently used to detect and label local events, and for establishing
high-level assocations between events.

4.1. Local Event Characterisation

Two methods are described for detecting pixel-wise change events, and representing localised
events in a feature space. First a Gaussian mixture background model is used to detect absolute
pixel change, and the pixels are clustered spatially to form local events. Second the DW'T is used
to detect differential pixel change at different rates, and local events remain at the pixel level.
These two methods are compared in section 5.

The Gaussian mixture background model of (Ng and Gong, 2000) is used to detect pixel events
as absolute colour change in RGB space that does not fit the model. Pixel events are then spatially
grouped to form higher-level event boxes. We used a connected components algorithm for spatial
grouping. Those foreground box events that remain in predominantly the same position for a
non-trivial period of time are subsequently defined as local events. These events v; are then
characterised by the feature vector:

v = {t,:v,y,d,w, h’} (4)

where ¢ is the start time of v;, (z,y) is the central position of the event box in the image, d is the
duration, and (w, h) are the average event box dimensions.

To detect pixel-wise change events at different time scales, the Discrete Wavelet Transform is
used in a two-pass fashion. First a wavelet histogram is formed, then on the second pass the
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actual events are extracted. The purpose of the histogram is to identify regions of the image
where change occurs regularly so that spurious detections can be avoided. We use L = 7 levels,
which means the DWT is performed in blocks of 27 = 128 time samples (frames). Frames are
accumulated until 256 frames have been collected, then the DWT is performed over this time for
each pixel. A histogram of spectral power is accumulated for each scale or level as follows. For
each scale, the output array is visited and those absolute values that are over a noise threshold
contribute to the histogram at that level. The final histogram is thresholded on a per-level basis
to remove noise. This step is currently manual, but will be automated in the future. The 18-
sample Daubechies wavelet was used (Wickerhauser, 1994). The low-pass result of the DWT is
discarded; in the future it will be replaced with the Gaussian mixture background model.

The second-pass of the algorithm involves going over the sequence again and computing the
DWT. For each pixel, level and time frame, form an event if the DWT output value is greater than
the threshold. Only pixels with histogram values above threshold are included. These pixel-wise
detections are our local events, and are characterised by:

vy = {t,S,x,y, hag} (5)
where s is the temporal scale, h is the DWT output value for that scale, and g is the grey level
at the pixel (z,y).

4.2, Grouping to Form High-Level Events

Given the set v1,...,vy of local events, the final step in training is to perform clustering in
feature space to determine the distinct classes of event in the scene. We use k-means clustering
with k a manually-determined parameter. The EM algorithm would also be a candidate for
learning the clusters. Given that we now have K classes of events, the v; can be classified on-line.

4.3. Correlations Between High-Level Events

Given that classes of events have been identified, the ultimate aim for artificial intelligence
is to determine high-level information about the events and the objects that cause them. An
example is establishing causal connections between events in space and time. Here we present a
naive attempt at establishing causal rules connecting classes of events.

Suppose we are at the beginning of an event v, of class A. We want to know if v, causes events
of class B. What we are essentially saying is that v, (nearly) always occurs in the not-too-distant
future of v,, but not necessarily vice versa. For example, if a shopper takes an item from the
shelf, he will pay within the next few minutes, but afterwards the next shelf item may not be
taken for another half an hour if it is not a busy day. Using a one-sided Gaussian weighting
function centred on the starting time of event v,, the Gaussian-weighted time difference between
the beginnings of events v, and v, can be determined. The purpose of the weighting function
is to give higher weight to events that are temporally proximate. The weighted differences are
accumulated in a covariance matrix for all combinations of events:

C(4,B)= ) > G(t(v); t(vi), 0) (6)

10, €A jiw; €B,t(vj)>t(v;)

where t(v;) is the time at which event v; occurred. The element C(A, B) is the accumulated
weighting of events of class B following events of class A. The matrix is upper-triangluar because a
one-sided Gaussian was used so that only connections forward in time are sought. By thresholding
these correlations, rules can be established such as “if A happens then expect B” to happen. These
rules are then triggered by detection of the causing event (A), and in response an alarm shows
the expectation of the occurrence of the caused event (B). This is a very simple algorithm, and
there is much scope for exciting research to further develop these ideas.

5. Experimental Results

In this section, the results of event detection are presented using the two approaches. First,
the Gaussian background model is used to detect local events. Second, the wavelet transform is
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used to detect pixel-wise events. After the listing of low-level local events, the same clustering
method is applied. In the following sub-sections, we first present the experimental data, then
describe the two low-level event extraction methods. Finally the detection of high-level events in
the video sequence is shown, and the extraction of high-level rules linking events is described.

5.1. Shop Data

We have collected a 20 minute test sequence called the shop sequence, involving an artificial
shopping scenario. The scene is shown in Figure 3. A shop keeper sits behind a desk on the right
side of the view. An assortment of drink cans is laid out on a display table. Customers enter from
the left and either browse the wares without purchasing, or take a can and pay for it. Abnormal
behaviour would be to take a can and leave without paying. We will show how the system can (a)
detect the events of browsing, taking a can, and paying, and (b) learn the temporal association
between these events. The data were sampled at about 8 frames per second.

Figure 8. The shop scenario.

5.2. Detection of Absolute Change

Absolute change event boxes were extracted from the sequence, an example is shown in Figure 4.
Using this method, N = 213 local events were extracted from the shop sequence.

These local events were then clustered using k-means with k=4. The absolute change local
events v; and their respective classes are shown in Figure 5. Although clustering is performed
in a high-dimensional space, only the x-y co-ordinates of the events are shown here. The four
different colours show the four clusters found. These have been manually labelled as being caused
by the shop-keeper, browsing, paying and cans taken. Note that the results are quite noisy due
to mis-detections and poor segmentation. In particular, the payment events are on the ground,
and segregated from the change caused by the upper-body of the customer. This is due to errors
made by the spatial clustering algorithm when forming the local events.

Figure 6 shows some examples of video footage annotated with events v; that were detected
on-line using the absolute change local event method.

5.3. Detection of Multi-Scale Temporal Change

In contrast, the DWT was then used to extract events from the same sequence. Since the
frame rate is about 8 fps, the longest event we can characterise with 7 levels is 8-16 seconds in
duration. An example of the wavelet histogram is shown in Figure 7. At each scale level and
pixel, the thresholded histogram value is true (white) if significant change occured there. It can
be seen that different occurrences are highlighted at different scales with continuous variation
over scales. For example, paying the shopkeeper is quite prominent at level ?7. The histogram
was then used to extract pixel-wise events at different levels from the shop scenario, the resulting
event list contained N = 250,297 events.



(a) Original Scene

(b) Pixel Change Events

(c) Grouped Pixel Events

Figure 4. Example of local event characterisation using Gaussian mixture background model.
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Figure 5.  Clustered events using the Gaussian mixture background model to detect absolute change local events.

Only the x-y positions of the events are shown.

Figure 6. Example event detections. Blue box indicates browsing. Red box indicates can taken. White box
indicates shop-keeper moving. Green box indicates paying.

After clustering the multi-scale temporal change local events, the v; and respective classes are
shown in Figure 8. Again the 4 different classes, though found using unsupervised learning, have
been manually labelled, this time as shop-keeper, paying, browsing-left and browsing-right. In
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Curcent Image Wawelet Transform: Level O Wawelet Transform: Level 1 Wawelet Transform: Level 2

=

Wavelet Transform: Level 5 Wavelet Transform: Level &

Figure 7. 7 level wavelet histogram of the shop scenario. From left to right, top to bottom, the figures are:
original scene, then thresholded histograms in binary form from level 7 to level 1.

this case, the events are very clearly distinct from each other, with very dense detection rates. The
main difficulty is that the cans being taken have not fallen into a class of their own. In fact they
are not very distinct in the histogram of Figure 7. The reason is that the can is taken suddenly,
with no subsequent change. In terms of temporal change, this would be hard to distinguish from
noise. Since the wavelet method is based only on temporal difference and not absolute difference,
it cannot detect such events. Rather it needs to be combined with the absolute change method.

Event clustering using wavelets

browsing/entering
browsing
x = shopkeeper
paying

Figure 8.  Clustered events using the wavelet model to detect multi-resolution change local events. Only the x-y
positions of the events are shown.

5.4. Comparison

In comparing the two methods, we can see that the wavelet-based approach gives a much better
clustering. One advantage of the Gaussian mixture model method is that one ends up with fewer
events, making the algorithm computationally less expensive. The trade-off is that some grouping
must be performed at a level that is too low to be robust. Note that the absolute change method
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| | can | paying | shopkeeper | browsing |

can 0.0 | 3.3698 0.5837 [  0.6546 |
paying 0.0 0.0 1.3320 1.3819 |
shopkeeper | 0.0 0.0 0.0 0.5691 |
browsing 0.0 0.0 0.0 0.0 |

Table 2. Causal correlation matrix showing causal connections between events.

involves a much more restrictive definition of an event at the low level. Semantics have been
imposed through the interpretation of the background modelling results, spatial clustering of
pixels into local events, and temporal grouping of instantaneous events at the same position. The
multi-resolution method imposes no such semantics, but again suffers from a large number of
resulting events. Both of the local event detection methods need to be combined in one final
solution.

5.5. Causally Linking Events

Experimentally, the causal correlation matrix C' shown in Table 2 was established. The stan-
dard deviation of the time-weighting Gaussian was o = 100 frames. The element C(A, B) shows
the accumulated weighting of event B following event A. It can be seen in the table that there is
a very strong causal link between taking a can and paying, highlighted in bold. There is also a
relatively strong connection between paying and the shopkeeper moving, which makes sense since
he is roused from his book when receiving the money.

In our case, the system developed the rule “if can is taken, then expect payment”. An example
is shown in Figure 9. A can been stolen (left box) which triggers display of the centre of the
payment event cluster (right box). Until a payment event transpires, the box will continue to
flash. Although this algorithm is quite simple and naive, the results are still quite powerful.

Figure 9. Example of the causal rule linking cans taken and payment. A can been stolen (left box) which triggers
display of the centre of the payment event cluster (right box).

6. Conclusion

A methodology for detecting general visual events in a scene has been presented. Two al-
gorithms for detecting local events have been presented and compared, one based on absolute
change and the other on different rates of differential change. The methods were tested on real
data.

Future work will involve further investigation of the wavelet approach, including the use of
an adapted wavelet analysis to remove noise and reduce the number of detections. The two
detection methods need to be merged to detect both absolute and relative change. An on-line
implementation of the algorithm would enable experiments conducted over many days in real
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situations. Finally, there is great scope for more work on using these visual events for high-level
reasoning, such as finding causal connections.
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