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Abstract

This paper tackles the problem of surveillance video content modelling. Given a set of surveillance videos, the aims of our work are twofold:
firstly a continuous video is segmented according to the activities captured in the video; secondly a model is constructed for the video content,
based on which an unseen activity pattern can be recognised and any unusual activities can be detected. To segment a video based on activity,
we propose a semantically meaningful video content representation method and two segmentation algorithms, one being offline offering high
accuracy in segmentation, and the other being online enabling real-time performance. Our video content representation method is based on
automatically detected visual events (i.e. ‘what is happening in the scene’). This is in contrast to most previous approaches which represent
video content at the signal level using image features such as colour, motion and texture. Our segmentation algorithms are based on detecting
breakpoints on a high-dimensional video content trajectory. This differs from most previous approaches which are based on shot change
detection and shot grouping. Having segmented continuous surveillance videos based on activity, the activity patterns contained in the video
segments are grouped into activity classes and a composite video content model is constructed which is capable of generalising from a small
training set to accommodate variations in unseen activity patterns. A run-time accumulative unusual activity measure is introduced to detect
unusual behaviour while usual activity patterns are recognised based on an online likelihood ratio test (LRT) method. This ensures robust and
reliable activity recognition and unusual activity detection at the shortest possible time once sufficient visual evidence has become available.
Comparative experiments have been carried out using over 10 h of challenging outdoor surveillance video footages to evaluate the proposed
segmentation algorithms and modelling approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The rapid increase in the amount of CCTV surveillance video
data generated has led to an urgent demand for automated anal-
ysis of video content. Content analysis for surveillance videos
is more challenging than that for broadcasting videos such as
news and sports programmes because the latter are more con-
strained, well structured and of better quality. This paper aims
to address a number of key issues of surveillance video content
analysis:

1. How to construct a representation of video content which is
informative, concise and able to bridge the gap between the
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low level visual features embedded in the video data and
the high level semantic concepts used by human to describe
the video content.

2. How to segment a continuous surveillance video tempo-
rally into activity patterns according to changes in video
content.

3. Given a training video dataset, how to construct a model for
the video content which can accommodate the variations in
the unseen activity patterns both in terms of duration and
temporal ordering?

4. Given a video content model and an unseen video, how
to perform online activity recognition and unusual activity
detection?

To this end, we first propose in this paper a semantic mean-
ingful representation based on automatically detected discrete
visual events in a video and two segmentation algorithms. One
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of the proposed algorithms is offline offering better accuracy
in segmentation but is computationally more demanding, while
the other is online enabling real-time performance. We then
develop a generative video content model based on unsuper-
vised learning. Using this model an unseen activity pattern can
be recognised into different classes if similar patterns are in-
cluded in the training dataset and unusual activities can also be
detected.

1.1. Video segmentation

A suitable representation is crucial for video segmentation.
For activity based video segmentation, we propose to repre-
sent surveillance video content holistically in space and over
time based on visual events detected automatically in the scene.
This is in contrast to most previous approaches which represent
video content at the signal level using image features such as
colour, motion, and texture [1–6]. The essence of our method is
to represent video content based on ‘what is happening’ rather
than ‘what is present’ in the scene. ‘What is happening’ in the
scene is reflected through activities captured in the video which
most likely to involve multiple objects interacting or co-existing
in a shared common space. An activity is composed of groups
of co-occurring events which are defined as significant visual
changes detected in image frames over time. Events are de-
tected and classified by unsupervised clustering using Gaussian
mixture model (GMM) with automatic model selection based
on Schwarz’s Bayesian information criterion (BIC) [7,8]. Video
content is then represented as temporally correlated events au-
tomatically labelled into different classes. By doing so changes
in the presence of and temporal correlations among different
classes of events can indicate video content changes therefore
providing vital cues for activity based video segmentation.

Video segmentation has been studied extensively in the past
two decades. Traditionally, a four-layer hierarchical structure is
adopted for video structure analysis which consists of a frame
layer, a shot layer, a scene layer and a video layer [4]. At the
bottom of the structure, continuous image frames taken by a
single camera are grouped into shots. A series of related shots
are then grouped into a scene. Shot change detection is per-
formed as the first step for video segmentation by most previous
approaches [1–4]. The segmentation of shots and scenes heav-
ily relies on a well-defined feature space usually dominated by
colour and motion. For example, in Ref. [1], image frames were
represented using a holistic colour histogram and the frame
difference was exploited to detect shots. This structure is in
general valid for constrained, well-structured broadcast videos
of news and sports programmes. However, for a surveillance
video which is taken continuously by a fixed camera without
script-driven panning and zooming, global colour and motion
information is either highly unreliable or unavailable [9]. More
importantly, there is only one shot in a surveillance video and
any shot-change detection based segmentation approach would
be unsuitable.

Recently, DeMenthon et al. [10]proposed to represent a video
as a high-dimensional temporal trajectory based on colour his-

togram and treat video segmentation as a trajectory breakpoint
detection problem. Compared to the thresholding based seg-
mentation algorithms adopted by most previous video segmen-
tation approaches [1,2], a trajectory breakpoint detection based
approach is more robust to local noise at individual frames be-
cause segmentation is performed holistically over the whole du-
ration of the video. Various approaches have been proposed to
segment a continuous trajectory into segments through break-
point detection for time-series data segmentation [11–13]. Most
of them are based on piecewise linear approximation (PLA) or
probabilistic graphical models such as hidden Markov models
(HMMs) [14]. PLA refers to finding the best approximation of
a trajectory using straight lines by either linear interpolation
or linear regression. However, the computational cost of PLA
is nontrivial especially when the dimensionality of the trajec-
tory space is high [13], resulting in most of the existing PLA
segmentation algorithms only being applied to trajectories in
a space with a dimensionality no bigger than 3. On the other
hand, HMMs have the potential to be robust to noise and are ca-
pable of dynamic time warping (DTW). However, a large num-
ber of parameters are needed to describe an HMM when the
dimensionality of the trajectory space is high. This makes an
HMM vulnerable to over-fitting when training data are insuf-
ficient. To solve this problem, we propose a multi-observation
hidden Markov model (MOHMM) which requires less parame-
ters compared to a conventional HMM. It is thus more suitable
for high-dimensional video content trajectory segmentation.

Most existing segmentation algorithms are offline. For the
purpose of video segmentation, an online algorithm has its dis-
tinctive advantage due to the huge amount of surveillance video
data to be processed and more importantly the real-time na-
ture of some surveillance applications. For instance, if a video
content change is detected online and in real-time, it can be
used for alerting CCTV control room operators to act accord-
ingly. One of the most popular online segmentation algorithms
for temporal trajectories is the sliding window (SW) algorithm
based on the SW principle [15] and local PLA. However, the
SW algorithm tends to over-segment [11,15,16]. One possible
explanation is that it lacks a global view of the data since it
only ‘looks backward’ without ‘looking forward’. Keogh et al.
[11] attempted to solve the problem by combining the bottom-
up offline algorithm [15] with the SW principle. Nevertheless,
their algorithm works only on trajectories with very short seg-
ments. It is thus impossible for the algorithm to run in real-time
on a typical surveillance video sequence which comprisesseg-
ments lasting over hours. In this paper, we propose a novel
forward–backward relevance (FBR) algorithm. Compared to a
conventional SW algorithm, FBR is less sensitive to noise and
more importantly, can be run in real-time.

1.2. Video content modelling for activity recognition and
unusual activity detection

Using the proposed segmentation algorithms, continuously
recorded video or online CCTV input can be segmented into
activity patterns. Given these activity patterns, the goal of video
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content modelling is to learn a model that is capable of detect-
ing unusual activity patterns whilst recognising novel instances
of expected usual activity patterns. In this context, we define
an unusual activity as an atypical activity pattern that is not
represented by sufficient samples in a training dataset but criti-
cally it satisfies the specificity constraint to an unusual pattern.
This is because one of the main challenges for the model is to
differentiate unusual activity from outliers caused by noisy vi-
sual features used for activity representation. The effectiveness
of an video content modelling approach shall be measured by
(1) how well unusual activities can be detected (i.e. measuring
specificity to expected patterns of activity) and (2) how accu-
rately and robustly different classes of usual activity patterns
can be recognised (i.e. maximising between-class discrimina-
tion).

To solve the problem, we develop a novel framework for
fully unsupervised video content modelling and online unusual
activity detection. Our framework has the following key com-
ponents:

1. Discovering natural groupings of activity patterns using an
activity affinity matrix. A number of affinity matrix based
clustering techniques have been proposed recently [17–19].
However, these approaches require known number of clus-
ters. Given an unlabelled dataset, the number of activity
classes are unknown in our case. To automatically deter-
mine the number of clusters, a recently proposed spectral
clustering algorithm [20] is deployed.

2. A composite generative video content model using a mix-
ture of dynamic Bayesian networks (DBNs). The advan-
tages of the such a generative video content model are
twofold: (a) It can accommodate well the variations in the
unseen and usual activity patterns both in terms of duration
and temporal ordering by generalising from a training set
of limited number of samples. This is important because
in reality the same usual activity can be executed in many
different usual ways. These variations cannot possibly be
captured in a limited training dataset and need to be dealt
with by a learned video content model. (b) Such a model is
robust to errors in activity representation. This is because
that a mixture of DBNs can cope with errors occurred at
individual frames and is also able to distinguish an error
corrupted usual activity pattern from an unusual one.

3. Online unusual activity detection using a run-time accumu-
lative unusual activity measure and usual activity recogni-
tion using an online LRT method. A run-time accumula-
tive measure is introduced to determine how usual/unusual
an unseen activity pattern is on-the-fly. The activity pattern
is then recognised as one of the usual activity classes if
detected as being usual. Recognition of usual activities is
carried out using an online LRT method which holds the de-
cision on recognition until sufficient visual evidence has be-
come available. This is in order to overcome any ambiguity
among different activity classes observed online due to in-
sufficientvisual evidence at a given time instance. By doing
so, robust activity recognition and unusual activity detec-
tion are ensured at the shortest possible time, as opposed to

previous work such as [9,21,22] which requires completed
activity patterns being observed. Our online LRT based ac-
tivity recognition approach is also advantageous over pre-
vious ones based on the maximum likelihood (ML) method
[9,22,23]. An ML based approach makes a forced decision
on activity recognition at each time instance without con-
sidering the reliability and sufficiency of the accumulated
visual evidence. Consequently, it can be error prone.

The rest of the paper is structured as follows: in Section 2,
we describe an event based surveillance video content repre-
sentation approach. In Section 3, we address the problem of
surveillance video segmentation. Two novel segmentation algo-
rithms, MOHMM and FBR are introduced in Sections 3.1 and
3.2, respectively. Comparative experiments are conducted using
over 10 h of challenging outdoor surveillance video footages
and the results are presented in Section 3.3. The pros and cons
of both algorithms are analysed. The advantage of our event
based video content representation over the traditional image
feature based representation is also made clear by our experi-
mental results. The proposed video content modelling approach
is described in Section 4, where experiments are also presented
to evaluate the effectiveness and robustness of the approach. A
conclusion is drawn in Section 5.

2. Semantic video content representation

We consider an activity based video content representation.
Visual events are detected and classified automatically in the
scene. The semantics of video content are considered to be
best encoded in the occurrence of such events and the temporal
correlations among them.

2.1. An example scenario

For clarity and concreteness, we shall illustrate our ap-
proach using surveillance videos monitoring aircraft docking
operations at an airport. Around 15 different activities take
place in the scene. Among them, only six activities are vi-
sually detectable. Fig. 1 shows an example activity based
structure of a complete aircraft docking operation. One ac-
tivity can be followed by either another activity immediately
or a period of inactivity when no meaningful visual changes
can be detected. The durations of activities and inactivity
gaps vary hugely during a single aircraft docking operation
and across different operations. There are also variations in
the temporal order of activities and inactivity gaps. For ex-
ample, the temporal order of frontalCargoService and
frontalCateringService appears to be arbitrary. It is
noted that some activities such as airCraftArrival in-
volve the movement of a single object while other activities
such asfrontalCargoService andfrontalCatering-
Service consist of movements of multiple objects which
may leave and re-appear in the scene. For the latter case, there
often exist a number of short inactivity break-ups within an
activity which are different from a long inactivity gap between
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Fig. 1. An example structure of a complete aircraft docking video. Representative frames of different activities occurred in the scene are also shown.

two activities only by their durations. All these characteristics
make analysis of surveillance video content very challenging.

2.2. Detecting and classifying visual events

We define events as significant scene changes characterised
by the location, shape and direction of the changes. They are
object-independent and location specific. We also consider that
these events are autonomous, meaning that both the number of
these events and their whereabouts in a scene are determined
automatically bottom-up without top-down manual labelling
using predefined hypotheses.

2.2.1. Seeding event: measuring pixel change history
Adaptive mixture background models are commonly used to

memorise and maintain the background pixel distribution of a
dynamic scene [24–26]. The major strength of such a model is
its potential to cope with persistent movements of background
objects such as waving tree leaves given appropriate model
parameter setting. However, an adaptive mixture background
model cannot differentiate, although may still be able to detect
the presence of, pixel-level changes of different temporal scales.
In general, a pixel-level change of different temporal scales can
have different significance in its semantics:

1. A short term change is most likely to be caused by instant
moving objects (e.g. passing-by people or vehicles).

2. A medium term change is most likely to be caused by the
localised moving objects (e.g. a group of people standing
and talking to each other).

3. A long term change is most likely to be caused by either
the introduction of novel static objects into the scene, or
the removal of existing objects from the scene (e.g a piece
of furniture is moved in the background or a car is parked
in a carpark).

We seek a single, unified multi-scale temporal representa-
tion that can capture and differentiate changes of such different
rates/scales at the pixel level. Temporal wavelets were adopted
for such a multi-scale analysis [27]. However, the computa-
tional cost for multi-scale temporal wavelets at the pixel level

is very expensive. They are therefore unsuitable for real-time
performance. Alternatively, motion history image (MHI) is less
expensive to compute by keeping a history of temporal changes
at each pixel location which then decays over time. MHI has
been used to build holistic motion templates for the recognition
of human movements [28] and moving object tracking [29]. An
advantage of MHI is that although it is a representation of the
history of pixel-level changes, only one previous frame needs
to be stored. However, at each pixel location, explicit infor-
mation about its past is also lost in MHI when current change
are updated to the model with their corresponding MHI val-
ues ‘jumping’ to the maximal value. To overcome this prob-
lem, pixel signal energy was introduced to measure the mean
magnitude of pixel-level temporal energy over a period of time
defined by a backward window [25]. The size of the backward
window determines the number of frames (history) to be stored.
However, this approach suffers from its sensitivity to noise and
also being expensive to compute.

Here we propose to use pixel change history (PCH) [30]
for measuring multi-scale temporal changes at each pixel. The
PCH of a pixel is defined as

P�,�(x, y, t)

=

⎧⎪⎨⎪⎩
min

(
P�,�(x, y, t−1)+255

�
, 255

)
if D(x, y, t)=1,

max

(
P�,�(x, y, t−1)−255

�
, 0

)
otherwise,

(1)

where P�,�(x, y, t) is the PCH for a pixel at (x, y), D(x, y, t)

is a binary image indicating the foreground region, � is an
accumulation factor and � is a decay factor. When D(x, y, t)=
1, instead of jumping to the maximum value, the value of a
PCH increases gradually according to the accumulation factor.
When no significant pixel-level visual change is detected at a
particular location (x, y) in the current frame, pixel (x, y) will
be treated as part of the background and the corresponding PCH
starts to decay. The speed of decay is controlled by a decay
factor �. The accumulation factor and the decay factor give us
the flexibility of characterising pixel-level changes over time.
In particular, large values of � and � imply that the history of
visual change at (x, y) is considered over a longer backward
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Fig. 2. Event detection and classification in an aircraft docking scene video. Eight classes of events are detected automatically, each of which corresponds
to different movement patterns in the image frame. For example, event class 7 corresponds to the movements of the aircraft. Event classes 4–6 correspond
to the movements of objects involved in activities frontalCargoService and frontalCateringService. (a) Events are detected and classified
into different classes which are highlighted using bounding boxes in different colours. The spatial and temporal distribution of events of different classes are
illustrated in (b) and (c), respectively, with centroids of different classes of events depicted using different colours.

temporal window. In the meantime, the ratio between � and �
determines how much weight is put on the recent change.

If the binary image D(x, y, t) in Eq. (1) is determined by the
temporal difference between the current frame and the dynamic
background maintained by an adaptive mixture model, a PCH
based foreground model can be introduced to detect the medium
and long term pixel changes. Specifically, we detect those pixels
that are associated with medium term changes by the following
condition:

|I (x, y, t) − I (x, y, t − 1)| > TM , (2)

where TM is a threshold. Pixel level changes that do not satisfy
the above condition are caused by long term changes such as the
introduction of static novel objects into the scene or the removal
of existing objects from the scene. Note that Eq. (2) is used
for distinguishing the detected foreground pixels according to
the nature of the visual changes. It is not used for detecting
foreground pixels using background subtraction.

2.2.2. From pixel groups to unsupervised clustering and
classification of events

Given detected pixel changes in each image frame, we aim
to form discrete events. The connected component method is
adopted to group those changed pixels. Small groups are then
removed by a size filter and the rest groups with an average

PCH (of the PCHs for all the pixels within each group) larger
than a threshold TB are referred to as salient pixel groups and
considered as events. An event is represented by a 7-D feature
vector

v = [x̄, ȳ, w, h, Rm, Mpx, Mpy], (3)

where (x̄, ȳ) is the centroid of the salient pixel group, (w, h)

are the width and height of the salient pixel group, Rm repre-
sents the percentage of those pixels in the group that satisfy
Condition (2), and (Mpx, Mpy) are a pair of first-order mo-
ments of the PCH image within the salient pixel group. Among
these features, (x̄, ȳ) are location features, (w, h) are shape
features, Rm is visual change type feature and (Mpx, Mpy)

are motion features capturing the direction of object motion
direction.1 Note that in our approach, salient pixel groups are
defined within each image frame. Alternatively, salient groups
can be defined in a spatio-temporal volume which could in the-
ory lead to better clustering. One could adopt a method such
as the one proposed by Greenspan et al. [31]. Alternatively,
we have also developed an approach for salient event detection
over a spatio-temporal volume using multi-scale entropy ratio

1 Similar to the MHI (see Ref. [28]), PCH implicitly represents the
direction of movement. First-order moments based on PCH value distribution
within the bounding box is thus capable of measuring the direction of
movement quantitively.
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Fig. 3. The example video shown in Fig. 2 is represented by scene vectors evolving over time. We have Ke = 8 for this video. sk
t is depicted by a dot in

colour when sk
t > 0. There are frequent but short inactivity break-ups within activities (see between frames 1 and 2000) and a long inactivity gaps between

activities (between frames 3000 and 6000).
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Fig. 4. The eight elements of s̃vt over time for the example video shown in Fig. 2. Each element of s̃vt is normalised to have a value range of [0, 1].

over space and time presented elsewhere [32]. However, such
a spatio-temporal volume based events detection and recogni-
tion approach is always computationally expansive, and may
not be tractable given the complexity of the activities captured
in video footages. In order to achieve real-time performance,
we decided to make a comprise between the speed and per-
formance of the event detection and recognition algorithm by
defining the salient groups within each image frame.

Salient pixel groups are clustered and classified unsupervised
into different events in the 7-D feature space using a GMM.
The GMM is estimated using expectation-maximisation (EM)
[33] and the model order of the GMM is determined using the
BIC [7]. An example of event detection and classification is
shown inFig. 2.

2.3. Constructing a scene vector

Classified events can be considered as ‘snapshots’ of activi-
ties captured in a scene. To hide the image feature information

and focus on the semantic video content, a scene vector is con-
structed for each image frame of a video. A scene vector svt

for a video frame t is defined as

svt = [s1
t , . . . , sk

t , . . . , s
Ke
t ], (4)

where Ke is the number of event classes automatically deter-
mined using BIC. The value of sk

t is the number of events of
the kth event class detected in the frame t.

A scene vector gives a description of ‘what is happening’
in the scene through the class labels of the detected events. It
is thus a concise representation of the video content at the se-
mantic level (see Fig. 3 for an example). However, directly us-
ing this scene vector to detect video content changes can cause
problems for video segmentation. Specifically, the value of a
scene vector svt can become 0 (i.e. absent of any event at a
given frame) frequently throughout the video sequence (see Fig.
3). This can be caused by either frequent but short inactivity
break-ups within activities or long inactivities between activi-
ties. Each ‘coming to zero’ is reflected as a dramatic change in



T. Xiang, S. Gong / Pattern Recognition 41 (2008) 2309–2326 2315

the value of svt due to the discrete nature of sk
t . Those changes

that correspond to real changes of video content can thus easily
be overwhelmed by changes caused by the inactivity break-ups
within activities, which makes temporal segmentation of the
video difficult.

2.4. Representing video content over time

To overcome this problem, let us now consider representing
the video content using a cumulative scene vector computed at
frame t using svt from frame 1 to the frame t. More specifically,
the kth element of the cumulative scene vector (denoted as s̃vt )
is computed as

s̃k
t =

t∑
i=1

sk
i . (5)

The value of each element of s̃vt will increase monotonically
with time (see Fig. 4). Compared to the scene vector represen-
tation svt (see Fig. 3), the short inactivity break-ups at individ-
ual frames have little impact on the values of the cumulative
scene vector evolved over time. It thus becomes easier to de-
tect breakpoints that correspond to significant changes in video
content.

3. Temporal segmentation of surveillance videos

It has been shown in the preceding section that a cumula-
tive scene vector can represent the video content at the seman-
tic level over time and is capable of capturing video content
changes despite variations in activity durations and occurrences
of inactivity break-ups within activities. After mapping a video
sequence into a cumulative scene vector trajectory,2 the break-
points on the trajectory correspond to the video content change
points. We thus consider the video segmentation problem as
a temporal video content trajectory breakpoint detection prob-
lem. To solve the problem, one offline and one online algo-
rithms are proposed in this section.

3.1. Multi-observation hidden Markov model (MOHMM)

We first consider detecting breakpoints on a temporal
video content trajectory using a DBN, more specifically, an
MOHMM. The DBNs are Bayesian belief networks (BBNs3 )
that have been extended to model time series data [34,35]. A
DBN B is described by two sets of parameters (m, �). The
first set m represent the structure of the DBN which include the
number of hidden variables and observation variables per time
instance, the number of states for each hidden variable and
the topology of the network (set of directed arcs connecting
nodes). The ith hidden variable and the jth observation variable

2 More precisely, it is a video polyline due to the discrete nature of the
image frames.

3 BBNs are also known as Bayesian networks, belief networks or directed
acyclic graphical (DAG) models. They are special cases of graphical models
which combine probability theory and graph theory to address two important
issues in data modelling: uncertainty and complexity.

at time instance t are denoted as S
(i)
t and O

(j)
t , respectively,

where i ∈ {1, . . . , Nh} and j ∈ {1, . . . , No} and Nh and No

are the number of hidden variables and observation variables,
respectively. The second set of parameters � quantify the state
transition models P(S

(i)
t )|Pa(S

(i)
t ), the observation models

P(O
(j)
t )|Pa(O

(j)
t ) and the initial state distributions P(S

(i)
1 )

where Pa(S
(i)
t ) are the parents of S

(i)
t and similarly, Pa(O

(i)
t )

for observations. In this paper, unless otherwise stated, S
(i)
t

are discrete and O
(j)
t are continuous random variables. Each

observation variable has only hidden variables as parents and
the conditional probability distributions (CPDs) of each obser-
vation variable are Gaussian for each state of its parent nodes.

When a DBN is adopted for video content modelling, the
observation variables in the network correspond to the cumu-
lative scene vector s̃vt and hidden states in the network corre-
spond to the video content. After model parameter estimation
and hidden state inference, changes in hidden states should re-
flect the video content changes and thus can be used for video
temporal segmentation. DBNs of different topologies can be
employed for video structure modelling. We can choose the
DBNs with the simplest topology, the HMMs (Fig. 5(a)). In
an HMM, the observation variable at each time instance corre-
sponds to s̃vt , which is of dimension K, i.e. the number of event
classes. However, a drawback of using HMMs for modelling
complex temporal process is that a large number of parameters
are needed to describe the model when the observation vari-
ables are of high dimension. This may result in poor model
learning given insufficient training data. To address this prob-
lem, various topological extensions to the standard HMMs can
be considered to factorise the state and/or observation space by
introducing multiple hidden variables and multiple observation
variables. In our case, we need to detect video content changes
based on hidden state changes. Because the hidden states of the
single hidden variable at each time instance corresponds clearly
to the video content segments, the factorisation in the states
space is unnecessary. Therefore, we only perform factorisation
in the observation space which results in a MOHMM shown in
Fig. 5(b). Specifically, O

(j)
t (j ∈ {1, . . . , K}) in Fig. 5(b) is a

1-D random variable corresponding to one of the K elements
of s̃vt . This is to factorise the observational space based on
the assumption that the occurrence of events of different event
classes is independent from each other. Consequently, the num-
ber of parameters for describing a MOHMM is much lower
than that for an HMM (2KNh + N2

h − 1 for an MOHMM and
(K2 + 3K)Nh/2 + N2

h − 1 for an HMM).
The remaining problem is to automatically determine Nh,

the number of hidden states which corresponds to the number
of video segments. To this end, we adopt Schwarz’s BIC [7] to
automatically determine Nh. For a model mi parameterised by
a Ci-dimensional vector �mi

, the BIC is defined as

BIC = −2 log L(�mi
) + Ci log N , (6)

where L(�mi
) is the maximal likelihood under mi , Ci is the

dimensionality of the parameters of mi and N is the size of the
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Fig. 5. (a) HMM and (b) MOHMM with the observation nodes illustrated as shaded circles and hidden nodes as clear circles.

dataset. For the MOHMM, L(�mi
) can be written as

− 2 log

⎧⎨⎩∑
St

{
P(S1)

T∏
t=2

P(St |Pa(St ))

×
T∏

t=1

K∏
j=1

P(O
(j)
t |Pa(O

(j)
t ))

⎫⎬⎭
⎫⎬⎭ ,

where Pa(St ) are the parents of St and similarly, Pa(O
(i)
t ) for

observations. The search for the optimal Nh that produces the
minimal BIC value involves parameter learning. More specif-
ically, for each candidate state number, the corresponding pa-
rameters are learned iteratively using the EM algorithm. The
E step, which involves the inference of hidden states given the
parameters estimated in the last M step, can be implemented
using an exact inference algorithm such as the junction tree al-
gorithm [36]. After parameter learning, the BIC value can be
computed using Eq. (6) where L(�mi

) has been obtained from
the final M step of EM for parameter learning.

3.2. Forward–backward relevance (FBR)

The inference and learning of a MOHMM is computational
expensive especially when a video content trajectory is long
and of a high dimension. For computational efficiency and real-
time performance, a novel online video segmentation algorithm
is proposed which is based on an FBR principle. More specifi-
cally, at each time instance, the relevance of one vertex on the
video trajectory is measured with respect to the starting point
of the current video segment (looking backward) and a certain
distance ahead on the trajectory (looking forward). The rele-
vance of this vertex is minimal when the three vertices sit on
a straight line in the high-dimensional trajectory space. When
the video trajectory turns drastically at the vertex, indicating a
video content change, a high relevance value will be obtained.
This relevance measure can thus be used for breakpoint detec-
tion on a video trajectory. Our algorithm is motivated by the
offline discrete curve evolution (DCE) segmentation algorithm
and aims to overcome the over-segment tendency of the con-
ventional online SW algorithm.

DCE was originally proposed for 2-D shape decomposi-
tion [12]. It can readily be extended for detecting breakpoints
of high-dimensional video content trajectories. The algorithm
starts with the finest possible segmentation (i.e. T −1 segments

Fig. 6. An online video segmentation algorithm based on FBR. In line 4,
R(t − Lmin/2) is computed using Eq. (7) with the function d(.) defined as
the Euclidean distance.

for a trajectory of length T) and progresses with two segments
being merged at each step. Specifically, the cost of merging all
adjacent pairs of segments are computed and the pair with the
minimal cost is merged. This process is performed iteratively
until a stopping criterion is met. DCE computes the merging
cost as a relevance measure R which is computed for every ver-
tex v and depends on v and its two neighbour vertices u and w:

R(u, v, w) = d(v, u) + d(v, w) − d(u, w), (7)

where function d(.) can be any distance or similarity measures
such as the Euclidean distance. In each iteration, the vertex
with minimal R is deleted until the minimal R exceeds cer-
tain threshold or only a user-specified number of vertices are
left in the trajectory. The remaining vertices correspond to the
breakpoints on the video trajectory. Although DCE is similar in
spirit to the bottom-up segmentation algorithm based on PLA
in time series data analysis [11], it is much faster compared
to the bottom-up algorithm using either linear interpolation or
linear regression, especially when the dimensionality of the tra-
jectory space is high.

In our online segmentation algorithm, instead of computing
the relevance of each vertex iteratively, the relevance of only
one vertex is computed at each time instance when a new image
frame has arrived. The algorithm is outlined in Fig. 6.

Two parameters, Lmin and Th need to be determined. In this
paper, they are learned from a training dataset. Specifically, we
perform DCE on the training data and Lmin is set to half of
the length of the shortest segment in the training data and Th
is computed as the average relevance value of the breakpoints
detected by DCE.
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Fig. 7. (a) and (b) show the first two principal components of s̃vt and colour histogram evolving over time for the seven aircraft docking videos, respectively.
Note that PCA was used only for visualisation here. Each element of s̃vt and colour histogram is normalised to have a value range of [0, 1].

There are a number of important characteristics of the algo-
rithm that distinguish it from previous ones:

1. For each new data point, instead of fitting the trajectory to
a straight line, FBR computes a relevance measure of a sin-
gle vertex which involves computing only three Euclidean
distances. The computation complexity is independent of
the segment length and much lower than the SW algorithm
and its variations.

2. At each time instance, only the coordinates of Lmin/2 + 1
vertices need to stored for computation. This makes our
algorithm suitable for long videos such as 24/7 surveillance
videos where it could be hours before any video content
changes take place.

3. Compared to the SW algorithm and its variations, our FBR
algorithm is more robust to noise because it has a global
view of the trajectory by looking both forward and back-
ward.

4. The FBR algorithm has a Lmin/2 delay in detecting break-
points which in practice is a very small number compared
of the length of a typical video segment. This is the price
one has to pay to achieve robustness in detection.

3.3. Experiments

Experiments were conducted on the representation and seg-
mentation of CCTV surveillance videos monitoring an aircraft
ramp area. A fixed CCTV analogue camera took continuous
recordings. After digitisation from VHS tapes, the final video
sequences have a frame rate of 2 Hz. Note that it is not un-
common to have such an extremely low frame rate for CCTV
surveillance videos, which makes the video segmentation prob-

lem even more challenging. Each image frame has a size of
320 × 240 pixels. Our database for the experiments consists of
seven videos of aircraft docking lasting from 6470 to 17 262
frames per sequence (around 50–140 min of recording), giving
in total 72 776 frames of video data (around 10 h in duration).
These video date cover different times of different days under
changing lighting conditions, from early morning, midday to
late afternoon. They are referred as video 1 to video 7, respec-
tively. Among the seven videos, videos 1–6 follow the typical
video structure with cargo services performed before catering
services while video 7 has a different video structure with cargo
services performed after catering services. In the following we
present results on (1) comparative performance evaluation on
video segmentation using the offline MOHMM and DCE al-
gorithms, and the online FBR algorithm; and (2) comparing
our cumulative scene vector based video content representation
with a colour histogram based one.

3.3.1. Video content representation
Eight classes of events were automatically detected and clas-

sified from the aircraft docking video sequences. They were
caused by the movements of the docking aircraft and various
ground vehicles such as catering trucks, cargo trucks and cargo
lifts (see Fig. 2 for an example). A cumulative scene vector
s̃vt (Eq. (5)) was used to represent the video content. Fig. 7(a)
shows the evolution of the first two principal components of
s̃vt for the seven different sequences.4 It can be seen that the
video content trajectory of video 7 is distinctively different from

4 Note that principal component analysis (PCA) was performed only for
visualisation of the high-dimensional video trajectory. Video segmentation
was carried out in the original 8-D video trajectory space.
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Fig. 8. Temporal segmentation of video 1 using MOHMM. In (a), the inferred hidden state 4 is a virtual state that does not model data (the probability of
staying in state 4 is zero). (a) Transition probabilities of hidden states of the MOHMM trained for video 1. (b) The inferred states of MOHMM. (c) MOHMM
segmentation. (d) Manual segmentation.

those of the other six videos. For comparison, the same video
sequences were also represented using colour histograms. We
defined four histogram bins for each of the three colour chan-
nels of the RGB colour space. Separate RGB colour histograms
were concatenated into a single one with 12 components in each
frame. Fig. 7(b) illustrates the evolution of the first two prin-
cipal components of the colour histogram representation over
time from the same seven sequences as Fig. 7(a). It is evident

from Fig. 7(b) that this colour histogram based video content
trajectories are less smooth compared to the video content tra-
jectories based on the cumulative scene vector. It is also noted
that only the arrival and departure of the aircraft are captured
well by the colour histogram changes (see the beginning and
ending part of the trajectories). It can be seen from Fig. 7(b)
that the trajectory corresponding to video 7 is similar to other
trajectories under the colour histogram representation.
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Fig. 9. An example breakpoint detection result by the FBR algorithm. (a) The frames corresponding to the detected breakpoints. (b) Detected breakpoints
overlapped on the video content trajectory. (c) Manual segmentation result. Notice that although the video are illustrated in a 3-D PCA space in (b) and (c),
it was segmented in an 8-D video trajectory space.

3.3.2. Video segmentation
The seven videos were first manually segmented into activ-

ities and inactivity gaps to give the ground truth of the break-
points. The number of segments in each sequence was between
6 and 11. The videos were then divided into training and test
sets with three videos in the training set and four in the test-
ing set. This was repeated 10 times and in each trial a different
training set of three videos were randomly chosen in order to
avoid any bias in comparing the performance of different seg-
mentation algorithms. We compared the performance of the of-
fline DCE and MOHMM algorithms and our online FBR algo-
rithm on the videos represented by scene vector s̃vt (Fig. 7(a)).
Note that in our experiments, training data were needed by both
DCE and FBR for determining the number of segments. How-
ever, they are not required directly by MOHMM because it au-
tomatically determines the number of video segments through
model selection (see Section 3.1).

An example of video segmentation using MOHMM is shown
in Fig. 8. A MOHMM was trained for video 1. The number
of observation variables in each time slice was 8, which was
automatically determined by the number of event classes. The
number of hidden states was automatically determined to be
8 using the BIC. All the model parameters are initialised ran-
domly. The learned state transition probabilities are illustrated
in Fig. 8(a). The inferred states of MOHMM are shown in Fig.
8(b). The video was then segmented based on changes on the
inferred states (see Fig. 8(c)). A manual segmentation with a
short description of activities occurred in each segment is shown
in Fig. 8(d). Comparing Fig. 8(c) with Fig. 8(d), we can see
that most video content changes have been detected correctly. It

is noted that a breakpoint between aircraftArrival and
airbridgeConnection was not detected. This was due to
the overlapping in time between this two activities. It is also ob-
served that some sparsely and randomly appearing events cor-
responding to a number of passing-by vehicles in the aircraft
ramp area (see Fig. 3 between frames 2000 and 6000) were not
regarded as being significant and were thus not picked up by
our model as video content changes, thanks to the cumulative
scene vector based video content representation.

Fig. 9 shows an example of breakpoint detection using the
FBR algorithm. Fig. 9(b) shows video 2 represented by the
cumulative scene vector s̃vt (illustrated in a 3-D PCA space)
with the seven detected breakpoints overlapped on the video
content trajectory (the trajectory evolves from left to right).
The top row of Fig. 9 shows the frames corresponding to the
detected breakpoints. Compared with the manual segmentation
result (Fig. 9(c)), it can be seen that the fourth breakpoint is a
false positive which was caused by a long inactivity break-up
during the frontal cargo service. A breakpoint between the fifth
and sixth detected breakpoints was missed which corresponds
the ending point of a frontal catering service. This was caused
by the quick departure of the catering truck and the low frame
rate of the video.

The performance of the three algorithms over 10 trials was
measured by the detection rate and false positive rate of break-
point detection. A breakpoint detected within 100 frames of
the true breakpoint was regarded as being correctly detected.
In total, there were 334 true breakpoints in the testing sets over
10 trials. The distance measure in Eq. (7) was Euclidean for
both DCE and FBR. Table 1 shows that satisfactory results
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Table 1
Segmentation results on cumulative scene vector trajectories

DCE MOHMM FBR

Detection rate (%) 78.1 82.3 75.6
False positives (%) 0.0236 0.0188 0.0388

Table 2
Comparing the computational costs of the three segmentation algorithms

DCE MOHMM FBR

Computational cost (second per frame) 0.023 0.098 0.000032

Table 3
Segmentation results on colour histogram trajectories

DCE MOHMM FBR

Detection rate (%) 31.4 26.7 28.4
False positives (%) 0.0624 0.0430 0.0539

were obtained by all three algorithms considering the chal-
lenging nature of the problem and the noisy data used in the
experiments. The FBR algorithm achieved slightly worse de-
tection rate compared to the two offline algorithms and tended
to over-segment the video sequences. It is also noted that the
starting and ending points of the frontal catering service were
often miss-detected by all three algorithms. In particular, when
a catering truck moved into position very quickly during the
frontal catering service, the resultant change in the video con-
tent trajectory was similar to those caused by passing vehicles
which were not involved in any activity. This type of changes
would not be picked up by the segmentation algorithms. On the
other hand, the long inactivity break-ups caused by the lack of
movements during the frontal catering service were the main
reason for false positives. These issues could be partially ad-
dressed by employing a more sophisticated background model.

The algorithms were implemented on a Xeon 3 GHz plat-
form. The computational cost for background modelling and
event detection was 0.11 s per frame. Given the constructed cu-
mulative scene vector, the computational cost of the three seg-
mentation algorithms are compared in Table 2. It can be seen
that the computational cost for FBR is much low than those
of the other two. Since FBR is an online algorithm, our on-
line segmentation algorithm can run at a near real-time speed
(9 Hz) without any code optimisation (i.e. the speed is mainly
determined by the background modelling and event detection).

3.3.3. Comparison with colour histogram based representation
We also performed DCE, MOHMM and FBR on the colour

histogram based video content representation following the
same experimental procedure. It is shown in Table 3 that all
three algorithms yielded much inferior results on the same seven
aircraft docking videos. In particular, it is noted that only the
arrival and departure of the aircraft were detected reliably. The
changes caused by the start and end of other activities were

easily overwhelmed by image noise and illumination changes
frequently encountered in a typical outdoor environment. This
resulted in the lower detection rates and higher false positive
rates (comparing Table 3 with Table 1).

3.3.4. Discussions
The key findings of our experiments are summarised and

discussed as below:

1. Comparing the two proposed segmentation algorithms,
MOHMM achieved higher detection rate and lower false
alarm rate. Using MOHMM, video content is modelled ex-
plicitly by hidden states which need to be inferred from the
observations. This makes MOHMM more robust to repre-
sentation noise. However, it is also computationally more
expensive than FBR. Also importantly, FBR is an online
algorithm that can run in real-time together the background
modelling and event detection. This makes FBR attractive
for applications for which real-time performance is the key
priority.

2. Our results show that a semantically meaningful video
representation is crucial for segmentation of surveillance
videos. This is related to the problem of ‘bridging the se-
mantic gap’ which has received much attention recently in
multimedia content analysis [5,37,38]. In our case, there
is a gap between the low level image features (e.g. colour
and motion) and semantic meaningful segmentation results
(i.e. each segment corresponds to an activity which can
be described using semantic concepts). To bridge this gap,
we introduce the event-based video content representation
with each class of events being constituents of different
activities. When a new activity takes place, the changes in
the event classes or/and the temporal correlations among
them can be picked up by our segmentation algorithm for
video content breakpoint detection.

3. Constructing a scene vector svt is essentially a vector quan-
tisation process which is useful for concise representation.
However, using the scene vector directly is not appropriate
for segmentation because of the discreteness of the scene
vector. The introduction of the cumulative scene vector s̃vt

is critical to make the representation less sensitive to short
inactivity break-ups within activities and noise in event de-
tection.

4. Video content modelling for activity recognition and
unusual activity detection

Using the approaches described in the preceding section, con-
tinuous surveillance videos in a training dataset are segmented
into N video segments, ideally each video segment now con-
taining a single activity. Taking an unsupervised approach, the
task now is to discover the natural grouping of the activity pat-
terns (i.e. clustering), upon which a video content model is built
for the N video segments. Given an unseen activity, the model
is then employed to detect if the activity pattern is different
from what has been seen before (i.e. an unusual activity), and



T. Xiang, S. Gong / Pattern Recognition 41 (2008) 2309–2326 2321

recognise it into different activity classes if a similar pattern
has been observed previously.

4.1. Activity representation

The activity pattern captured in the nth video segment vn is
represented as a feature vector Pn, given as

Pn = [pn1, . . . , pnt , . . . , pnT n ], (8)

where Tn is the length of the nth video segment and the tth
element of Pn is a Ke dimensional variable:

pnt = [p1
nt , . . . , p

k
nt , . . . , p

Ke
nt ]. (9)

pnt corresponds to the tth image frame of vn where pk
nt is the

posterior probability that an event of the kth event class has
occurred in the frame given the learned GMM. If an event of
the kth class is detected in the tth image frame of vn, we have
0 < pk

nt �1; otherwise, we have pk
nt = 0.

It is worth pointing out that: (1) An activity pattern is decom-
posed into temporally ordered, semantically meaningful scene-
events. Consequently, the activity representation is compact and
concise. This is critical for a model-based video content mod-
elling approach because model construction based upon concise
representation is more likely to be computationally tractable
for complex activities. (2) Different types of activity patterns
can differ either in the classes of events they are composed of,
or in the temporal orders of the event occurrence. For instance,
activity patterns A and B are deemed as being different if (1)
A is composed of events of classes a, b and d, while B is com-
posed of events of classes a, c and e; or (2) Both A and B are
composed of events of classes a, c and d; however, in A, event
(class) a is followed by c, while in B, event (class) a is followed
by d.

4.2. Activity clustering

The video content modelling problem can now be defined
formally. Consider a training dataset D consisting of N feature
vectors:

D = {P1, . . . , Pn, . . . , PN }, (10)

where Pn is defined in Eq. (8) representing the activity pat-
tern captured by the nth video segment. The problem to be
addressed is to discover the natural grouping of the training
activity patterns upon which a model for usual activity can
be built. This is essentially a data clustering problem with the
number of clusters unknown. There are a number of aspects
that make this problem challenging: (1) Each feature vector Pn

can be of different lengths. Conventional clustering approaches
such as K-means and mixture models require that each data
sample is represented as a fixed length feature vector. These
approaches thus cannot be applied directly. (2) A definition of
a distance/affinity metric among these variable length feature
vectors is nontrivial. Measuring affinity between feature vectors

of variable length often involves DTW [39]. A standard DTW
method used in computer vision community would attempt to
treat the feature vector Pn as a Ke dimensional trajectory and
measure the distance of two activity patterns by finding corre-
spondence between discrete vertices on two trajectories. Since
in our framework, an activity pattern is represented as a set of
temporal correlated events, i.e. a stochastic process, a stochas-
tic modelling based approach is more appropriate for distance
measuring. (3) Model selection needs to be performed to deter-
mine the number of clusters. To overcome the above-mentioned
difficulties, a recently proposed spectral clustering algorithm
with feature and model selection is deployed [20].

To apply a spectral clustering algorithm, a data affinity matrix
needs to be constructed. Here we only describe the procedure
for constructing an affinity matrix for activity clustering and
leave out the details of the spectral clustering algorithm which
can be found in Ref. [20]. We utilise DBNs to provide a dynamic
representation of each activity pattern feature vector in order
to both address the need for dynamic warping and provide a
string similarity metric. More specifically, each activity pattern
in the training set is modelled using a DBN. To measure the
affinity between two activity patterns represented as Pi and
Pj , two DBNs denoted as Bi and Bj are trained on Pi and
Pj , respectively, using the EM algorithm [34,40]. The affinity
between Pi and Pj is then computed as

Aij = 1

2

{
1

Tj

log P(Pj |Bi ) + 1

Ti

log P(Pi |Bj )

}
, (11)

where P(Pj |Bi ) is the likelihood of observing Pj given Bi ,
and Ti and Tj are the lengths of Pi and Pj , respectively.

DBNs of different topologies can be used. However, it is
worth pointing out that since a DBN needs to be learned for
every single activity pattern in the training dataset which could
be short in duration, a DBN with less number of parameters
is more desirable. To this end, we employ the MOHMM de-
scribed in Section 3.1. Note that when applying MOHMM for
modelling each activity pattern, the number of hidden states
for the MOHMM is set to Ke, i.e. the number of event classes.
This is reasonable because the value of Ns should reflect the
complexity of an activity pattern, so should the value of Ke.

4.3. Modelling video content using a composite model

Using the spectral clustering algorithm proposed in Ref. [20],
the N activity patterns in the training dataset is grouped into K
clusters with K being automatically determined via model order
selection. To build a model for the observed/expected activities,
we first model the kth activity class using a MOHMM Bk . The
parameters of Bk , �Bk

are estimated using all the patterns in
the training set that belong to the kth class. An activity model
M is then formulated as a mixture of the K MOHMMs. Given
an unseen activity pattern, represented as an activity pattern
feature vector P as described in Section 4.1, the likelihood of
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observing P given M is

P(P|M) =
K∑

k=1

Nk

N
P(P|Bk), (12)

where N is the total number of training activity patterns and Nk

is the number of patterns that belong to the kth activity class.

4.4. Online activity recognition and unusual activity detection

Once constructed, the composite video content model M can
be used to detect whether an unseen activity pattern is usual
using a run-time unusual activity measure. If detected as being
usual, the activity pattern is then recognised as one of the K
classes of usual activity patterns using an online likelihood ratio
test (LRT) method.

An unseen activity pattern of length T is represented as
P =[p1, . . . , pt , . . . , pT ]. At the tth frame, the accumulated vi-
sual information for the activity pattern, represented as Pt =
[p1, . . . , pt ], is used for online reliable unusual activity detec-
tion. First the normalised log-likelihood of observing P at the
tth frame given the activity model M is computed as

lt = 1

t
log P(Pt |M). (13)

lt can be easily computed online using the forward–backward
procedure [41]. Specifically, to compute lt , the Ke forward
probabilities at time t are computed using the Ke forward prob-
abilities computed at time t − 1 together with the observations
at time t (see Ref. [41] for details). Note that the complexity of
computing lt is O(K2

e ) and does not increase with t. We then
measure how likely Pt is an unusual activity using an online
unusual activity measure Qt :

Qt =
{

l1 if t = 1,

(1 − �)Qt−1 + �(lt − lt−1) otherwise,
(14)

where � is an accumulating factor determining how important
the visual information extracted from the current frame is for
unusual activity detection. We have 0 < ��1. Compared to lt as
an indicator of normality/anomaly, Qt could add more weight
to more recent observations. Unusual activity is detected at
frame t if

Qt < ThA, (15)

where ThA is the unusual activity detection threshold. The
value of ThA should be set according to the detection and false
alarm rate required by each particular surveillance application.
Note that it takes a time delay for Qt to stabilise at the begin-
ning of evaluating an activity pattern due to the nature of the
forward–backward procedure. The length of this time period,
denoted as Tw is related to the complexity of the MOHMM
used for activity modelling. We thus set Tw = 3Ke in our ex-
periments to be reported later in Section 4.5, i.e. the unusual
activity of an activity pattern is only evaluated when t > Tw.

At each frame t an activity pattern needs to be recognised as
one of the K activity classes when it is detected as being usual,

i.e. Qt > ThA. This is achieved using an online LRT method.
More specifically, we consider a hypotheses test between:

Hk: Pt is from the hypothesised model Bk and belongs to
the kth usual activity class,

H0: Pt is from a model other than Bk and does not belong
to the kth usual activity class,

where H0 is called the alternative hypothesis. Using LRT, we
compute the likelihood ratio of the accepting the two hypothe-
ses as

rk = P(Pt ; Hk)

P (Pt ; H0)
. (16)

The hypothesis Hk can be represented by the model Bk which
has been learned in the activity profiling step. The key to LRT is
thus to construct the alternative model which represents H0. In
a general case, the number of possible alternatives is unlimited;
P(Pt ; H0) can thus only be computed through approximation
[42,43]. Fortunately in our case, we have determined at the
tth frame that Pt is usual and can only be generated by one
of the K usual activity classes. Therefore, it is reasonable to
construct the alternative model as a mixture of the rest K − 1
usual activity classes. In particular, Eq. (16) is re-written as

rk = P(Pt |Bk)∑
i �=k

Ni

N − Nk

P (Pt |Bi )

. (17)

Note that rk is a function of t and computed over time. Pt is reli-
ably recognised as the kth activity class only when 1>Thr < rk .
In our experiments we found that Thr = 10 led to satisfactory
results. When there are more than one rk greater than Thr , the
activity pattern is recognised as the class with the largest rk .

For comparison, the commonly used ML method recognises
Pt as the kth activity class when k=arg maxk{P(Pt |Bk)}. Using
the ML method, recognition has to be performed at each single
frame without considering how reliable and sufficient the accu-
mulated visual evidence is. This often causes errors especially
when there are ambiguities between different classes (e.g. an
activity pattern can be explained away equally well by multi-
ple plausible activity at its early stage). Compared to the ML
method, our online LRT method holds the decision on activity
recognition until sufficient evidence has been accumulated to
overcome ambiguities. The recognition results obtained using
our approach are thus more reliable compared to those obtained
by the ML method.

Table 4
Six classes of commonly occurred activity patterns in the airport scene

A1 Aircraft arrives
A2 Airbridge connected
A3 Frontal cargo service
A4 Frontal catering service
A5 Aircraft departs
A6 Airbridge disconnected
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Fig. 10. The performance of unusual activity detection using aircraft docking video content model. The mean ROC curves were obtained over 20 trials. The
performance of usual activity recognition obtained by averaging the results over 20 trials with ThA = −0.5. Each row represents the probabilities of the
corresponding class being confused with all the other classes averaged over 20 trials: (a) ROC curves; (b) confusion matrix.

4.5. Experiments

The same datasets described in Section 3.3 was employed
for validating our approach on video content modelling and
online unusual activity detection. The videos were segmented
automatically using the FBR online segmentation algorithm
described in Section 3.2, giving 59 video segments of actual
activity pattern instances. Each segment has on average 428
frames with the shortest 74 and longest 2841.

Model training—A training set was created which consisted
of 40 video segments and the remaining 19 were used for test-
ing. This model training exercise was repeated 20 times and in
each trial a different model was trained using a different ran-
dom training set. This is in order to avoid any bias in the un-
usual activity detection and usual activity recognition results to
be discussed later.

In each training session, the 40 training activity patterns were
represented based on the event detection results and clustered
to build a composite activity model. The number of clusters for
each training set was determined automatically as six in every
trial using the spectral clustering algorithm proposed in Ref.
[20]. By observation, each of the six discovered data clusters
mainly contained samples corresponding to one of the six ac-
tivity classes listed in Table 4.

Unusual activity detection—Each activity pattern in a testing
set was detected as being unusual when Eq. (15) was satisfied at
any time after Tw=3Ke=24 frames. The accumulating factor �
for computing Qt was set to 0.1. To measure the performance of
the learned models on unusual activity detection, each activity
pattern in the testing sets was manually labelled as usual if
there were similar patterns in the corresponding training sets
and unusual otherwise. We measure the performance of unusual
activity detection using unusual activity detection rate and false

Table 5
The mean and standard deviation of the unusual activity detection rate and
false alarm rates

Anomaly detection rate (%) False alarm rate (%)

79.2 ± 8.3 5.1 ± 3.9

The results were obtained over 20 trials with ThA = −0.5.

alarm rate,5 which are defined as

Unusual activity detection rate

= # True positives (unusual detected as unusual)

# All positives (unusual patterns) in a dataset
,

False alarm rate

= # False positives (usual detected as unusual)

# All negatives (usual patterns) in a dataset
. (18)

The detection rate and false alarm rate of unusual activity detec-
tion are shown in the form of a receiver operating characteristic
(ROC) curve by varying the unusual activity detection thresh-
old ThA (see Eq. (15)). The result is shown in Fig. 10(a) and
Table 5. Figs. 11(b) and (f) show examples of online reliable
unusual activity detection using our run-time unusual activity
measure.

Recognition of usual activity patterns—The usual activity
recognition results are illustrated in Fig. 10(b). When ThA was
set to −0.5, the recognition rate averaged over 20 trials was

5 Detection rate and false alarm rate are also called true positive rate and
false positive rate, respectively, in the literature. Note that the performance
can also be measured using true negative rate and false negative rate. Since
we have ‘true negative rate’=1—‘false alarm rate’ and ‘false negative rate’=
1—‘detection rate’, showing only unusual activity detection rate and false
alarm rate is adequate.
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Fig. 11. Compare our LRT method with ML method for online usual activity recognition in an aircraft docking scene. (a) An unusual activity pattern where
a truck brought engineers to fix a ground power cable problem. It resembled A4 in the early stage. (b) Qt computed over time, It was detected as unusual
activity from Frame 147 till the end based on Qt . (c) rk computed over time, The activity pattern between Frames 53–145 was recognised reliably as A4
using LRT before becoming unusual and being detected using Qt . (d) log P(Pt |Bk) computed over time, The activity pattern was wrongly recognised as
A3 between Frames 80–98 using the ML method. (e) An usual A1 activity pattern. (f) Qt computed over time, The activity pattern was detected as usual
throughout based on Qt . (g) rk computed over time, It was recognised reliably as A1 from Frame 73 till the end using LRT. (h) log P(Pt |Bk) computed
over time, It was wrongly recognised as A2 between Frames 12–49 using ML. In (a) and (e), detected events are illustrated using the same colour scheme as
in Fig. 2.

72.1%. Examples of online reliable activity recognition using
our online LRT method are shown in Fig. 11 in comparison with
the ML method. It can be seen that our LRT method is superior
to the ML method in that usual activity patterns can be reliably
and promptly recognised after sufficient visual evidence had
become available to overcome the ambiguities among different
activity classes.

5. Conclusion

In conclusion, we have presented a novel approach for rep-
resenting, segmenting and modelling the content of CCTV
surveillance videos according to the activities captured in the

scene. The video content is represented by constructing a cumu-
lative multi-event scene vector over time. An offline MOHMM
based segmentation algorithm was introduced to deal with noise
in video content representation. An online FBR algorithm was
also developed to detect breakpoints in the video content and
segment a continuous video into activities on-the-fly. A frame-
work for robust online activity recognition and unusual activity
detection has also been proposed which is based on construct-
ing a generative composite video content model. Experiments
was carried out to evaluate the effectiveness and robustness of
our approach using over 10 h of challenging outdoor surveil-
lance video footages. Our experiments demonstrate that an
event based video content representation is superior to a colour
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histogram based representation for surveillance video segmen-
tation. Our experiments also suggest that an online LRT based
method is preferred over the conventional ML based method
for activity recognition.

It is worth pointing out that in our current MOHMM, each
observational variable is 1-D and assumed to be independent
to each other. Since each variable corresponds to one class
of event and causal relationships exist among different classes
of events, this assumption is not valid. We are investigating
the possibility of joining dependent observational variables to-
gether into combined variables or introducing arcs between de-
pendent variables to improve the performance of our MOHMM
based segmentation algorithm. Similar idea has been exploited
in structure improvement of the static naive Bayes classifier
[44].

References

[1] J.R. Kender, B.L. Yeo, Video scene segmentation via continuous video
coherence, in: IEEE Conference on Computer Vision and Pattern
Recognition, 1998, pp. 367–373.

[2] C.W. Ngo, T.C. Pong, H.J. Zhang, Motion-based video representation for
scene change detection, Int. J. Comput. Vision 50 (2) (1998) 127–142.

[3] Y. Rui, S. Huang, S. Mehrota, Exploring video structures beyond the
shots, in: IEEE International Conference on Multimedia Computing and
Systems, 1998, pp. 237–240.

[4] N. Babaguchi, Y. Kawai, T. Kitahashi, Event based indexing of
broadcasting sports video by intermodal collaboration, IEEE Trans.
Multimedia 4 (1) (2002) 68–75.

[5] M.R. Naphade, I. Kozintsev, T.S. Huang, A factor graph framework for
semantic indexing and retrieval in video, in: IEEE Trans. Circuits Syst.
Video Technol., 2002, pp. 40–52.

[6] N. Vasconcelos, A. Lippman, Bayesian modeling of video editing and
structure: semantic features for video summarization and browsing, in:
ICIP, 1998, pp. 550–555.

[7] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978)
461–464.

[8] T. Xiang, S. Gong, D. Parkinson, Autonomous visual events detection and
classification without explicit object-centred segmentation and tracking,
in: British Machine Vision Conference, 2002, pp. 233–242.

[9] S. Gong, T. Xiang, Recognition of group activities using dynamic
probabilistic networks, in: IEEE International Conference on Computer
Vision, 2003, pp. 742–749.

[10] D. DeMenthon, L. Latechi, A. Rosenfeld, M. Stuckelberg, Relevance
ranking of video data using hidden markov model distances and polygon
simplification, in: Advances in Visual Information Systems, 2000.

[11] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm
for segmenting time series, in: International Conference on Data
Engineering, 2001, pp. 289–296.

[12] L. Latecki, R. Lakamper, Convexity rule for shape decomposition based
on discrete contour evolution, Comput. Vision Image Understanding 73
(1999) 441–454.

[13] P. Heckbert, M. Garland, Survey of ploygonal surface simplification
algorithms, in: International Conference on Computer Graphics and
Interactive Techniques, 1997.

[14] X. Ge, P. Smyth, Segmental semi-markov models for endpoint detection
in plasma etching, in: AEC/APC Symposium XII, 2000.

[15] E. Keogh, S. Kasetty, On the need for time series data mining
benchmarks: a survey and empirical demonstration, Data Min. Knowl.
Discovery 7 (4) (2003) 349–371.

[16] H. Shatkay, S. Zdonik, Approximate queries and representations for large
data sequences, in: International Conference on Data Engineering, 1996,
pp. 546–553.

[17] Y. Weiss, Segmentation using eigenvectors: a unifying view, in: IEEE
International Conference on Computer Vision, 1999, pp. 975–982.

[18] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (8) (2000) 888–905.

[19] S. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International
Conference on Computer Vision, 2003, pp. 313–319.

[20] T. Xiang, S. Gong, Video behaviour profiling and abnormality detection
without manual labelling, in: IEEE International Conference on
Computer Vision, 2005, pp. 1238–1245.

[21] O. Boiman, M. Irani, Detecting irregularities in images and in video, in:
IEEE International Conference on Computer Vision, 2005, pp. 462–469.

[22] N. Oliver, B. Rosario, A. Pentland, A Bayesian computer vision system
for modelling human interactions, IEEE Trans. Pattern Anal. Mach.
Intell. 22 (8) (2000) 831–843.

[23] L. Zelnik-Manor, M. Irani, Event-based video analysis, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2001,
pp. 123–130.

[24] S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, H. Wechsler, Tracking
group of people, Comput. Vision Image Understanding 80 (2000) 42–56.

[25] J. Ng, S. Gong, Learning pixel-wise signal energy for understanding
semantics, in: British Machine Vision Conference, 2001, pp. 695–704.

[26] C. Stauffer, W. Grimson, Learning patterns of activity using real-time
tracking, IEEE Trans. Pattern Anal. Mach. Intell. 22 (8) (2000) 747–758.

[27] J. Sherrah, S. Gong, Automated detection of localised visual events over
varying temporal scales, in: Proceedings of the European Workshop on
Advanced Video-based Surveillance System, 2001.

[28] A.F. Bobick, J.W. Davis, The recognition of human movement using
temporal templates, IEEE Trans. Pattern Anal. Mach. Intell. 23 (3) (2001)
257–267.

[29] J.H. Piater, J.L. Crowley, Multi-modal tracking of interacting targets
using Gaussian approximation, in: Proceedings of 2nd IEEE Workshop
on Performance Evaluation of Tracking and Surveillance, 2001,
pp. 141–147.

[30] T. Xiang, S. Gong, Beyond tracking: modelling activity and
understanding behaviour, Int. J. Comput. Vision 67 (1) (2006) 21–51.

[31] H. Greenspan, J. Goldberger, A. Mayer, Probabilistic space-time video
modelling via piecewise GMM, IEEE Trans. Pattern Anal. Mach. Intell.
26 (3) (2004) 384–396.

[32] H. Hung, S. Gong, Quantifying temporal saliency, in: British Machine
Vision Conference, 2004, pp. 727–736.

[33] C. Bishop, Neural Networks for Pattern Recognition, Cambridge
University Press, Cambridge, 1995.

[34] Z. Ghahramani, Learning dynamic Bayesian networks, in: Adaptive
Processing of Sequences and Data Structures. Lecture Notes in Artificial
Intelligence, Springer, Berlin, 1998, pp. 168–197.

[35] D. Heckerman, A tutorial on learning with Bayesian networks. Technical
Report MSR-TR-95-06, Microsoft Research, 1995.

[36] C. Huang, A. Darwiche, Inference in belief networks: a procedural guide,
Int. J. Approx. Reason. 15 (3) (1996) 225–263.

[37] W.I. Grosky, R. Zhao, Negotiating the semantic gap: from feature maps
to semantic landscapes, Lecture Notes in Computer Science, vol. 2234,
Springer, Berlin, 2001, pp. 33–42.

[38] P. Enser, C. Sandom, Towards a comprehensive survey of the semantic
gap in visual image retrieval, in: CIVR, 2003, pp. 291–299.

[39] J. Kruskal, M. Liberman, The Symmetric Time-warping Problem: From
Continuous to Discrete, Addison-Wesley, 1983.

[40] A. Dempster, N. Laird, D. Rubin, Maximum-likelihood from incomplete
data via the EM algorithm, J. R. Statist. Soc. B 39 (1977) 1–38.

[41] L.R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proc. IEEE 77 (2) (1989) 257–286.

[42] J. Wilpon, L. Rabiner, C. Lee, E. Goldman, Automatic recognition of
keywords in unconstrained speech using hidden markov models, in:
IEEE Trans. Acoustic Speech Signal Process., 1990, pp. 1870–1878.

[43] A. Higgins, L. Bahler, J. Porter, Speaker verification using randomized
phrase prompting, in: Digital Signal Process., 1991, pp. 89–106.

[44] N. Friedman, D. Geiger, M. Goldzmidt, Bayesian network classifiers,
Mach. Learn. 29 (1997) 131–163.



2326 T. Xiang, S. Gong / Pattern Recognition 41 (2008) 2309–2326

About the Author—Dr. TAO XIANG is a Lecturer at the Department of Computer Science, Queen Mary, University of London. Dr. Xiang was awarded his
Ph.D. in Electrical and Computer Engineering from the National University of Singapore in 2002, which involved research into 3-D Computer Vision and
Visual Perception. He also received his B.Sc. degree in Electrical Engineering from Xi’an Jiaotong University in 1995, and his M.Sc. degree in Electronic
Engineering from the Communication University of China (CUC) in 1998. His research interests include computer vision, image processing, statistical learning,
pattern recognition, machine learning and data mining. He has been working recently on topics such as spectral clustering, video based behaviour analysis
and recognition and model order selection for dynamic Bayesian networks.

About the Author—Professor SHAOGANG GONG is Professor of Visual Computation at the Department of Computer Science, Queen Mary, University of
London and a Member of the UK Computing Research Committee. He heads the Queen Mary Computer Vision Group and has worked in computer vision and
pattern recognition for over 20 years, published over 170 papers and a monograph. He twice won the Best Science Prize (1999 and 2001) of British Machine
Vision Conferences, the Best Paper Award (2001) of IEEE International Workshops on Recognition and Tracking of Faces and Gestures and the Best Paper
Award (2005) of IEE International Symposium on Imaging for Crime Detection and Prevention. He was a recipient of a Queen’s Research Scientist Award
(1987), a Royal Society Research Fellow (1987 and 1988), a GEC-Oxford Fellow (1989), a visiting scientist at Microsoft Research (2001), and Samsung (2003).


	Activity based surveillance video content modelling
	Introduction
	Video segmentation
	Video content modelling for activity recognition and unusual activity detection

	Semantic video content representation
	An example scenario
	Detecting and classifying visual events
	Seeding event: measuring pixel change history
	From pixel groups to unsupervised clustering and classification of events

	Constructing a scene vector
	Representing video content over time

	Temporal segmentation of surveillance videos
	Multi-observation hidden Markov model (MOHMM)
	Forward--backward relevance (FBR)
	Experiments
	Video content representation
	Video segmentation
	Comparison with colour histogram based representation
	Discussions


	Video content modelling for activity recognition and unusual activity detection
	Activity representation
	Activity clustering
	Modelling video content using a composite model
	Online activity recognition and unusual activity detection
	Experiments

	Conclusion
	References


