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Abstract

We address the issue of understanding facial expressions through statistical modelling and analysis without the
need for any temporal information whatsoever. We introduce a hierarchical decomposition of a human face
into different subcomponents where each of them is modelled using Probabilistic PCA (PPCA). Classification
is performed by fusing all the subcomponent information with a Hybrid Bayesian Network (HBN) to provide
parameterised output which we use to animate the avatar.

1 Introduction

A human face can exhibit complex and intricate expres-
sions. Facial expression changes are dependent on many
factors such as muscle contractions, current emotional
state and its implied context. Also facial expressions are
individually independent: no two people exhibit the same
expression in the same way. These factors make mod-
elling and recognising facial expressions a challenging
task.

Bettinger et al. (2002) used AAM (Active Appearance
Model) as the underlying basis of their model, sample
mean shift and variable length Markov model, to learn the
relationships between trajectories of facial expressions,
Devin and Hogg (2001) combined AAM with sound as
their framework to produce sequences of a talking head.
Both approaches do not deal with the expression clas-
sification directly. Cohen et al. (2002) used a model
based on the motion vectors of Bezier volumes. These
vectors were then used in conjunction with a multi-level
HMM to classify expression from image sequences. They
also experimented with static Bayesian Networks (BN).
Chuang et al. (2002) used statistical appearance represen-
tation (similar to Cootes and Taylor (2001)) to represent
facial expression configurations, then a factorised bilinear
model to synthesise existing sequences with different ex-
pressions during the speaking process. Tian et al. (2001)
used FACS (Facial Action Coding System Ekman et al.
(1972)) and a neural network to perform detailed classifi-
cation of facial expressions. Their approach does not deal
with the self occlusion and relies on the detailed geomet-
rical measurements to describe different features which is
unreliable.

In this work we wish to model the semantics of a set of
low-level facial behaviours, or states which include neu-
tral, smile, grin, surprise, fear, sadness and anger. We
aim to model the intrinsic inner-expression relationships
by placing hierarchical constraints to bootstrap the pro-
cess to help in classification of facial expressions. In con-

trast to Tian et al. (2001); Chuang et al. (2002), we pro-
vide one compact and unified probabilistic framework for
such a task. Our facial appearance under varying expres-
sions is based on a statistical appearance model originally
introduced by Cootes and Taylor (2001). We extend the
basic definition of the AAM model to implicitly incorpo-
rate parameters for large pose variations into the statistical
distribution. Our model is also equipped with a pose esti-
mator to bootstrap the tracking process during large pose
changes.

Facial expression classification is achieved by two
components: 1) hierarchical shape model, onto which the
current instance is projected, where the face is decom-
posed into the root component consisting of jaw outline,
centroids of the eyes and mouth and nose outline. The
children are defined as left eye and left eyebrow (eyeL),
right eye and right eyebrow (eyeR) and mouth. The chil-
dren are modelled using PPCA (Section 2.1) and built
with frontal view only, letting the pose parameters, such
as rotation and translation be inherited from the root com-
ponent; 2) Hybrid Bayesian Network which fuses all the
information to produce the final output. Figure 1 depicts
an overview of our system.
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Figure 1: General overview of our system.



2 Framework

The basic representation of an AAM is only able to cope
with frontal/near-frontal views ([−20o, 20o] in yaw). At
the extreme pose changes due to occlusion during the
warping process distorts the texture, creating large resid-
uals and causing tracking failure. To overcome this prob-
lem we use the pose estimator (Section 2.2) to obtain
yaw rotation and mirror the warped image when neces-
sary (−15o < yaw > 15o). A similar approach was
used by Dornaika and Ahlberg (2003). Figure 2 shows the
original images from a sequence (top row), frontal view
warped texture vectors, with visible distortions (middle
row) and pose corrected frontal view texture vectors (bot-
tom row).

−32o −17o 1o 17o 39o

Figure 2: Distortions due to the pose changes and self-
occlusion. Top row: original images, middle row: frontal
view warped images, bottom row: pose corrected frontal
view morphed images.

Unfortunately, mirroring provides only an approxima-
tion to the true representation of the face at extreme views.
To further improve the tracking process we introduce a
pose corrected weight vector such that the original tex-
ture difference ∆T = Tim − Tm becomes ∆Tcorr =
Tw ⊗ ∆T, where Tim, Tm are the texture instances in
the image and model frame respectively, Tw is the pose
dependent weight vector drawn from the normal distribu-
tion and ⊗ is component-wise multiplication. Figure 3
shows different representations of Tw with respect to dif-
ferent yaw rotation values.

Also during the training stage we find the relationship
between yaw rotation and the model component respon-
sible for yaw changes by fitting second order polynomial
to the data (we are only interested in yaw rotation it is the
most likely cause of self-occlusion). During the model
fitting stage we use it to provide a model prediction, such
that:

tp = aα2
h + bαh + c (1)

where αh is the yaw rotation for the current hypoth-
esis, a, b, c are the coefficients of the polynomial and
tp is the predicted pose parameter such that tp ∈
[−Ehstdpse, +Ehstdpse] with Eh being the residual er-
ror of the current hypothesis and stdpse being the standard

deviation for the given pose component. Experimental re-
sults of the pose corrected AAM tracking are presented in
Section 4.
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Figure 3: Different weight vector representations for dif-
ferent yaw rotation values.

2.1 Probabilistic PCA

PCAs lack of probability distribution makes it-ill suited
for the Bayesian framework. Tipping and Bishop (1998)
reformulated PCA as the maximum likelihood solution
using a latent variable model such that the observed vari-
able t is given by:

t = Wx + µ + ε (2)

where x is the latent variable such that P (x) =
N (x|0, Iq) and N denotes a Gaussian distribution, W is
the parameter matrix whose columns define the principal
subspace of the data, µ is the d-dimensional vector, and
ε ∼ N (0, σ2Id) where σ2 is the noise variance, I is the
identity matrix and N represents a Gaussian distribution.
Then

P (t|x) = N (t|Wx + µ, σ2Id) (3)

Marginal distribution of the observed variable t is

P (t) =

∫
P (t|x)P (x)dx = N (µ,C) (4)

where covariance matrix C = WWT +σ2Id. The above
model represents a constrained Gaussian distribution con-
trolled by µ,W and σ2. A maximum likelihood solution
for the parameters is given by:

µML =
1

N

N∑
i=1

ti (5)

WML = Uq(Λq − σ2Iq)
1

2 R (6)

σ2
ML =

1

d − q

d∑
i=q+1

λi (7)

where ti is the i-th d-dimensional feature vector from the
data set, Λq is the diagonal matrix containing the q-largest
eigenvalues λi, Uq is the matrix containing the q-largest
eigenvectors and R is an arbitrary orthogonal rotation ma-
trix.



2.2 Pose Estimator using PPCA

The pose estimator provides us with continuous 3D pose
estimation based on a probabilistic framework. We use a
sparse set of training samples, that cover only part of the
view sphere, (−40o, 40o) around yaw and (−20o, 20o)
around pitch (using 10o intervals) and are able to estimate
the pose for a much larger, continuous view sphere. The
model is also able to generalise to a much denser shape
model for appearance synthesis at virtual views. Addi-
tionally we do not need to utilise any temporal informa-
tion such that the estimation is done on-the-fly frame-wise
in real time and the system is able to cope with very large
jumps and discontinuities in pose change.

Given a d-dimensional multivariate Gaussian distribu-
tion with mean µ and covariance matrix C its marginal
q-dimensional marginal multivariate distribution (where
q << d) is also Gaussian (Krzanowski, 1988). Let B

be a qxd dimensional identity matrix (B = I). Then the
marginal q-component multivariate probability distribu-
tion function (p.d.f) fq is given by:

fq ∼ N (Bµ,BCBT ) (8)

Following the concept of the marginal p.d.f we define the
cumulative distribution function (c.d.f) Φ, such that for
a q-dimensional random variable x the Gaussian c.d.f is
given by:

Φ(x) =

∫
x

−∞

fq(x)dx (9)

We are mostly interested in the c.d.fs that are closely re-
lated to the components responsible for the yaw and pitch
rotation. Let fmy, fmx be marginal p.d.fs and Φmy and
Φmx be marginal c.d.fs corresponding to pose changes.
For a given shape t the estimate of the yaw rotation ry

is given by Equation (10), where a1, a2, a3, a4 are coef-
ficients of a cubic polynomial estimated during the train-
ing stage, py is the marginal cdf for the yaw rotation and
εy is the error term defined by constant weighted by the
marginal probability fmy:

ry = a1 ∗ p3
y + a2 ∗ p2

y + a3 ∗ py + a4 + εy

py = Φmy(t)

εy = fmy(t) ∗ const (10)

The estimate of the pitch rotation rx is given by Equa-
tion (11) where b1, b2, b3, b4 are coefficients of a cubic
polynomial estimated during the training stage, px is the
marginal cdf of the pitch rotation and εx is the error term
defined by constant weighted by the marginal probability
fmx:

rx = b1 ∗ p3
x + b2 ∗ p2

x + b3 ∗ px + b4 + εx

px = Φmx(t)

εx = fmx(t) ∗ const (11)

To find the relationship between the angles and the c.d.fs,
we use the posterior distribution of the PPCA model.

PPCA is described in Section 2.1. We have found that
such a probabilistic framework provides much more ac-
curate estimation than one using conventional PCA (e.g.
by finding the relationship between the projected param-
eters and angles). Our model is able to generalise to a
denser shape model (Figure 4). This is achieved by down-

Figure 4: Denser shape model (74 landmarks) driven by
the sparse set using 14 landmark points.

sampling the larger PDM to the required size by calculat-
ing the centroids of the eyes and mouth and selecting the
subset of the jaw outline.

2.3 Hierarchical Shape Representation

We define a hierarchical decomposition of the shape as
follows: The jaw outline, nose and centres of the eyes and
mouth form the root of our hierarchy. As leaves, or chil-
dren, we have eye and eyebrow pairs and mouth. Figure 5
shows an example of such decomposition.

Figure 5: The top row corresponds to the highest point
in the hierarchy (root), the middle row corresponds to the
leaves.

We allow pose parameters to be incorporated into the
root model, and let the children to be frontal view only,
with the pose parameters (rotation, translation) inherited
from the parent. If the instance of the model at the cur-
rent frame j has the rotation parameters given by pj =
(α, β, γ)T representing yaw, pitch and bank rotation re-
spectively, the frontal representation Fi

j for a given in-
stance Mi

j where i ∈ {eyeL, eyeR, mouth} is then given
by:

Fi
j = R(pj)(M

i
j − Ti) (12)



where Ti is the translation obtained from the root for i-th
leaf. Thus our face can be represented as a combination
of the subcomponents. Given the instances of the hierar-
chical subcomponents, any arbitrary view/expression can
be represented as:

xfinal = B(xroot,xeyeR,xeyeL,xmouth) (13)

where B is a shape blending function, xroot is the root
model and xeyeR,xeyeL,xmouth are right eye, left eye
and mouth models respectively. Our motivation for
choosing hierarchical representation of the shape model
is as follows: We strongly believe that the shape is in-
dividually independent (given appropriate normalisation)
and can be efficiently utilised to capture manifolds of the
facial expressions.

We also noticed that the modes of variation for each of
the components correspond to their intrinsic functional-
ity. For example for mouth they are mouth open, mouth
closed and mouth grin. We associate corresponding
marginal and cumulative probability distributions with
each of the functionalities. Instead of defining facial ex-
pressions as holistic entities, we represent them as a com-
bination of intrinsic functionalities of the subcomponents
(expression implied facial feature independence has been
exploited by Donato et al. (1999); Zalewski and Gong
(2004)). So any facial expression can be defined as:

expression = statemouth + stateeyeR + stateeyeL

The advantages of this are two-fold: First of all, each of
the expressions is defined in a more intuitive and quanti-
tative way. Secondly, such a representation allows us to
account for similar expressions (smile with eyes open, or
smile with eyes closed) without any additional overhead.
Given probability distributions for each of the subcompo-
nents, we obtain final classification by fusing all the infor-
mation through a Hybrid Bayesian Network (Section 3),
hence producing a parameterised form of expression def-
inition.

3 Expression Classification

Bayesian Networks allow us a way for data fusion in
a probabilistic fashion, and have been successfully used
in face recognition and classification related tasks (Yand
et al., 2002). As the basis of the classifier, we adopt a
Hybrid Bayesian Network (HBN) (Figure 6).

Round nodes correspond to continuous states, square
ones to the discrete states. Shaded nodes are observed,
unshaded ones are hidden. In the design of this HBN we
took into consideration psychophysical evidence implied
by the human perception of facial expressions (Ekman,
1973; Ekman et al., 1972). Such a layout gives us the
means to describe the states of each of the subcomponents
at a high abstraction level that in turn can be used as a
parameterised output for animation purposes.

EL1 ER1

LR

M1 M2

PSE

X

C

Figure 6: The Hybrid Bayesian Network used for a
paramtrised expression definition.

We derive logical sections within the net that charac-
terise the functionalities of the different facial compo-
nents. These are eye components defined by likelihoods
P (EL|LR), P (ER|LR), and mouth component defined
by likelihoods P (M1|C), P (M2|C), which are drawn
from our hierarchical model such that

P (EL|LR) = f1
eyeL(teyeL)

P (ER|LR) = f1
eyeR(teyeR)

P (M1|C) = f1
mouth(tmouth)

P (M2|C) = f2
mouth(tmouth)

where f
j
i defines the posterior marginal probability

distribution for the j-th principal component, i ∈
{eyeL, eyeR, mouth} and ti is the input vector. The
prior P (PSE) is drawn from the marginal distribution
of the pose model such that:

P (PSE) = f1
pose(tpose)

and accounts for the missing features in extreme pose
changes. If one of the features becomes occluded, the re-
maining visible feature, not the combination of both, will
be used for classification.

We can think of the output nodes as descriptors of dif-
ferent features on the face, which are independent of each
other (this is implied by orthogonality of our distribu-
tion spaces). As Cohen et al. (2002) pointed out, the
main limitation of feature based Naive Bayesian Classi-
fiers is the independence of the features given the expres-
sion which might not be true in real life scenarios. (Fig-
ure 7 (a)) depicts such a Naive Bayesian Classifier, where
F1, F2, F3, ..., FN define different features and C is the
expression class. To overcome that limitation they sug-
gested use of a TAN classifier (Tree Augmented Naive)
where dependencies are represented as arcs between dif-
ferent features, and its structure in defined is the learning
stage (Figure 7 (b)).

In our case, to account for dependencies amongst dif-
ferent facial features we introduce hidden nodes LR and



C. During training these nodes will capture the possi-
ble dependencies among different feature inputs (LR for
EL, ER and C for M1, M2).

F1 F2 F3 . . . FN

C

(a) Feature-based Naive Bayesian Classifier

F1 F2 F3 . . . FN

C

(b) Feature-based TAN Classifier

Figure 7: Different representations of BNs.

To perform final classification we choose the hypothe-
sis that maximises the posterior given the evidence Θ and
the net structure m:

P (m|Θ) =
P (X |LR, C, A, B, EL, ER, M1, M2, PSE, Θ) ∝
P (X, LR, C, A, B, EL, ER, M1, M2, PSE|Θ)

To train the Hybrid Bayesian Net we performed super-
vised training based on 813 hand labelled samples repre-
senting continuous sequences of various changes in facial
expressions.

4 Experiment

For AAM model training we used a set consisting of
1790 images and shapes (74 landmarks), which included
seven basic expressions (neutral, smile, grin, sadness,
fear, anger, surprise) and large variations in pose. For the
frontal view, a hierarchical decomposition shape model, a
training set of 700 shapes was used. For the pose estima-
tor, 640 different and much sparser shapes (14 landmarks)
were used. All the training samples were hand labelled
beforehand.

The outline of our algorithm is as follows:

• Perform colour segmentation on the input image to
find a rough position of the head and remove un-
necessary background information. For colour seg-
mentation, the HSV (Hue,Saturation,Value) colour

model is used, which carry sufficient discriminative
information for such a task.

• Fit the pose-corrected AAM model representation to
the image. Obtain a pose estimate through from the
shape model (repeat both until convergence).

• Obtain final pose estimate.

• Project the current instance of the model onto the
hierarchical shape model.

• Classify the expression using the Hybrid Bayesian
Network and obtain a parameterised output.

• Animate Avatar according to the obtained parame-
terised output.

The Avatar animation was performed using a morph-
based approach (Noh and Neumann, 1998), defined by:

Expression =
∑

i

w(i)Γ(i) (14)

where w defines the morph weight vector such that∑
i w(i) = 1 and Γ defines a set of morph bases. To

test our improved AAM representation we used a test se-
quence 0 containing 415 frames and large pose changes.
Figure 8 shows the first few frames. Top row corresponds
to the original AAM formulation, with visible loss of fo-
cus at large pose variation, and the bottom row corre-
sponds to the pose corrected AAM, where the focus is
not greatly affected by pose changes.

To test the expression classifier we used two sequences
containing 750 and 530 frames respectively. We com-
pared this with the BN given in the Figure 7 (3 input
nodes, taking the parameter vectors from the hierarchi-
cal distribution). We obtained the following classification
rates:

Our HBN Cohen et al. (2002)
test sequence 1 88% 82%
test sequence 2 83% 80%

Figure 11 shows selected frames from the sequence 1
experiment. Within each of the boxes the left image cor-
responds to the currently tracked image frame with the
AAM mask superimposed on it. The image on the right
corresponds to the synthetic avatar animated according to
the classified expression. Figure 9 shows the correspond-
ing classification results for test sequence 1 and Figure 10
for test sequence 2.

5 Conclusion

In this paper we have extended the basic AAM approach
to cope with large pose variations by introducing pose-
based constraints upon the tracking process. We also in-
troduced shape based hierarchical decomposition of a hu-
man face into independent components, such that their



Figure 8: Selected frames from the experiment on the AAM fitting onto the extreme pose view. Top row corresponds to
the original AAM formulation and bottom row to the pose corrected AAM.

Frame 45 Frame 128

Frame 246 Frame 381

Frame 468 Frame 730

Figure 11: Selected frames from the experiment on expression classification and avatar animation (test sequence 1). Each
of the images shows tracked frame with AAM mask superimposed on it (left) and corresponding synthesised avatar (right).

combinatorial form can be used to define an arbitrary fa-
cial expression, and the probabilities obtained from their
distributions in conjunction with Hybrid Bayesian Net-
work (HBN) can serve as a basis for expression classifi-

cation. Our future work includes investigation into Dy-
namic Bayesian Networks (DBNs) and their use in be-
haviour context modelling.
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Figure 9: Expression classification for test sequence 1:
top row corresponds to our HBN approach, bottom row to
the Cohen et al. (2002) approach.
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