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a b s t r a c t

In this paper, we present a framework for robust people detection in low resolution image sequences of
highly cluttered dynamic scenes with non-stationary background. Our model utilizes appearance fea-
tures together with short- and long-term motion information. In particular, we boost Integral Gradient
Orientation histograms of appearance and short-term motion. Outputs from the detector are maintained
by a tracker to correct any misdetections. A Bayesian model is then deployed to further fuse long-term
motion information based on correlation. Experiments show that our model is more robust with better
detection rate compared to the model of Viola et al. [Michael J. Jones Paul Viola, Daniel Snow, Detecting
pedestrians using patterns of motion and appearance, International Journal of Computer Vision 63(2)
(2005) 153–161].

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Pedestrian detection in a busy public scene is a challenging task.
The difficulties lie in modelling both object and background clutter
contributed by a host of factors including changing object appear-
ance, diversity of pose and scale, moving background, occlusion,
imaging noise, and lighting change. The problem is made harder
still if the camera is placed at a distance from the scene resulting
in lack of pixel details on the objects of interest. There exists a large
body of work in people detection which can be broadly categorized
into two groups: static and dynamic detectors [10,5]. Static people
detectors [6] rely mainly on finding robust appearance features
that allow human form to be discriminated against a cluttered
background. This is combined with a classifier, such as SVM or
AdaBoost, to search through a set of sub-images using a sliding
window, or alternatively using probabilistic geometrical voting
based on the local appearance features detected on the object [16].

Popular static appearance features include rectified Haar wave-
lets [18], rectangular features [25], and a family of SIFT (Scale
Invariant Feature Transform) [15] like features such as histogram
of oriented gradients [6,14]. Papageorgiou et al. [18] described a
pedestrian detector using SVM classification of Haar wavelet fea-
tures. Gavrila and Philomin [9] presented a pedestrian detection
system by utilizing silhouettes information extracted from edge
images. Viola et al. [20] proposed a detector using cascaded Ada-
Boost of rather simple but effective rectangular local template fea-
ll rights reserved.
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tures. SIFT features have also been shown to be promising for
pedestrian detection in static images [6].

Comparatively there is much less work on dynamic detectors,
although the basic concept of using motion information for human
pattern recognition is not new [13,11]. Current dynamic detectors
rely typically upon short-term motion by estimating optic flow [7].
However, computing optic flow is both expensive and highly sen-
sitive to environmental noise. Alternatively, Viola et al. [25] ex-
tended their static detector by directly boosting short-term local
motion features. The model also assumes that human motion pat-
terns in a test sequences are similar to those in the training set.
However, human motion is more diverse than its appearance and
it is very difficult to collect a training set covering exhaustively
all possible motion styles in different temporal scales. Moreover,
existing methods for computing short-term motion assume mostly
that the motion is locally smooth. However this is untrue espe-
cially in busy public scenes when apparent motion is subject to
lighting change, reflection, moving background such as tree leaves.
Consequently such short-term motion based models are prone to
false positives and misdetections due to non-stationary back-
ground clutter and diversity in human motion style.

In this work, we present a framework for robust people detec-
tion in highly cluttered public scenes with non-stationary back-
ground by utilizing both human integral gradient appearance
and their long-term motion information. In particular, we utilize
SIFT-like features in an integral framework that selects automat-
ically histogram features at different scales. We compare the
experimental results of this representation with that of the fea-
tures selected by the models of Viola et al. [20,25]. In addition,
our model does not require the estimation of continuous motion
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such as optic flow in training thus reduces the number of features
required for training a classifier. It allows for any detected
appearance hypothesis to be verified using a long-term motion
history analysis. We show experimental results that demonstrate
the efficacy and robustness of the proposed approach against that
of Viola et al.

2. Integral orientation histogram and short-term motion

Our aim is to select robust appearance and motion features
suitable for highly cluttered scenes with non-stationary back-
ground. For appearance, we consider SIFT-like linear appearance
features due to its success in object detection and categorization
[26].

Orientation of local image gradients can be sampled by a set of
bins. Similar to SIFT [15], we consider 8 bins. Furthermore, gradi-
ent orientation at each pixel location can be weighted by its gra-
dient magnitude. A weighted gradient orientation histogram for
each pixel location of kth bin ðk 2 1;2; . . . 8Þ at scale s is then de-
fined as

hðx; y; s; kÞ ¼ 1
Z

I
R
krIkxðx; y; kÞ ð1Þ

where rI is the gradient vector, i.e., ðIx; IyÞ;R is the size of the local
support region as a function of scale at pixel point ðx; yÞ; Z is a nor-
malization factor, and xðx; y; kÞ is an orientation counter for the kth
bin denoted as

xðx; y; kÞ ¼
1 if hðx; yÞ 2 kth bin

0 otherwise

�
ð2Þ

where hðx; yÞ is the gradient orientation computed by
arctanðIy=IxÞ:hðx; y; s; kÞ can be computed very efficiently by con-
structing an integral orientation image similar to that of an Integral
Image introduced by Viola et al. [25]. Thus the orientation histo-
grams across different scales can be computed by four array refer-
ences operated on integral orientation images, which corresponds
to perform convolution of the simple rectangular filters on the ori-
ginal orientation images. In contrast to using SIFT-like appearance
features at a fixed grid scale by Dalal and Triggs [6], this integral
operation facilitates a single operation for computing local SIFT-like
features at different scales. Examples of gradient orientation histo-
grams computed from pedestrian images along with the filter used
to compute the histograms in each orientation image are shown in
Fig. 1.

Short-term motion information can be computed using either
optic flow or frame differencing. For simplicity and cost-effective-
ness, we adopt frame differencing for estimating short-term
motion similar to that of [25]. To that end, five different frame-dif-
ferenced images: D;U; L;R;D were generated using different filters
during frame-differencing.
Fig. 1. Top 10 gradient orientation histogram (AG) features selected by AdaBoost when j
rectangular filters (red boxes) superimposed onto the gradient orientation images (top
D ¼ absðft � ftþ1Þ
U ¼ absðft � ftþ1 "Þ
D ¼ absðft � ftþ1 #Þ
R ¼ absðft � ftþ1 !Þ
L ¼ absðft � ftþ1  Þ

ð3Þ

where ft ; ftþ1 are feature images (could be gradient images) in time,
f"; #;!; g are image shift operators. This is aimed to capture mo-
tion in different directions. Examples of such 5 motion images com-
puted for two different pairs of input frames are shown in Fig. 2.

In general, orientation histogram can be computed on any type
of images. Thus, a motion orientation histogram can also be consid-
ered as an extension to the appearance gradient orientation histo-
gram representation. To that end, we created and summarized
several types of pedestrian features on these images. Let Ið�Þ de-
notes the feature extraction by the integral operation on images.
Thus, those features can be computed by the following equations,
respectively:

AI ¼def Iðf ðx; y; tÞÞ ð4Þ

AG ¼def Iðrf ðx; y; tÞÞ ð5Þ

MI ¼def IðmÞ;m 2 fD;U; L;R;Dg ð6Þ

MG ¼def IðrðmÞÞ;m 2 fD;U; L;R;Dg ð7Þ

More specifically, AI denotes the Haar-like linear appearance fea-
tures as used in [20], which are computed from intensity images.
AG represents histograms of appearance gradient orientations cal-
culated by Eq. (1). MI is short-term motion information obtained
by direct image differencing as used in [25]. MG is motion gradient
orientation features and computed on differenced images as in Eq.
(3). We further denote a combination of AI and MI as AI þMI (the
+ operator represents a union of features rather than a summing
of the histograms), a combination of histograms of gradient orienta-
tions plus short-term motion as AGþMI. In the following we use
AI;AG;MI;AI þ AG;AGþMI;AGþMG to represent these types of fea-
tures, respectively.

The importance of each feature type can be judged by the fea-
ture selection technique, e.g. AdaBoost in the context of pedestrian
detection. Thus to obtain the best feature representation as well as
some insights into the effectiveness of most of the features avail-
able today for pedestrian detection, we jointly boosted different
types pedestrian features mentioned above, e.g., AI þ AG. To
achieve this, both the appearance and short-term motion features
are then used as weak features for an AdaBoost detector. A detailed
comparison as well as some discussions of each feature type is
shown in Section 4.3.

The success of SIFT [15] suggests that features by histogram of
orientations usually outperform appearance features. Our experi-
ments confirm this, however, further show that this is not neces-
sary true for the motion features. MG is comparable to MI at least
in the context of using motion images produced by direct image
ointly boosted with Haar-like linear (AI) features. They are indicated by the selected
row) and the intensity images (bottom row).



Fig. 2. Two examples of short-term motion image pairs and their corresponding 5 motion images via frame differencing after different orientation filtering.

Fig. 4. Top 5 Haar-like linear (AI) features selected by AdaBoost, when jointly
boosted with AG (gradient orientation histogram) features. Note that the top 10
features selected are shown in Fig. 1.
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differencing [25]. Thus a motion orientation histogram does not
bring about additional advantage over simple motion filters.

2.1. Seeding detection

Popular classifiers for object detection include SVMs [19], neu-
ral networks [21], naive Bayes classifiers [22], AdaBoost [20], etc.
Comparison of these different classifiers is out of scope of this pa-
per. Thus we use the boosted stumps as Viola et al. [25], since it has
been shown to work well and has real time performance. They per-
form feature selection and could give some insights into analyzing
the importance of each feature type, such as the linear features and
gradient orientation features as shown in Fig. 7, thus resulting a
fairly small and interpretable classifier. The weak detector is a
thresholded single features decision function, consisting of a fea-
ture ðf Þ, a threshold ðhÞ and a polarity ðpÞ indicating the direction
of the inequality:

wðx; f ;p; hÞ ¼
1 if pf ðxÞ < ph

0 otherwise

�
ð8Þ

The strong classifier is a linear combination of the ranked weak
classifiers. In our paper, we perform 1000 round of boosting among
the sets of different features types. The selected weak classifiers are
used to construct the final detector. To achieve scale invariance, we
run the detector on a test image or image pair at multiple scales
multiplied by a scale factor 0.8 and report the location as well as
the scale with strongest output. In order to combine other informa-
tion evidence usually interpreted in probability form, e.g. the long-
term motion information, we convert the output of each boosted
classifier into a probability by using the sigmoid transform.

3. Removing false alarms using long-term motion

3.1. Detection adaptation

Directly boosting appearance and short-term motion informa-
tion for pedestrian detection does not cope well with non-station-
ary background clutter as shown in Fig. 4Fig. 5. Because the
appearance and local motion do not take into account the propa-
gating dependencies between different frames. To address this
problem, a typical approach is to deploy Bayesian temporal filter-
ing to propagate the conditional dependencies. However Most of
the existing work considers the detection and its adaptation as a
separate task, where the two tasks should be addressed simulta-
Fig. 3. The graph models of the Bayesian verification process.
neously in practical applications in visual surveillance. Strens and
Gregory described an object detection and tracking approach using
hidden Markov model (HMM) [24]. They used HMM to model the
dynamics of a region of interest (ROI) rather than a single pixel.
This approach can be considered as a special variant of Bayesian fil-
tering. The approach is evaluated based on synthetic data. Hence
the performance of this approach on real data in not known. The
method presented in [17,4] is also along this line of research, but
does not include the long-term motion information. Thus it would
inevitably propagate the false positives created by the AdaBoost. At
the first step, we use a similar approach as in [17] and take the out-
put from the AdaBoost detector only as hypotheses, then adopt the
Bayesian sequential estimation, particle filtering technique [12], to
cope with the non-linear, non-Gaussian models. In our application,
due to the occlusion and diversity of the motion of the hypothesis,
the particle filtering is an idea model of our system. The basic
Bayesian filtering is a recursive process in which each iteration
consists of a prediction step and a filtering step described as
follows:

Prediction step : ðpðxtjy0:t�1Þ ¼
Z

pðxt jxt�1Þpðxt�1jy0:t�1Þdxt�1

Filtering step : pðxtjy0:tÞ ¼
pðytjxtÞpðxt jy0:t�1ÞR

pðytjxtÞpðxt jy0:t�1Þdxt

where the pðyt jxtÞ is the likelihood model, and pðxtjxt�1Þ is the target
dynamics model, which we set as a zero-order temporal tracking
model for verification. The temporal model is defined as

xðtÞ ¼ xðt � 1Þ þ Nð0;RÞ ð9Þ

where xðtÞ is the hidden state of location and scale of the object at
time t, i.e., ðlx; ly; sÞ:Nð0;RÞ is a temporal prior measurement Gauss-
ian distribution model. Here, we empirically set the parameter R to
be diagonal as (2,3,0.3). The number of particles we used in our
experiments is 30 per instance.

Tracking can recover the misdetections by AdaBoost, however,
prediction errors in tracking learned from previous frames could
be accumulated incorrectly without some form of verification,
especially, when it is initialized by a new false alarm. An example
can be seen in Fig. 5. In the following, we further seek to remove
these false alarms using motion evidence across a relatively large
temporal scale.



Fig. 5. Scene examples of the detection results in each step of our method. (a) The raw output of AdaBoost detector: red bounding box; (b) shows the results maintained by
the tracker. Red box means the detection agreed by both the tracker and AdaBoost detector in the current frame except any new detections by AdaBoost in the current frame
(shown as green boxes). Yellow box denotes the hypothesis maintained by the tracker while missed by detector on the current frame; (c) results after fusing the long-term
motion information; (d) the corresponding frame in the sequence.
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3.2. Motion confidence map

Looking at objects across a long temporal segment could give us
additional cue to identify them. Fig. 6 shows examples of four
hypotheses as well as their motion confidence maps. Note that
though dynamic AdaBoost detector assigns a high score for each
of them, we can still clearly see their difference by their long-term
motion map. Here we adopt a long-term motion estimation ap-
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proach using background subtraction, assuming a fixed view. More
precisely, we utilize a Gaussian mixture background model [23]:

pðx; y; tÞ ¼
X

i

aigðf ðx; y; tÞ; hi;x;y;ri;x;yÞ; ð10Þ

where x; y is the location of each pixel, ðhi;x;y;ri;x;yÞ are the model
parameters of each individual Gaussian components g, and
f ðx; y; tÞ is the local pixel intensity. The variation of one frame
f ðx; y; tÞ with respect to the background model is estimated as the
probability distance given by

vðx; y; tÞ ¼
X

i

ai expð�1=2ðf ðx; y; tÞ � ĥi;x;yÞ2=r̂2
i;x;yÞ ð11Þ

ðĥ; r̂Þ is the estimation of ðh;rÞ. This type of motion information is
very effective at highlighting changes in motion in the scene. How-
ever, this is also an undesirable property in our case since the noisy
motion caused by lighting changes is inevitably augmented. See
Fig. 8(b) as an example. To suppress the noisy motion caused by
lighting changes, we further take the spatial motion contrast into
consideration in the Gaussian mixture model as follows:

vðx; y; tÞ ¼
X

i

ai exp �1
2
ðf ðx; y; tÞ � ĥi;x;yÞ2

r̂2
s

 !
ð12Þ

In the background model of Eq. (10), ri;x;y is the strength of the mo-
tion of each pixel at ðx; yÞ, we calculate rs here in Eq. (12) as the
mean or median of ri;x;y. Examples of motion extraction using this
model are shown in Fig. 8(b) and (c), where in (b) motion was esti-
mated using the Gaussian mixture background model without con-
sidering spatial motion contrast whilst in (c), it was taken into
account. This demonstrates clearly the effectiveness of utilizing
the spatial motion contrast measure given by Eq. (12) for removing
motion noise as compared to existing Gaussian mixture models. To
find the contributions of the motion confidence m of each hypoth-
esis h to the object o, i.e., pðmjo; hÞ, we define it as a correlation be-
tween the motion map of a hypothesis, mh, and pre-obtained local
human motion template mt as shown in Fig. 6 by a set of local hu-
man long-term motion maps. Note that this definition enables
pðmjo;hÞ 2 ½0;1�, thus it can be considered as a probability
distribution.

pðmjo;hÞ ¼ < mh �mt >

jmhjjmtj
ð13Þ
3.3. Bayesian verification

For a bounding box hypothesis, we wish to find the probability
of the presence of an object given motion confidence m and
appearance measure c; pðojc;m;hÞ, which is given by the Bayesian
rule as follows:

pðojc;m;hÞ ¼ 1
Z

pðmjh; oÞcpðcjh; oÞpðhjoÞ ð14Þ
Fig. 6. The appearance images (top row) and the long-term motion maps (bottom
row) of false alarms (left) and true positives (middle). Right column shows the
human motion template used in our experiments.
Here, we assume that the motion m and the appearance c are con-
ditionally independent. To understand this more clearly, the direc-
ted probability graph model of the Bayesian verification process (Eq.
14) is shown in Fig. 3, where the arrows indicate the dependencies
between variables. pðmjh; oÞ is the contribution of the motion map
within the hypothesis bounding box given the object, which is com-
puted using Eq. (13). pðcjh; oÞ is the appearance confidence measure
generated by the AdaBoost detector. pðhjoÞ is the confidence of the
hypothesis by the object detector, which in our case is a hypothesis
presence indicator for a certain object class. The final candidates are
selected by thresholding pðojc;m;hÞ. We introduce the exponent c
to balance the relative confidence of these evidences and to avoid
the over confidence of one of them. It can be set by cross-validation
and here we use c ¼ 0:5.
4. Experiments

4.1. Data set

Training set: The training set is collected from the video se-
quences in PETS2001 database [1]. Positive examples are collected
by manually tracking pedestrians through video sequences. Nega-
tive examples are uniformly randomly selected from the non-pe-
destrian areas across frames at different window locations and
scales. Sample patches are normalized into patches of size
20 � 15 as the same done in [25]. Negative examples (2250) and
positive examples (2250) were used during training. Examples of
these images are shown in Fig. 2.

Test set: Out test set contains image frames from CCTV video se-
quences taken from courtyard by fixed cameras, which is indepen-
dent from the training set. The courtyard sequences of size
640 � 480 per frame contain moving human figures of low resolu-
tion. Two sequences are used in our experiments with one contain-
ing 742 frames, the other 270 frames. They present static
background clutters caused by the buildings’ windows and dy-
namic background clutters caused the movement of tree leaves.
The dynamics of the background clutter can be clearly shown by
the optic flow computed by a robust estimation method by using
a robust method proposed by Gautama et al. [8]. See Fig. 8(a) for
the optic flow. Many frames contain multiple people under severe
occlusions. Fig. 5 shows some example frames from the courtyard
scene.
4.2. Evaluation strategy

The performance of our method is evaluated by comparing the
detected bounding box Bd of each hypothesis location to the
ground truth bounding box Bg in manually annotated data. This
procedure is similar to the PASCAL VOC (visual object class) com-
petition [2], and we compute the overlapping score as

k ¼ areaðBd

\
BgÞ=areaðBd

[
BgÞ ð15Þ

if k > 0:5, then Bd is considered as a true positive, otherwise it is
considered as a false positive. Similar criterion has been used in
[3]. We assign the detection score for each position, which indicates
the confidence that the object is detected. By varying the threshold
of the detection scores of each detector one at a time, we obtain the
Receiver Operating Characteristics (ROC) curves of those detectors,
showing false positive rate versus true positive rate.

4.3. Feature comparison

We give a comparative evaluation of different types of appear-
ance features, short-term motion features as well as their possible
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combinations as described in Section 2. AI denotes the Haar-like
linear features as used in [20], which operated on intensity images.
AG represents histograms of appearance gradient orientations cal-
culated by Eq. (4). MI is short-term motion information obtained
by direct image differencing as used in [25]. MG is motion gradient
orientation features given by Eq. (7) and operated on differenced
images. We further denote a combination of AI and MI as AI+MI,
a combination of histograms of gradient orientations plus short-
term motion as AG+MI.

We first examine the importance of AI features and AG features
when they are jointly boosted by the AdaBoost. To save some time,
a set of 16000 features (8000 AI features, 8000 AG features) are
randomly selected from approximately one million features. We
perform 1000 round of boosting among the feature set. Fig. 1
shows that top 10 features selected by AdaBoost. While Fig. 4
shows the top linear features selected by AdaBoost. It is important
to note that all of the top ten features selected by AdaBoost are AG
features, while rank of the first linear feature is 17. This clearly
shows that AG features are more important the Haar-like features.
This can be further verified by the statistics of AI and AG features
selected by AdaBoost from a total of 100 and 1000 features. respec-
tively. AG accounts for 86% of the top 100 features, 80% of the top
1000 features. This further confirms that the AG features domi-
nates the selected feature sets. To give a quantitative evaluation
of the discrimination power of different feature types, we show
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Fig. 7. Comparison of ROC curves on a courtyard sequence using different
appearance and dynamic intensity features as well as Gradient Orientation features.

Fig. 8. Examples of the motion confidence map after background extraction. (a) The initia
Gautama et al. [8]; (b) motion confidence map only using Gaussian Mixture by Eq. (11)
ROC curves of detection output with respect to ground-truth from
manual annotations in Fig. 7. These were calculated for each fea-
ture type respectively given same feature set of 1000. From these
ROC curves, we can see that motion information really improves
the performance. It is very interesting to note that, AG+AI features
perform better than AI features alone, even better than a combina-
tion of linear features with short-term motion information. AG fea-
tures plus motion can further improve the results. AG+MG features
give little improvement over AG+MI. This is probably because mo-
tion gradient information does not offer more discrimination
power than motion intensity features, and direct image differenc-
ing makes the estimation of motion gradient less robust. For com-
putational accuracy and efficiency, in the following experiments,
we thus use the output of the AdaBoost with the features AG+MI.

4.4. Improving robustness

Fig. 5 shows detection results from each step of our system in a
courtyard sequence. Fig. 5(a) shows the raw output of AdaBoost
detector indicated by the red bounding boxes. Fig. 5(b) shows
the results maintained by the tracker. Red box means the detection
agreed by both the tracker and AdaBoost detector in the current
frame except any new detections by AdaBoost in the current frame
(shown as green boxes). Yellow boxes show hypotheses main-
tained by the tracker while missed by the detector in the current
frame. Fig. 5(c) shows results after Bayesian fusing of long-term
motion information. From Fig. 5(a), we can clearly see that the out-
put of AdaBoost inevitably contains some false alarms (e.g. frame
8) and misdetections (e.g. frame 8, 73). For objects newly appeared
in the scene (see Fig. 5(a) (frame 13)), AdaBoost detected success-
fully the new object in the scene. However, it is also worth noticing
that false alarms triggered by the AdaBoost detector were then
wrongly maintained by the tracker in the following frames as
shown in Fig. 5(b) (from frame 9). This is an example where Ada-
Boost learned with short-term motion information does not work
well with non-stationary background clutter. The tracker itself
can not reject such an error either. However, as shown in
Fig. 5(c), taking into account of long-term motion given by Eq.
(14) rejected successfully these false alarms. It is also worth point-
ing out that our model was trained to detect people of size larger
than 20 � 15 pixels. This explains why some of the small sized peo-
ple were not detected when they were far away from the camera
(e.g. in frame 1).

Fig. 9 compares the ROC curves of the method by direct detec-
tion and the one after Bayesian verification on two courtyard se-
quences. It is clearly shown that the proposed method
outperforms the one using direct detection in terms of the ROC
curves, which further suggests the effectiveness of the proposed
detection method.
l image with the optic flow estimated using a robust estimation method proposed by
; (c) refined motion confidence map by Eq. (12).
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5. Conclusion

In this paper, we have presented a framework for robust people
detection in low resolution image sequences of highly cluttered
scenes. Our model utilizes both human appearance and their
long-term motion information. In particular, we adopt an integral
gradient orientation histogram map to represent both appearance
and short-term motion features. Tracking is also considered for
correcting misdetections by appearance and short-term motion
information alone. Furthermore, long-term motion is utilized to
further remove false alarms in detection. We show that for pedes-
trian detection in video sequences, both short-term and long-term
motion information play an important role.

These results can be further improved by including more exam-
ples in our AdaBoost training data for human that seen against dy-
namic background. At present, fusing the long-term motion informa-
tion is done by direct correlation. Another improvement could be by
boosting long-term motion map of the pedestrians against that of
the negative samples before feeding to the Bayesian model.
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