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Abstract—This paper aims to address the problem of modeling video behavior captured in surveillance videos for the applications of

online normal behavior recognition and anomaly detection. A novel framework is developed for automatic behavior profiling and online

anomaly sampling/detection without any manual labeling of the training data set. The framework consists of the following key components:

1) A compact and effective behavior representation method is developed based on discrete-scene event detection. The similarity between

behavior patterns are measured based on modeling each pattern using a Dynamic Bayesian Network (DBN). 2) The natural grouping of

behavior patterns is discovered through a novel spectral clustering algorithm with unsupervised model selection and feature selection on

the eigenvectors of a normalized affinity matrix. 3) A composite generative behavior model is constructed that is capable of generalizing

from a small training set to accommodate variations in unseen normal behavior patterns. 4) A runtime accumulative anomaly measure is

introduced to detect abnormal behavior, whereas normal behavior patterns are recognized when sufficient visual evidence has become

available based on an online Likelihood Ratio Test (LRT) method. This ensures robust and reliable anomaly detection and normal behavior

recognition at the shortest possible time. The effectiveness and robustness of our approach is demonstrated through experiments using

noisy and sparse data sets collected from both indoor and outdoor surveillance scenarios. In particular, it is shown that a behavior model

trained using an unlabeled data set is superior to those trained using the same but labeled data set in detecting anomaly from an unseen

video. The experiments also suggest that our online LRT-based behavior recognition approach is advantageous over the commonly used

Maximum Likelihood (ML) method in differentiating ambiguities among different behavior classes observed online.

Index Terms—Behavior profiling, anomaly detection, dynamic scene modeling, spectral clustering, feature selection, Dynamic

Bayesian Networks.

Ç

1 INTRODUCTION

THERE is an increasing demand for automatic methods for
analyzing the vast quantities of surveillance video data

generated continuously by closed-circuit television (CCTV)
systems. One of the key objectives of deploying an automated
visual surveillance system is to detect abnormal behavior
patterns and recognize the normal ones. To achieve this
objective, previously observed behavior patterns need to be
analyzed and profiled, upon which a criterion on what is
normal/abnormal is drawn and applied to newly captured
patterns for anomaly detection. Due to the large amount of
surveillance video data to be analyzed and the real-time
nature of many surveillance applications, it is very desirable
to have an automated system that runs in real time and
requires little human intervention. In the paper, we aim to
develop such a system that is based on fully unsupervised
behavior profiling and robust online anomaly detection.

Let us first define the problem of automatic behavior
profiling for anomaly detection. Given a 24/7 continuously
recorded video or an online CCTV input, the goal of
automatic behavior profiling is to learn a model that is
capable of detecting unseen abnormal behavior patterns
while recognizing novel instances of expected normal
behavior patterns. In this context, we define an anomaly as
an atypical behavior pattern that is not represented by
sufficient samples in a training data set but critically satisfies
the specificity constraint to an abnormal pattern. This is

because one of the main challenges for the model is to
differentiate anomaly from outliers caused by noisy visual
features used for behavior representation. The effectiveness
of a behavior profiling algorithm shall be measured by
1) how well anomalies can be detected (that is, measuring
specificity to expected patterns of behavior) and 2) how
accurately and robustly different classes of normal behavior
patterns can be recognized (that is, maximizing between-
class discrimination).

To solve the problem, we develop a novel framework for
fully unsupervised behavior profiling and online anomaly
detection. Our framework has the following key components:

1. A scene event-based behavior representation. Due to the
space-time nature of behavior patterns and their
variable durations, we need to develop a compact
and effective behavior representation scheme and to
deal with time warping. We adopt a discrete scene
event-based image feature extraction approach [8].
This is different from most previous approaches such
as [24], [16], [14], [3] where image features are
extracted based on object tracking. A discrete event-
based behavior representation aims to avoid the
difficulties associated with tracking under occlusion
in noisy scenes [8]. Each behavior pattern is modeled
using a Dynamic Bayesian Network (DBN) [7], which
provides a suitable means for time warping and
measuring the affinity between behavior patterns.

2. Behavior profiling based on discovering the natural group-
ing of behavior patterns using the relevant eigenvectors of a
normalized behavior affinity matrix. A number of affinity
matrix-based clustering techniques have been pro-
posed recently [25], [23], [30]. However, these
approaches require a known number of clusters.
Given an unlabeled data set, the number of behavior
classes is unknown in our case. To automatically
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determine the number of clusters, we propose to first
perform unsupervised feature selection to eliminate
those eigenvectors that are irrelevant/uninformative
in behavior pattern grouping. To this end, a novel
feature selection algorithm is derived, which makes
use of the a priori knowledge on the relevance of each
eigenvector. Our unsupervised feature selection
algorithm differs from the existing techniques such
as [12], [6] in that it is simpler, more robust, and thus
able to work more effectively even with sparse and
noisy data.

3. A composite generative behavior model using a mixture of
DBNs. The advantages of such a generative behavior
model are twofold: a) It can accommodate well the
variations in the unseen normal behavior patterns in
terms of both duration and temporal ordering by
generalizing from a training set of a limited number
of samples. This is important because in reality, the
same normal behavior can be executed in many
different normal ways. These variations cannot
possibly be captured in a limited training data set
and need to be dealt with by a learned behavior
model. b) Such a model is robust to errors in
behavior representation. A mixture of DBNs can
cope with errors that occurred at individual frames
and is also able to distinguish an error corrupted
normal behavior pattern from an abnormal one.

4. Online anomaly detection using a runtime accumulative
anomaly measure and normal behavior recognition using
an online Likelihood Ratio Test (LRT) method. A runtime
accumulative measure is introduced to determine
how normal/abnormal an unseen behavior pattern is
on the fly. The behavior pattern is then recognized as
one of the normal behavior classes if detected as being
normal. Normal behavior recognition is carried out
using an online LRT method, which holds the decision
on recognition until sufficient visual features have
become available. This is in order to overcome any
ambiguity among different behavior classes observed
online due to insufficient visual evidence at a given
time instance. By doing so, robust behavior recogni-
tion and anomaly detection are ensured at the shortest
possible time, as opposed to previous work such as [2],
[8], [16], which requires completed behavior patterns
to be observed. Our online LRT-based behavior
recognition approach is also advantageous over
previous ones based on the Maximum Likelihood (ML)
method [31], [8], [16]. An ML-based approach makes a
forced decision on behavior recognition at each time
instance without considering the reliability and
sufficiency of the accumulated visual evidence.
Consequently, it can be error prone.

Note that our framework is fully unsupervised in that
manual data labeling is avoided in both the feature
extraction for behavior representation and the discovery of
the natural grouping of behavior patterns. There are a
number of motivations for performing behavior profiling
using unlabeled data: First, manual labeling of behavior
patterns is laborious and often rendered impractical given
the vast amount of surveillance video data to be processed.
More critically though, manual labeling of behavior patterns
could be inconsistent and error prone. This is because a
human tends to interpret behavior based on the a priori
cognitive knowledge of what should be present in a scene
rather than solely based on what is visually detectable in the

scene. This introduces a bias due to differences in experience
and mental states.

It is worth pointing out that the proposed framework is by
no means a general one, which can be applied to any type of
scenarios. In particular, the proposed approach, as demon-
strated by the experiments presented in Section 6, is able to
cope with a moderately crowded scenario thanks to the
discrete event-based behavior representation. However, an
extremely busy and unstructured scenario such as an
underground platform in rush hours will pose serious
problems to the approach. This will be discussed in depth
later in this paper.

The rest of the paper is structured as follows: Section 2
reviews related work to highlight the contributions of this
work. Section 3 addresses the problem of behavior
representation. The behavior profiling process is described
in Section 4, which also explains how a composite
generative behavior model can be built using a mixture of
DBNs. Section 5 centers about the online detection of
abnormal behavior and recognition of normal behavior
using a behavior model. In Section 6, the effectiveness and
robustness of our approach is demonstrated through
experiments using noisy and sparse data sets collected
from both indoor and outdoor surveillance scenarios. The
paper concludes in Section 7.

2 RELATED WORK

Much work on abnormal behavior detection1 took a
supervised learning approach [16], [14], [8], [5], [3] based
on the assumption that there exist well-defined and known
a priori behavior classes (both normal and abnormal).
However, in reality, abnormal behavior is both rare and far
from being well defined, resulting in insufficient clearly
labeled data required for supervised model building.

More recently, a number of techniques have been
proposed for unsupervised learning of behavior models
[34], [9], [2], [28]. They can be further categorized into two
different types according to whether an explicit model is
built. Approaches that do not model behavior explicitly either
perform clustering on observed patterns and label those
forming small clusters as being abnormal [34], [9] or build a
database of spatiotemporal patches using only regular/
normal behavior and detect those patterns that cannot be
composed from the database as being abnormal [2]. The
approach proposed in [34] cannot be applied to any
previously unseen behavior patterns and therefore is only
suitable for postmortem analysis but not for on-the-fly
anomaly detection. This problem is addressed by the
approaches proposed in [9] and [2]. However, in these
approaches, all the previously observed normal behavior
patterns must be stored either in the form of histograms of
discrete events [9] or ensembles of spatiotemporal patches [2]
for detecting anomaly from unseen data, which jeopardizes
the scalability of these approaches.

There is also another approach that differs from both the
supervised and unsupervised techniques above. A semisu-
pervised model was introduced in [33] with a two-stage
training process. In stage one, a normal behavior model is
learned using labeled normal patterns. In stage two, an
abnormal behavior model is then learned unsupervised using
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Bayesian adaptation. This approach still suffers from the
laborious and inconsistent manual data labeling process.

In our work, an explicit model based on a mixture of DBNs
is constructed in an unsupervised manner to learn specific
behavior classes for automatic detection of abnormalities on
the fly given unseen data. Compared to our previous work
[28], we develop a more principled criterion for anomaly
detection and normal behavior recognition based on a
runtime accumulative anomaly measure and an online LRT
method originally proposed for keywords detection in speech
recognition [26]. This makes our approach more robust to
noise in behavior representation. Our approach is similar to
[9] in that behavior patterns are represented using discrete
events. However, the manual labeling of objects of interests
and manual event annotation are required in [9], which make
it not fully unsupervised. Moreover, the behavior representa-
tion in [9] is based on an event histogram that ignores/throws
away any information about the duration of an event. Such a
behavior representation thus has less discriminative power
compared to our method. Note that the anomaly detection
method proposed in [9] was claimed to be online. Never-
theless, in [9], anomaly detection is performed only when the
complete behavior pattern is observed, whereas in our work,
it is performed on the fly. Our work is similar in spirit to [2] in
that the behavior model (constructed in [2] as a database of
video patches) is able to infer and generalize from the training
data to unseen data. However, apart from the scalability
problem mentioned above, the approach in [2] has limitations
in capturing the temporal ordering aspect of a behavior
pattern due to the constraint on the size of the video patches.
In particular, the approach can only detect unusual local
spatiotemporal formations from a single objects rather than
subtle abnormalities embedded in the temporal correlations
among multiple objects that are not necessarily close to each
other in space and time. In summary, the key advantages of
the proposed approach over previous approaches are as
follows: 1) it is based on constructing a composite generative
behavior model that scales well with the complexity of
behavior and is robust to errors in behavior representation
and 2) it performs on-the-fly anomaly detection and is
therefore suitable for real-time surveillance applications.

3 BEHAVIOR PATTERN REPRESENTATION

3.1 Video Segmentation

The goal is to automatically segment a continuous video
sequence V into N video segments V ¼ fv1; . . . ;vn; . . . ;vNg
such that, ideally, each segment contains a single behavior
pattern. The nth video segment vn consisting of Tn image
frames is represented as vn ¼ ½In1; . . . ; Int; . . . ; InTn �, where Int
is the tth image frame. Depending on the nature of the video
sequence to be processed, various segmentation approaches
can be adopted. Since we are focusing on surveillance video,
the most commonly used shot change detection-based
segmentation approach is not appropriate. In a not-too-busy
scenario, there are often nonactivity gaps between two
consecutive behavior patterns that can be utilized for activity
segmentation. In the case where obvious nonactivity gaps are
not available, the online segmentation algorithm proposed in
[27] can be adopted. Specifically, video content is represented
as a high-dimensional trajectory based on automatically
detected visual events. Breakpoints on the trajectory are then
detected online using a Forward-Backward Relevance (FBR)

procedure. Alternatively, the video can be simply sliced into
overlapping segments with a fixed time duration [34].

3.2 Event-Based Behavior Representation

First, an adaptive Gaussian mixture background model [24]
is adopted to detect foreground pixels, which are modeled
using Pixel Change History (PCH) [29]. Second, the
foreground pixels in a vicinity are grouped into a blob
using the connected component method. Each blob with an
average PCH value greater than a threshold is then defined
as a scene event. A detected scene event is represented as a
seven-dimensional (7D) feature vector

f ¼ �x; �y; w; h; Rf;Mpx;Mpy
� �

; ð1Þ

where ð�x; �yÞ is the centroid of the blob, ðw; hÞ is the blob
dimension, Rf is the filling ratio of foreground pixels within
the bounding box associated with the blob, and ðMpx;MpyÞ
are a pair of first-order moments of the blob represented by
PCH. Among these features, ð�x; �yÞ are location features,
ðw; hÞ and Rf are principally shape features but also contain
some indirect motion information, and ðMpx;MpyÞ are
motion features capturing the direction of object motion.

Third, clustering is performed in the 7D scene event feature
space using a Gaussian Mixture Model (GMM). The number
of scene event classesKe captured in the videos is determined
by automatic model order selection based on the Bayesian
Information Criterion (BIC) [21]. The learned GMM is used to
classify each detected event into one of the Ke event classes.
Finally, the behavior pattern captured in the nth video
segment vn is represented as a feature vector Pn, given as

Pn ¼ pn1; . . . ;pnt; . . . ;pnTn
� �

; ð2Þ

where Tn is the length of the nth video segment, and the
tth element of Pn is a Ke-dimensional variable

pnt ¼ p1
nt; . . . ; pknt; . . . ; pKe

nt

� �
: ð3Þ

Pnt corresponds to the tth image frame of vn, where pknt is
the posterior probability that an event of the kth event class
has occurred in the frame, given the learned GMM. If an
event of the kth class is detected in the tth image frame of vn,
we have 0 < pknt � 1; otherwise, we have pknt ¼ 0. Our event-
based behavior representation is illustrated through an
example in Fig. 1. Note that different classes of events
occurred simultaneously (see Fig. 1a).

It is worth pointing out the following: 1) A behavior
pattern is decomposed into temporally ordered semantically
meaningful scene events. Instead of using low-level image
features such as location, shape, and motion (1) directly for
behavior representation, we represent a behavior pattern
using the probabilities of different classes of events occurring
in each frame. Consequently, the behavior representation is
compact and concise. This is critical for a model-based
behavior profiling approach because model construction
based upon concise representation is more likely to be
computationally tractable for complex behavior. 2) Different
types of behavior patterns can differ either in the classes of
events they are composed of or in the temporal orders of the
event occurrence. For instance, behavior patterns A and B are
deemed as being different if 1) A is composed of events of
classes a, b, and d, whereas B is composed of events of classes
a, c and e; or 2) both A and B are composed of events of classes
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a, c and d; however, in A, event (class) a is followed by c,
whereas in B, event (class) a is followed by d.

4 BEHAVIOR PROFILING

The behavior profiling problem can now be defined formally.
Consider a training data set D consisting ofN feature vectors

D ¼ fP1; . . . ;Pn; . . . ;PNg; ð4Þ

where Pn is defined in (2), representing the behavior pattern
captured by the nth video segment vn. The problem to be
addressed is to discover the natural grouping of the training
behavior patterns upon which a model for normal behavior
can be built. This is essentially a data clustering problem with
the number of clusters unknown. There are a number of
aspects that make this problem challenging: 1) Each feature
vector Pn can be of different lengths. Conventional clustering
approaches such as K-Means and mixture models require
that each data sample is represented as a fixed length feature
vector. These approaches thus cannot be applied directly.
2) A definition of a distance/affinity metric among these
variable length feature vectors is nontrivial. Measuring
affinity between feature vectors of variable length often
involves Dynamic Time Warping (DTW) [11]. A standard
DTW method used in computer vision community would
attempt to treat the feature vector Pn as a Ke-dimensional
trajectory and measure the distance of two behavior patterns
by finding correspondence between discrete vertices on two
trajectories. Since in our framework, a behavior pattern is
represented as a set of temporal correlated events, that is, a

stochastic process, a stochastic modeling-based approach is

more appropriate for distance measuring. Note that in the

case of matching two sequences of different lengths based on

video object detection, the affinity of the most similar pair of

images from two sequences can be used for sequence affinity

measurement [22]. However, since we focus on the modeling

behavior that could involve multiple objects interacting over

space and time, the approach in [22] cannot be applied

directly in our case. 3) Model selection needs to be performed

to determine the number of clusters. To overcome the

abovementioned difficulties, we propose a spectral cluster-

ing algorithm with feature and model selection based on

modeling each behavior pattern using a DBN. Fig. 2 shows a

diagrammatic illustration of our behavior profiling ap-

proach. It shows clearly that the proposed spectral clustering

algorithm (blocks inside the dashed box) is the core of the

approach. The key components of our approach are

explained in details in the following sections.

4.1 Affinity Matrix

DBNs provide a solution for measuring the affinity between

different behavior patterns. More specifically, each behavior

pattern in the training set is modeled using a DBN. To

measure the affinity between two behavior patterns repre-

sented as Pi and Pj, two DBNs denoted as Bi and Bj are

trained on Pi and Pj, respectively, using the expectation-

maximization (EM) algorithm [4], [7]. The affinity between Pi

and Pj is then computed as
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Fig. 1. Event-based behavior representation for an aircraft docking video. Details of the video can be found in Section 6.2. (b) shows that eight
classes of events are detected automatically using BIC. Different classes of events are highlighted in the image frame using bounding boxes in
different colors in (a). The spatial and temporal distribution of events of different classes throughout the sequence is illustrated in (c) and (d),
respectively, with centroids of different classes of events depicted using the same color coding scheme as (a). In particular, events corresponding to
the movements of objects involved in the front cargo and catering services are indicated in red, cyan, and magenta; events corresponding to a
moving and stopping aircraft and airbridges are indicated in black and green (rectangular), respectively; and events corresponding to the movements
of aircraft-pushing vehicles, passing-by vehicles in the back, and rear catering vehicles are in blue, yellow, and green (cross), respectively.
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Sij ¼
1

2

1

Tj
logP ðPjjBiÞ þ

1

Ti
logP ðPijBjÞ

� �
; ð5Þ

where P ðPjjBiÞ is the likelihood of observing Pj given Bi,
and Ti and Tj are the lengths of Pi and Pj, respectively.2

DBNs of different topologies can be employed. A
straightforward choice would be a Hidden Markov Model
(HMM) (Fig. 3a). In this HMM, the observation variable at
each time instance corresponds to pnt (3), which represents
the content of the tth frame of the nth behavior pattern, and
is of dimension Ke, that is, the number of event classes. The
conditional probability distributions (CPDs) of pnt is
assumed to be Gaussian for each of the Ns states of its
parent node. However, a drawback of an HMM is that too
many parameters are needed to describe the model when
the observation variables are of high dimension. This makes
an HMM vulnerable to overfitting, therefore generating
poorly to unseen data. It is especially true in our case
because an HMM needs to be learned for every single
behavior pattern in the training data set, which could be
short in duration. To solve this problem, we employ a
Multiobservation HMM (MOHMM), [8] shown in Fig. 3b.
Compared to an HMM, the observational space is factorized
by assuming that each observed feature ðpkntÞ is independent
of each other. Consequently, the number of parameters for
describing a MOHMM is much lower than that for an HMM
(2KeNs þN2

s � 1 for a MOHMM and ðK2
e þ 3KeÞNs=2þ

N2
s � 1 for an HMM). In this paper, Ns, the number of

hidden states for each hidden variables in MOHMM, is set
to Ke, that is, the number of event classes. This is reasonable
because the value of Ns should reflect the complexity of a
behavior pattern and so should the value of Ke.

AnN �N affinity matrix S ¼ ½Sij�, where 1 � i and j � N ,
provides a new representation for the training data set,
denoted as Ds. In this representation, a behavior pattern is
represented by its affinity to each behavior pattern in the
training set. Specifically, the nth behavior pattern is now
represented as the nth row of S, denoted as sn. We thus have

Ds ¼ fs1; . . . ; sn; . . . ; sNg: ð6Þ

Consequently, each behavior pattern is represented as a
feature vector of fixed length N . Taking a conventional data

clustering approach, model selection can be performed first
to determine the number of clusters, which is then followed
by data grouping using either a parametric approach such
as Mixture Models or a nonparametric K-Nearest Neighbor
model. However, since the number of data samples is equal
to the dimensionality of the feature space, dimension
reduction is necessary to avoid the “curse of dimension-
ality” problem. This is achieved through a novel spectral
clustering algorithm that reduces the data dimensionality
and performs clustering using the selected relevant eigen-
vectors of the data affinity matrix.

4.2 Eigendecomposition

Dimension reduction on the N-dimensional feature space
defined in (6) can be achieved through the eigendecomposi-
tion of the affinity matrix S. The eigenvectors of the affinity
matrix are then used for data clustering. However, it has
been shown in [25], [23] that it is more desirable to perform
clustering using the eigenvectors of the normalized affinity
matrix �S, defined as

�S ¼ L�
1
2SL�

1
2; ð7Þ

where L ¼ ½Lij� is an N �N diagonal matrix with Lii ¼P
j Sij. It has been proven in [30], [25] that under certain

constraints, the largest3 K eigenvectors of �S (that is,
eigenvectors with the largest eigenvalues) are sufficient to
partition the data set intoK clusters. Representing the data set
using theK largest eigenvectors reduces the data dimension-
ality from N (that is, the number of behavior patterns) to K
(that is, the number of behavior pattern classes). For a given
K, standard clustering approaches such as K-Means or
Mixture Models can be adopted. The remaining problem is
to determine K, which is unknown. This is solved through
automatic model selection.

4.3 Model Selection

We assume that the number of clusters K is between 1 and
Km. Km is a number sufficiently larger than the true value
of K. Suppose that we set Km ¼ 1

5N , where N is the number
of samples in the training data set. This is a reasonable
assumption because as a rule of thumb, a more sparse data
set (that is, 1

5N < K < Km) would make any data clustering
algorithm unworkable. The training data set is now
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2. Note that there are other ways to compute the affinity between two
sequences modeled using DBNs [17], [18]. However, we found through our
experiments that different affinity measures make little difference for our
behavior profiling task.

3. The largest eigenvectors are eigenvectors whose corresponding
eigenvalues are the largest in magnitude.

Fig. 2. A block diagram illustrating our behavior profiling approach.
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represented using the Km largest eigenvectors, denoted De,
as follows:

De ¼ fy1; . . . ;yn; . . . ;yNg ð8Þ

with the nth behavior pattern being represented as a Km-
dimensional feature vector:

yn ¼ e1n; . . . ; ekn; . . . ; eKmn½ �; ð9Þ

where ekn is the nth element of the kth largest eigenvector ek.
Since K < Km, it is guaranteed that all the information
needed for grouping K clusters is preserved in this Km-
dimensional feature space.

We model the distribution of De using a GMM. The log
likelihood of observing the training data set De given a K-
component GMM is computed as

logP ðDej�Þ ¼
XN
n¼1

log
XK
k¼1

wkP ðynj�kÞ
 !

; ð10Þ

where P ðynj�kÞ defines the Gaussian distribution of the
kth mixture component, and wk is the mixing probability for
the kth component. The model parameters � are estimated
using the EM algorithm. The BIC is then employed to select
the optimal number of components K determining the
number of behavior classes. For any given K, BIC is
formulated as

BIC ¼ � logP ðYj�Þ þ CK
2

logN; ð11Þ

where CK is the number of parameters needed to describe a
K-component Gaussian Mixture.

However, it is found in our experiments that in the
Km ¼ 1

5N-dimensional feature space, BIC tends to under-
estimate the number of clusters (see Fig. 4g for an example

and more in Section 6). This is not surprising because BIC
has been known for having the tendency of underfitting a
model given sparse data [20]. A data set of N samples
represented in a Km ¼ 1

5N-dimensional feature space can
always be considered as sparse for data clustering, as well
as for determining the number of clusters. Our solution to
this problem is to reduce the dimensionality through
unsupervised feature selection, that is, selecting relevant/
informative eigenvectors of the normalized affinity matrix
to perform model selection and data clustering.

4.4 Eigenvector Selection for Behavior Pattern
Clustering

We aim to derive a suitable criterion for measuring the
relevance of each eigenvector of the normalized affinity
matrix �S. Intrinsically, only a subset of the Km largest
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Fig. 3. Modeling a behavior pattern Pn ¼ fpn1; . . . ;pnt; . . . ;pnTng, where

pnt ¼ fp1
nt; . . . ; pknt; . . . ; pKe

nt g, using (a) an HMM and (b) a MOHMM.

Observation nodes are shown as shaded circles and hidden nodes as

clear circles.

Fig. 4. Clustering a synthetic data set using our spectral clustering
algorithm. The eigenvalues of theKm ¼ 16 largest eigenvectors is shown
in (b). (c) depicts the learned relevance scores. The first four largest
eigenvectors were determined as being relevant using (13). (d) shows the
BIC model selection results; the optimal cluster number was determined
as 4. (e) shows the 80 data samples plotted using the three most relevant
eigenvectors, that is, e2, e3, and e4. Points corresponding to different
classes are color coded in (e) according to the classification result.
(f) shows the affinity matrix reordered according to the result of our
clustering algorithm. (g), (h), and (i) show that the cluster number was
estimated as 2, 5, and 3, respectively, using three alternative approaches.
The distribution of some of the top 16 eigenvectors is shown in (j), (k), (l),
(m), (n), and (o). (a) Normalized affinity matrix. (b) Eigenvalues
corresponding to top eigenvectors. (c) Learned eigenvector relevance.
(d) BIC with eigenvector selection. (e) Data distribution in e2, e3, and e4.
(f) Affinity matrix reordered after clustering. (g) BIC without eigenvector
selection. (h) Validity score. (i) Zelnik-Perona cost function. (j) e1. (k) e2.
(l) e3. (m) e4. (n) e5. (o) e16.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12, 2009 at 10:02 from IEEE Xplore.  Restrictions apply.



eigenvectors are relevant for grouping K clusters. An
eigenvector is deemed as being relevant for clustering if it
can be used to separate at least one cluster of data from the
others. It is necessary and crucial to identify and remove those
irrelevant/uninformative eigenvectors not only because we
need to reduce the dimensionality of the feature space but
also due to the factor that irrelevant features degrade the
accuracy of learning and, therefore, the performance of
clustering.

An intuitive solution to measuring the eigenvector
relevance would be to investigate the associated eigenvalue
for each eigenvector. The analysis in [15] shows that in an
“ideal” case where different clusters are infinitely far apart,
the top Ktrue (relevant) eigenvectors have a corresponding
eigenvalue of magnitude 1 and others do not. In this case,
simply selecting those eigenvectors would solve the problem.
In fact, the estimation of the number of clusters also becomes
trivial by looking at the eigenvalues: it is equal to the number
of eigenvalues of magnitude 1. Indeed, eigenvalues are useful
when the data are clearly separated, that is, close to the
“ideal” case. However, given a more realistic dataset the
eigenvalues are not useful as relevant eigenvectors do not
necessarily assume high eigenvalues and higher eigenvalues
do not necessarily mean higher relevance either (see Fig. 4).
Next, we derive a novel eigenvector relevance learning
algorithm based on measuring the relevance of an eigenvec-
tor according to how well it can separate a data set into
different clusters. This is achieved through modeling the
distributions of the elements of each eigenvector with
considerations on the following a priori knowledge about
the affinity matrix eigenspace: 1) The distribution of the
elements of a relevant eigenvector must enable it to be used
for separating at least one cluster from the others. More
specifically, the distribution of its elements is multimodal if it
is relevant and unimodal otherwise. 2) A large eigenvector is
more likely to be relevant in data clustering than a small one.

We denote the likelihood of the kth largest eigenvector ek

being relevant as Rek
, where 0 � Rek

� 1. We assume that
the elements of ek, ekn follow two different distributions,
namely, unimodal and multimodal, depending on whether
ek is relevant. The probability density function (pdf) of ekn
is thus formulated as a mixture model of two components

pðeknj�eknÞ ¼ ð1�Rek
Þp eknj�1

ekn

� �
þRekp eknj�2

ekn

� �
;

where �ekn are the parameters describing the distribution,
and pðeknj�1

ekn
Þ is the pdf of ekn when ek is irrelevant/

uninformative and pðeknj�2
ekn
Þ otherwise. Rek

acts as the
weight or mixing probability of the second mixture
component. The distribution of ekn is assumed to be a single
Gaussian (unimodal) to reflect the fact that ek cannot be
used for data clustering when it is irrelevant

pðeknj�1
ekn
Þ ¼ N ðeknj�k1; �k1Þ;

whereNð:j�; �Þdenotes a Gaussian of mean� and covariance
�. We assume the second component ofP ðekj�ek

Þ as a mixture
of two Gaussians to reflect the fact that ek can separate one
cluster of data from the others when it is relevant

pðeknj�2
ekn
Þ ¼ wkNðeknj�k2; �k2Þ þ ð1� wkÞN ðeknj�k3; �k3Þ;

where wk is the weight of the first Gaussian in pðeknj�2
ekn
Þ.

There are two reasons for using a mixture of two Gaussians

even when ekn forms more than two clusters or the
distribution of each cluster is not Gaussian: 1) in these
cases, a mixture of two Gaussians ðpðeknj�2

ekn
ÞÞ still fits better

to the data compared to a single Gaussian ðpðeknj�1
ekn
ÞÞ and

2) its simple form means that only a small number of
parameters are needed to describe pðeknj�2

ekn
Þ. This makes

model learning possible even when given sparse data.
There are eight parameters required for describing the

distribution of ekn

�ekn ¼ Rek
; �k1; �k2; �k3; �k1; �k2; �k3; wkf g: ð12Þ

The ML estimate of �ekn can be obtained using the following
algorithm. First, the parameters of the first mixture
component �1

ekn
are estimated as �k1 ¼ 1

N

PN
n¼1 ekn and

�k1 ¼ 1
N

PN
n¼1ðekn � �k1Þ2. The remaining six parameters are

then estimated iteratively using EM [4]. It is important to
note that �ekn as a whole are not estimated iteratively using a
standard EM algorithm, although EM was employed for
part of �ekn , namely, �1

ekn
. This is critical for our algorithm

because if all the eight parameters are re-estimated in each
iteration, the distribution of ekn is essentially modeled as a
mixture of three Gaussians, and the estimated Rek

would
represent the weight of two of the three Gaussians. This is
very different from what Rek

is meant to represent, that is,
the likelihood of ek being relevant for data clustering.

Since our relevance learning algorithm is essentially a
local (greedy) searching method, the algorithm could be
sensitive to parameter initialization, especially when given
noisy and sparse data [4]. To overcome this problem, first,
our a priori knowledge on the relationship between the
relevance of each eigenvector and its corresponding
eigenvalue is utilized to set the initial value of Rek

.
Specifically, we set ~Rek

¼ ��k, where ~Rek
is the initial value

of Rek
, and ��k 2 ½0; 1� is the normalized eigenvalue for ek

with ��1 ¼ 1 and ��Km
¼ 0. We then randomly initialize the

values of the other five parameters, namely, �k2, �k3, �k2,
�k3, and wk, and the solution that yields the largest
pðeknj�2

ekn
Þ over different initializations is chosen.

It is worth pointing out that although our relevance
learning algorithm is based on estimating the distribution of
the elements of each eigenvector, we are only interested in
learning whether the distribution is unimodal or multi-
modal, which is reflected by the value of Rek

. In other
words, among the eight free parameters of the eigenvector
distribution (12), Rek

is the only parameter that we are after.
This also explains why our algorithm is able to estimate the
relevance accurately when there are more than two clusters
and/or the distribution of each cluster is not Gaussian.

The ML estimate R̂ek
thus provides a real-value measure-

ment of the relevance of ek. Since a “hard decision” is needed
for dimension reduction, we eliminate the kth eigenvector
ek among the Km candidate eigenvectors if

R̂ek
< 0:5: ð13Þ

After eliminating those irrelevant eigenvectors, the selected
relevant eigenvectors are used to determine the number of
clustersK and perform clustering based on GMM and BIC as
described in Section 4.3. Each behavior pattern in the training
data set is then labeled as one of the K behavior classes.

Fig. 4 shows an example of data clustering using our
eigenvector selection-based spectral clustering algorithm. A
total of 80 sequences were randomly generated using four
MOHMMs. The data set is composed of 20 sequences
sampled from each MOHMM. The lengths of these segments
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were set randomly, ranging from 200 to 600. The four
MOHMMs have the same topology as the one shown in
Fig. 3b with different parameters set randomly. It can be seen
in Figs. 4j, 4k, 4l, 4m, 4n, and 4o that the second, third, and
fourth eigenvectors contain strong information about the
grouping of data, whereas the largest eigenvector is much less
informative. The remaining eigenvectors contain virtually no
information (see Figs. 4n and 4o). It can be seen in Fig. 4c that
the proposed relevance measure Rek

accurately reflects the
relevance of each eigenvectors. By thresholding the relevance
measure (13), the four largest eigenvectors are kept for
clustering. Fig. 4e shows that the four clusters are clearly
separable in the eigenspace spanning the three most relevant
eigenvectors. It is thus not surprising that the number of
clusters was determined correctly as four using BIC on the
relevant eigenvectors (see Fig. 4d). The clustering result is
illustrated using the reordered affinity matrix in Fig. 4f,
showing that all four clusters were discovered accurately. We
also estimated the number of clusters using three alternative
methods: 1) BIC using all 16 eigenvectors, 2) Porikli and
Haga’s validity score [19] (maximum score corresponding to
the optimal number), and 3) Zelnik-Perona cost function [32]
(minimum cost corresponding to the optimal number).
Figs. 4g, 4h, and 4i show that none of these methods was
able to yield an accurate estimate of the cluster number.

4.5 A Composite Behavior Model Using a Mixture of
MOHMMs

To build a model for the observed/expected behavior, we
first model the kth behavior class using a MOHMM Bk. The
parameters of Bk, �Bk

are estimated using all the patterns in
the training set that belong to the kth class. A behavior
model M is then formulated as a mixture of theKMOHMMs.
Given an unseen behavior pattern, represented as a behavior
pattern feature vector P as described in Section 3, the
likelihood of observing P given M is

P ðPjMÞ ¼
XK
k¼1

Nk

N
P ðPjBkÞ; ð14Þ

where N is the total number of training behavior patterns
and Nk is the number of patterns that belong to the
kth behavior class.

5 ONLINE ANOMALY DETECTION AND NORMAL

BEHAVIOR RECOGNITION

Once constructed, the composite behavior model M can be
used to detect whether an unseen behavior pattern is normal
using a runtime anomaly measure. If it is detected to be
normal, the behavior pattern is then recognized as one of the
K classes of normal behavior patterns using an online LRT
method.

An unseen behavior pattern of length T is represented as
P ¼ ½p1; . . . ;pt; . . . ;pT �. At the tth frame, the accumulated
visual information for the behavior pattern, represented as
Pt ¼ ½p1; . . . ;pt�, is used for online reliable anomaly detec-
tion. First, the normalized log likelihood of observing P at
the tth frame given the behavior model M is computed as

lt ¼
1

t
logP ðPtjMÞ: ð15Þ

lt can be easily computed online using the forward-
backward procedure [13]. Specifically, to compute lt, the

Ke forward probabilities at time t are computed using the
Ke forward probabilities computed at time t� 1, together
with the observations at time t (see [13] for details). Note
that the complexity of computing lt is OðK2

e Þ and does not
increase with t.

We then measure the anomaly of Pt using an online
anomaly measure Qt

Qt ¼
l1 if t ¼ 1
ð1� �ÞQt�1 þ �ðlt � lt�1Þ otherwise;

�
ð16Þ

where � is an accumulating factor determining how
important the visual information extracted from the current
frame is for anomaly detection. We have 0 < � � 1. Com-
pared to lt as an indicator of normality/anomaly, Qt could
add more weight to more recent observations. Anomaly is
detected at frame t if

Qt < ThA; ð17Þ

where ThA is the anomaly detection threshold. The value of
ThA should be set according to the detection and false alarm
rates required by each particular surveillance application.
Note that it takes a time delay for Qt to stabilize at the
beginning of evaluating a behavior pattern due to the nature
of the forward-backward procedure. The length of this time
period, denoted as Tw, is related to the complexity of the
MOHMM used for behavior modeling. We thus set Tw ¼ 3Ke

in our experiments to be reported later in Section 6, that is, the
anomaly of a behavior pattern is only evaluated when t > Tw.

At each frame t, a behavior pattern needs to be
recognized as one of the K behavior classes when it is
detected as being normal, that is, Qt > ThA. This is achieved
by using an online LRT method. More specifically, we
consider a hypotheses test between the following

Hk: Pt is from the hypothesized model Bk and belongs to
the kth normal behavior class;

H0: Pt is from a model other than Bk and does not belong to
the kth normal behavior class;

whereH0 is called the alternative hypothesis. Using LRT, we
compute the likelihood ratio of accepting the two hypoth-
eses as

rk ¼
P ðPt;HkÞ
P ðPt;H0Þ

: ð18Þ

The hypothesisHk can be represented by the model Bk, which
has been learned in the behavior profiling step. The key to
LRT is thus to construct the alternative model that represents
H0. In a general case, the number of possible alternatives is
unlimited; P ðPt;H0Þ can thus only be computed through
approximation [26], [10]. Fortunately, in our case, we have
determined at the tth frame that Pt is normal and can only be
generated by one of theK normal behavior classes. Therefore,
it is reasonable to construct the alternative model as a mixture
of the remainingK � 1 normal behavior classes. In particular,
(18) is rewritten as

rk ¼
P ðPtjBkÞP

i6¼k
Ni

N�Nk
P ðPtjBiÞ

: ð19Þ

Note that rk is a function of t and computed over time. Pt is
reliably recognized as the kth behavior class only when
1� Thr < rk. In our experiments, we found thatThr ¼ 10 led
to satisfactory results. When there are more than one rk
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greater than Thr, the behavior pattern is recognized as the
class with the largest rk.

For comparison, the commonly used ML method recog-
nizes Pt as the kth behavior class when k ¼ arg maxk
P ðPtjBkÞf g. Using the ML method, recognition has to be

performed at each single frame without considering how
reliable and sufficient the accumulated visual evidence is.
This often causes errors especially when there are ambiguities
between different classes (for example, a behavior pattern can
be explained away equally well by multiple plausible
behavior at its early stage). Compared to the ML method,
our online LRT method holds the decision on behavior
recognition until sufficient evidence has been accumulated to
overcome ambiguities. The recognition results obtained
using our approach are thus more reliable compared to those
obtained by the ML method. Another commonly used
method for classification is the Maximum A Posteriori
(MAP) method. Although bearing a resemblance to our
online LRT in formulation, the classification using the MAP
rule is conceptually very different from that using a
hypothesis test in LRT. In particular, unlike MAP, which
has a standard formulation, LRT can be formulated differ-
ently, depending on how the likelihood of accepting the
alternative hypothesis is computed (that is, the denominator
of (18)). The main difference between LRT and MAP again lies
in the fact that in a real-time application, LRT works better
when multiple candidate behavior classes give equally
plausible explanations for a temporally incomplete behavior
pattern. In this case, the likelihood ratio value will be low and
no decision will be made using LRT. In contrast with LRT,
without having any a priori knowledge about the occurrence
of different candidate behavior classes (that is, P ðBkÞ ¼ 1=K
with 1 � k � K), the MAP values for multiple classes can be
high, which will lead to a premature and wrong decision.
Note that it is possible to modify the standard ML and MAP
rules so that a recognition decision is withhold until more

information is accumulated. Nevertheless, the difference
mentioned above makes LRT advantageous for our behavior
recognition task.

6 EXPERIMENTS

In this section, we illustrate the effectiveness and robustness
of our approach on behavior profiling and online anomaly
detection with experiments using data sets collected from
both indoor and outdoor surveillance scenarios.

6.1 Corridor Entrance/Exit Human Behavior
Monitoring

Data set and feature extraction. A CCTV camera was
mounted on the ceiling of an office entrance/exit corridor,
monitoring the people entering and leaving an office area (see
Fig. 5). The office area is secured by an entrance door that can
only be opened by scanning an entry card on the wall next to
the door (see middle frame in Fig. 5b). Two side doors were
also located at the right-hand side of the corridor. People from
both inside and outside the office area have access to those
two side doors. Typical behavior occurring in the scene
would be people entering or leaving either the office area or
the side doors and walking toward the camera. Each behavior
pattern would normally last a few seconds. For this
experiment, a data set was collected over five different days
consisting of 6 hours of video, totaling to 432,000 frames
captured at 20 Hz with 320� 240 pixels per frame. This data
set was then segmented into sections separated by any
motionless intervals lasting for more than 30 frames. This
resulted in 142 video segments of actual behavior pattern
instances. Each segment has on the average 121 frames, with
the shortest having 42 frames and longest having 394 frames.

Model training. A training set consisting of 80 video
segments was randomly selected from the overall 142 seg-
ments without any behavior class labeling of the video
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Fig. 5. Behavior patterns in a corridor entrance/exit scene. (a), (b), (c), (d), (e), and (f) show image frames of typical behavior patterns belonging to
the six behavior classes listed in Table 1. The four classes of events detected automatically, “entering/leaving the near end of the corridor,” “entering/
leaving the entry door,” “entering/leaving the side doors,” and “in corridor with the entry door closed,” are highlighted in the image frames using
bounding boxes in blue, cyan, green, and red, respectively. The same color scheme will be used for illustrating detected events in Figs. 8 and 9.
(a) C1. (b) C2. (c) C3. (d) C4. (e) C5. (f) C6.
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segments. The remaining 62 segments were used for testing
the trained model later. This model training exercise was
repeated 20 times, and in each trial, a different model was
trained using a different random training set. This is in order
to avoid any bias in the anomaly detection and normal
behavior recognition results to be discussed later. For
comparative evaluation, alternative models were also trained
using labeled data sets as follows. For each of the 20 training
sessions above, a model was trained using identical training
sets as above. However, each behavior pattern in the training
sets was also manually labeled as one of the manually
identified behavior classes. On the average, 12 behavior
classes were manually identified for the labeled training sets
in each trial. Six classes were always identified in each
training set (see Table 1). On the average, they accounted for
83 percent of the labeled training data.

Event detection for behavior representation. Given a training
set, discrete events were detected and classified using
automatic model order selection in clustering, resulting in
four classes of events corresponding to the common
constituents of all behavior in this scene: “entering/leaving
the near end of the corridor,” “entering/leaving the entrance
door,” “entering/leaving the side doors,” and “in corridor
with the entrance door closed.” Examples of detected events
are shown in Fig. 5 using color-coded bounding boxes. Note
that it may appear to be intuitive and perhaps also desirable
to have a “swipe card” event class for anomaly detection in
this scenario. However, it is also observed that due to the
view angle, most instances of the possible “swipe card” event
are not visible in the scene (for example, occluded by human
body). Moreover, different people could have very different
ways of swiping a card particularly as a card is not required
to make physical contact with the swipe machine in order to
trigger a reading. Therefore, even if a supervised event
detection approach is taken to artificially impose such an
event class, the “swipe card” event could not be detected
reliably. Using our unsupervised method, a likely
“swipe-card” event is in effect classified into a general event
class “in corridor with the entrance door closed” (see Fig. 5b
for an example). Nevertheless, the experiments presented
below demonstrate that these four general event classes
enable our approach to detect anomaly robustly mainly by
examining the temporal correlations of different events. It is
also observed that that due to the narrow view nature of the
scene, differences between the four common events are
rather subtle and can be misidentified based on local
information (space and time) alone, resulting in a large error
margin in event detection. The fact that these events are also
common constituents to different behavior patterns rein-
forces the assumption that local events treated in isolation
hold little discriminative information for behavior profiling.

Model training using unlabeled data. Over the 20 trials, on the
average, six eigenvectors were automatically determined as
being relevant for clustering, with the smallest being four and
the largest being nine. It is noted that all the selected
eigenvectors were among the 10 largest eigenvectors of the
normalized affinity matrices. The number of clusters for each
training set was determined automatically as six in every trial.
By observation, each discovered data cluster mainly con-
tained samples corresponding to one of the six behavior
classes listed in Table 1. In comparison, all three alternative
approaches, including BIC without eigenvector selection,
Porikli and Haga’s validity score, and Zelnik-Manor and
Perona’s cost function, tended to severely underestimate
the class number. Fig. 6 shows an example of behavior
pattern clustering using unlabeled training sets. Note that
compared to the synthetic data (see Fig. 4), the data we have
for behavior profiling is much more noisy and difficult to
group. This is reflected by the fact that the elements of the
eigenvectors show less information about the data grouping
(see Figs. 6j, 6k, 6l, 6m, 6n, and 6o). However, using only the
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TABLE 1
The Six Classes of Behavior Patterns that Most Commonly

Occurred in the Corridor Entrance/Exit Scene

Fig. 6. An example of model training. (c) shows that the top six largest
eigenvectors were determined as relevant features for clustering. (d) and
(g) show that the number of behavior classes was determined as 6 and 2
using BIC with and without relevant eigenvector selection, respectively.
(h) and (i) show that using Porikli and Haga’s validity score and Zelnik-
Manor and Perona’s cost function, the class number was estimated as 1
and 2, respectively. (a) Normalized affinity matrix. (b) Eigenvalues
corresponding to top eigenvectors. (c) Learned eigenvector relevance.
(d) BIC with eigenvector selection. (e) Data distribution in e2, e3, and e4.
(f) Affinity matrix reordered after clustering. (g) BIC without eigenvector
selection. (h) Validity score. (i) Zelnik-Perona cost function. (j) e1. (k) e2.
(l) e3. (m) e4. (n) e6. (o) e16.
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relevant/informative eigenvectors, our algorithm can still
discover the behavior classes correctly. For each unlabeled
training set, a normal behavior model was constructed as a
mixture of six MOHMMs, as described in Section 4.5.

Model training using labeled data. For each labeled training
set, a normal behavior model was built as a mixture of
MOHMMs with the number of mixture components
determined by the number of manually identified behavior
classes. Each MOHMM component was trained using the
data samples corresponding to one class of manually
identified behavior in each training set.

Anomaly detection. The behavior models built using both
labeled and unlabeled behavior patterns were used to
perform online anomaly detection. To measure the perfor-
mance of the learned models on anomaly detection, each
behavior pattern in the testing sets was manually labeled as
normal if there were similar patterns in the corresponding
training sets and abnormal otherwise. A testing pattern was
detected as being abnormal when (17) was satisfied at any
time after Tw ¼ 3Ke ¼ 12 frames. The accumulating factor �
for computingQt was set to 0.1. We measure the performance
of anomaly detection using the anomaly detection rate and
the false alarm rate,4 which are defined as

Anomaly-detection rate ¼
# True positives ðabnormal detected as abnormalÞ
# All positives ðabnormal patternsÞ in a data set

;

False-alarm rate ¼
# False positives ðnormal detected as abnormalÞ
# All negatives ðnormal patternsÞ in a data set

:

ð20Þ

The detection rate and false alarm rate of anomaly detection
are shown in the form of a Receiver Operating Characteristic
(ROC) curve by varying the anomaly detection thresholdThA
(see (17)). Fig. 7a shows that the models trained using
unlabeled data clearly outperformed those trained using
labeled data. In particular, it is found that given the sameThA,
the models trained using unlabeled data sets achieved a

higher anomaly detection rate and a lower false alarm rate

compared to those trained using labeled data sets (see also

Table 2 and the last columns of the confusion matrices shown

in Figs. 7b and 7c). Fig. 8 shows examples of false alarm and
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4. The anomaly detection rate and false alarm rate are also called true
positive rate and false positive rate, respectively, in the literature. Note that
the performance can also be measured using the true negative rate and the
false negative rate. Since we have }true negative rate} ¼ 1-}false alarm rate}
and }false negative rate} ¼ 1-}anomaly detection rate}, showing only the
anomaly detection rate and the false alarm rate is adequate.

Fig. 7. (a) Comparing the performance of anomaly detection using corridor entrance/exit behavior models trained by labeled and unlabeled data. The
mean ROC curves were obtained over 20 trials. (b) and (c) Comparing the performance of behavior recognition using models trained by labeled and
unlabeled data. The two confusion matrices were obtained by averaging the results over 20 trials with ThA ¼ �0:2. Each row represents the
probabilities of the corresponding class being confused with all the other classes, averaged over 20 trials.

TABLE 2
The Mean and Standard Deviation of the Anomaly Detection

Rate and False Alarm Rates for Corridor Entrance/Exit Behavior
Models Trained Using Unlabeled and Labeled Data

The results were obtained over 20 trials with ThA ¼ �0:2.

Fig. 8. Examples of anomaly detection in the corridor entrance/exit
scene. (a) and (c) An abnormal behavior pattern was detected as being
abnormal by the model trained using an unlabeled data set, whereas it
was detected as being normal by the model trained using the same but
labeled data set. It shows a person sneaking into the office area without
using an entry card. (b) and (d) A normal behavior pattern that was
detected correctly by the model trained using an unlabeled data set but
detected as being abnormal by the model trained using the same but
labeled data set. The third frame from left in (b) shows an error in event
detection (an “in corridor with the entrance door closed” event was
detected as an “entering/leaving the side doors” event). Note that a
smaller value of Qt means that it is more likely for the behavior pattern to
be abnormal. ThA was set to �0:2.
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misdetection by models trained using labeled data. It is noted
that the lower tolerance toward event detection errors was the
main reason for the higher false alarm rate of models trained
using labeled data (see Figs. 8b and 8d for an example).

Recognition of normal behavior. To measure the recogni-
tion rate, the normal behavior patterns in the testing sets were
manually labeled into different behavior classes. A normal
behavior pattern was recognized correctly if it was detected
as normal and classified into a behavior class containing
similar behavior patterns in the corresponding training set by
the learned behavior model. We first compare the perfor-
mance of models trained using labeled and unlabeled data.
Table 3 shows that the models trained using labeled data
achieved slightly higher recognition rates compared to those
trained using unlabeled data. To have a more complete
picture of the performance on normal behavior recognition,
the standard confusion matrix is utilized. Fig. 7b shows that
when a normal behavior pattern was not recognized correctly
by a model trained using unlabeled data, it was most likely to
be recognized as belonging to another normal behavior class.
On the other hand, Fig. 7c shows that for a model trained by
labeled data, a normal behavior pattern was most likely to be
wrongly detected as an anomaly if it was not recognized
correctly. This contributed to the higher false alarm rate for
the model trained by labeled data.

Our online LRT method was also compared with the
conventional ML method for online normal behavior
recognition using unlabeled data trained models. Examples
are shown in Fig. 9. It is noted that based on our online LRT
method, normal behavior patterns were reliably and
promptly recognized after sufficient visual evidence had
become available (see Figs. 9c and 9g). On the contrary, based
on the ML method, decisions on behavior recognition were
made prematurely and unreliably due to the ambiguities
among different behavior classes (see Figs. 9d and 9h).

6.2 Aircraft Docking Area Behavior Monitoring

Data set and feature extraction. Now, we consider an
outdoor scenario. A fixed CCTV camera was mounted at an
aircraft docking area, monitoring the aircraft docking
procedure. Typical visually detectable behavior patterns in
this scene involved the aircraft, the airbridge, and various
ground vehicles (see Fig. 10). The captured video sequences
have a very low frame rate of 2 Hz, which is common for
CCTV surveillance videos. Each image frame has a size of
320� 240 pixels. Our database for the experiments consists of
72,776 frames of video data (around 10 hours of recording)
that cover different times of different days under changing
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TABLE 3
Comparing the Performance of Models Trained

Using Unlabeled and Labeled Data on
Corridor Normal Behavior Recognition

The results were obtained with ThA ¼ �0:2.

Fig. 9. Comparison of our LRT method with the ML method for online
normal behavior recognition. (a) An abnormal behavior pattern where
two people attempted to enter an office area without an entry card. It
resembles C2 in the early stage. (b) The behavior pattern was detected
as an anomaly from Frame 62 till the end based on Qt. (c) The behavior
pattern between Frames 40 and 53 was recognized reliably as C2 using
our LRT method before being detected as an anomaly. (d) The behavior
pattern was wrongly recognized as C3 before Frame 20 using the ML
method. (e) A normal C3 behavior pattern. Note that it can be interpreted
as either C1 or C3 before the person enters the side door. (f) The
behavior pattern was detected as normal throughout using Qt. (g) It was
recognized reliably as C3 from Frame 83 till the end using our LRT
method. (h) The behavior pattern was recognized prematurely and
unreliably as either C1 or C3 before Frame 83 using the ML method.

Fig. 10. Typical visually detectable behavior patterns in an aircraft docking scene.
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lighting conditions, from early morning to midday to late
afternoon. The video was segmented automatically using an
online segmentation algorithm proposed in [27], giving
59 video segments of actual behavior pattern instances. Each
segment has on the average 428 frames, with the shortest
having 74 and longest having 2,841.

Model training. A training set now consisted of 40 video
segments, and the remaining 19 were used for testing. As in
the corridor behavior monitoring experiments, 20 trials
were conducted, each of which had a different random
training set. To compare models trained using unlabeled
data with those trained using labeled data, in each training
session, a model was also trained using an identical but
labeled training set. On the average, nine behavior classes
were manually identified for the labeled training sets in
each trial. Six classes were always identified in each training
set (see Table 4). On the average, they accounted for
74 percent of the labeled training data.

Given a training set, discrete events were detected and
classified, resulting in eight classes of events, corresponding
to the common constituents of all behavior in this scene (see
Fig. 1). These events were mainly triggered by the movements
of the aircraft, airbridge, and various ground vehicles
involved in an aircraft docking service circle. It is noted that
our event detector makes more mistakes for the aircraft
docking scene compared to that for the indoor corridor scene.
This is due to the more challenging nature of the scenario in
the sense that 1) the lighting condition in the aircraft scene was
far less stable, 2) the image resolution of the moving objects in
the aircraft scene were lower, and 3) the movements of
different objects in the aircraft scene were occluded a lot more.

In each training session, the 40 unlabeled training
behavior patterns were represented based on the event
detection results and clustered to build a composite
behavior model. On the average, seven eigenvectors were
automatically determined as being relevant for clustering,
with the smallest being 4 and largest being 10. The number
of clusters for each training set was determined automati-
cally as 2 and 6 in every trial without and with relevant
eigenvector selection, respectively. By observation, each of

the six discovered data clusters mainly contained samples
corresponding to one of the six behavior classes listed in
Table 4. In each session, a model was also built using
labeled data for comparison.

Anomaly detection. Each behavior pattern in a testing
set was detected as being abnormal when (17) was satisfied
at any time after Tw ¼ 3Ke ¼ 24 frames. The accumulating
factor � for computing Qt was set to 0.1 (same as in the
corridor behavior monitoring experiments). Fig. 11a shows
that the models trained using unlabeled data outperformed
those trained using labeled data (see also Table 5). The
results are slightly inferior to those obtained in the corridor
entrance/exit behavior modeling experiments (comparing
Fig. 11a with Fig. 7a). It is not surprising since the data
collected in this outdoor scenario are much more noisy and
sparse, and the behavior captured in the data are more
complicated. Figs. 12b and 12f show examples of online
reliable anomaly detection using our runtime anomaly
measure.

Recognition of normal behavior patterns. The normal
behavior recognition results obtained using models trained
by unlabeled and labeled data are illustrated in Table 6 and
Figs. 11b and 11c. The results were consistent with those
obtained in the corridor entrance/exit scene experiments. In
particular, the recognition rate is slightly lower for models
trained using unlabeled data. However, when not being
recognized correctly, a normal behavior pattern is more
likely to be detected as an anomaly using a labeled data
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TABLE 4
Six Classes of Commonly Occurred Behavior Patterns in the Airport Scene

Fig. 11. (a) Comparing the performance of anomaly detection using aircraft docking behavior models trained by labeled and unlabeled data. The
mean ROC curves were obtained over 20 trials. (b) and (c) Comparing the performance of behavior recognition using models trained by labeled and
unlabeled data. The two confusion matrices were obtained by averaging the results over 20 trials with ThA ¼ �0:5. Each row represents the
probabilities of the corresponding class being confused with all the other classes averaged over 20 trials.

TABLE 5
The Mean and Standard Deviation of the Anomaly Detection
Rate and False Alarm Rates for Aircraft Docking Behavior

Models Trained Using Unlabeled and Labeled Data

The results were obtained over 20 trials with ThA ¼ �0:5.
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trained model. This resulted in a higher false alarm rate.
Examples of online reliable behavior recognition using our
online LRT method are shown in Fig. 12 in comparison with
the ML method. It can be seen that our LRT method is
superior to the ML method in that normal behavior patterns
can be reliably and promptly recognized after sufficient
visual evidence had become available to overcome the
ambiguities among different behavior classes.

7 DISCUSSIONS AND CONCLUSIONS

The key findings of our experiments are summarized and
discussed as follows:

1. Our experiments show that a behavior model trained
using an unlabeled data set is superior to a model
trained using the same but labeled data set in
detecting anomaly from an unseen video. The former
model also outperforms the latter in distinguishing
abnormal behavior patterns from normal ones con-
taminated by errors in behavior representation. In
comparison, a model trained using manually labeled
data may have an advantage in explaining data that
are well defined. However, training using labeled
data does not necessarily help a model with
identifying novel instances of abnormal behavior
patterns as the model tends to be brittle and less
robust in dealing with instances of behavior that are
not clear cut in an open-world scenario (that is, the

number of expected normal and abnormal behavior
cannot be predefined exhaustively).

2. Our eigenvector selection-based spectral clustering
algorithm is capable of discovering the natural
grouping of behavior patterns in the training data.
Our experiments show that our simple data-driven
eigenvector selection algorithm works well on real-
world behavior data. Furthermore, the eigenvector
selection step of the algorithm is critical for determin-
ing the optimal number of behavior pattern classes.

3. Our online LRT-based normal behavior recognition
method is superior to the conventional ML-based
method. Since normal behavior recognition is per-
formed after anomaly detection, it is plausible to
construct the alternative model as a mixture of other
normal behavior patterns. This is the key to make an
LRT method work because the performance of an LRT
method depends on the accuracy of constructing the
alternative model.

Since our event detection method is based on unsuper-
vised learning, the detected event classes may not have a
clear semantic meaning. In addition, some event classes
deemed as important by human may not be detected due to
the lack of visual evidence or ambiguities between event
classes (for example, the “swipe card” event in the corridor
entrance/exit scene). Nevertheless, our experiments suggest
that the proposed method is able to cope with the errors in
event detection. This, as we mentioned earlier, is mainly due
to the fact that the temporal information about the occur-
rence of events is exploited under a probabilistic framework.

It is possible to develop a Baum-Welch-like [1] EM
algorithm to the mixture of DBNs (14) to learn the behavior
model directly rather than taking a stepped approach as
proposed in the paper. A model selection criterion such as BIC
can then be employed to determine the number of behavior
classes automatically, which corresponds to the number of
mixtures in the directly learned model. However, in practice,
learning the model directly brings about the initialization
problem, which could lead to poorer results compared to the
proposed stepped approach. The initialization problem al-
ways exists for a model-based clustering algorithm (for
example, GMMs). However, the problem becomes rather
acute in thecaseofclustering usingamixtureofDBNsbecause
the number of parameters needed to describe the model is
very large and the EM algorithm used for model learning will
suffer severely from the local minimum problem and prone to
overfitting. It would be interesting to investigate possible
solutions to the initialization problem andcompare the results
obtained using the direct approach with those of the stepped
approach proposed in this work.

It is also noted that our behavior profiling framework is
flexible in the sense that it allows for the use of different
behavior segmentation, representation, and affinity
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TABLE 6
Comparing the Performance of Models Trained
Using Unlabeled and Labeled Data on Aircraft

Docking Normal Behavior Recognition

The results were obtained with ThA ¼ �0:5.

Fig. 12. Compare our LRT method with the ML method for online normal
behavior recognition in an aircraft docking scene. (a) An abnormal
behavior pattern where a truck brought engineers to fix a ground-power-
cable problem. It resembled A4 in the early stage. (b) It was detected as
an anomaly from Frame 147 till the end based on Qt. (c) The behavior
pattern between Frames 53 and 145 was recognized reliably as A4
using LRT before becoming abnormal and being detected using Qt.
(d) The behavior pattern was wrongly recognized as A3 between
Frames 80 and 98 using the ML method. (e) A normal A1 behavior
pattern. (f) The behavior pattern was detected as normal throughout
based on Qt. (g) It was recognized reliably as A1 from Frame 73 till the
end using LRT. (h) It was wrongly recognized as A2 between Frames 12
and 49 using ML. In (a) and (e), detected events are illustrated using the
same color scheme as in Fig. 1.
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measurement as long as a behavior affinity matrix can be
constructed. Furthermore, the unsupervised nature of the
framework allows it to be quickly adaptive to different
surveillance scenarios.

In conclusion, we have proposed a novel framework for
robust online behavior recognition and anomaly detection.
The framework is fully unsupervised and consisted of a
number of key components, namely, a discrete event-based
behavior representation, a DBN-based behavior affinity
measure, a spectral clustering algorithm with feature and
model selection, a composite behavior model based on a
mixture of DBNs, a runtime accumulative anomaly measure,
and an online LRT-based normal behavior recognition
method. The effectiveness and robustness of our approach is
demonstrated through experiments using data sets collected
from both indoor and outdoor surveillance scenarios.

This work is a serious effort to address the problem of
anomaly detection in realistic scenarios. Nevertheless, there
is still a long way to go toward a general-purpose anomaly
detection method that can be applied to any type of scenarios.
In particular, the proposed approach will not be able to cope
with a very busy and unstructured scenario. The limitation is
mainly caused by the representation aspect of the approach.
More specifically, extremely crowded dynamic scenes cause
problem to our event detection method because it is very
difficult and ambiguous to define and measure significant
visual changes that should be associated to events. One of the
possible improvements we can make would be developing
more sophisticated and robust event detection methods
based on the analysis of flow dynamics for extremely
crowded dynamic scenes and investigating the possibility
of combining rule-based behavior profiling approaches with
statistical learning-based approaches. Another drawback of
the work is that it does not cope with changes of visual context
that could affect the definition of what is normal and
abnormal. In other words, once trained, the model cannot
be adapted automatically to new observations. Our ongoing
work therefore also includes adding adaptive and incre-
mental learning features into the framework.

Finally, it is worth pointing out that despite the best
efforts from an increasing number of researchers, we are
still at the very early stage of understanding the video-
behavior-anomaly detection problem. We believe strongly
that in order to make significant progress, a number of open
questions need to be addressed. One of the questions is
about how to make use of domain knowledge for anomaly
detection. One of reasons why human can detect anomaly
so effortlessly is because an enormous amount of domain
knowledge/common sense about the scenarios has been
accumulated and employed for decision making. How can a
machine learn such knowledge, which is hidden in an
almost unlimited amount of data? How can the learning
process be speeded up with supervisions from human? A
closely related question would be how knowledge about
one domain can be generalized to others? Again, human has
the ability to generalize knowledge so that anomaly can be
detected even in an unfamiliar domain. How to enable a
machine to possess the same ability so that we do not have
to redo the learning from scratch when an anomaly
detection algorithm is applied to a completely different
scenario? We envisage that these questions will be the focus
of research on video anomaly detection for years to come.
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