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ABSTRACT

A key problem in video content analysis using dynamic graphical models is to learn a suitable model
structure given observed visual data. We propose a completed likelihood AIC (CL-AIC) scoring function
for solving the problem. CL-AIC differs from existing scoring functions in that it aims to optimise explicitly
both the explanation and prediction capabilities of a model simultaneously. CL-AIC is derived as a general
scoring function suitable for both static and dynamic graphical models with hidden variables. In partic-
ular, we formulate CL-AIC for determining the number of hidden states for a hidden Markov model
(HMM) and the topology of a dynamically multi-linked HMM (DML-HMM). The effectiveness of CL-AIC
on learning the optimal structure of a dynamic graphical model especially given sparse and noisy visual
date is shown through comparative experiments against existing scoring functions including Bayesian
information criterion (BIC), Akaike’s information criterion (AIC), integrated completed likelihood (ICL),
and variational Bayesian (VB). We demonstrate that CL-AIC is superior to the other scoring functions
in building dynamic graphical models for solving two challenging problems in video content analysis:
(1) content based surveillance video segmentation and (2) discovering causal/temporal relationships

among visual events for group activity modelling.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic graphical models or dynamic Bayesian networks
(DBNs), especially hidden Markov models (HMMs) and their vari-
ants, have become increasingly popular for modelling and analy-
sing dynamic video content [12,21,8,11,26,19,15,34]. By using a
DBN for video content analysis, we assume that dynamic visual
content is generated sequentially by some hidden states of the dy-
namic scene which evolve over time. These hidden states often
have physical meanings. For instance, they could correspond to
certain stages/phases of an activity [11,26,21], the occurrence of
different classes of visual events [19], or different types of transi-
tion segments between video shots [8]. The hidden states, as sug-
gested by the name, cannot be observed directly. They can only be
inferred from the observed visual data given a learned DBN. Learn-
ing a DBN involves estimating both its structure and parameters
from data. The structure of a DBN refers primarily to (1) the num-
ber of hidden states of each hidden variables of a model and (2) the
conditional independence structure of a model, i.e., factorisation of
the state space for determining the topology of a graph. There have
been extensive studies in the machine learning community on effi-
cient parameter learning when the structure of the model is known
a priori (i.e., assumed) [18]. However, much less effort has been
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made to tackle the more challenging problem of learning the opti-
mal structure of an unknown DBN [5,17,13,36]. Most previous
DBNs-based video content modelling approaches avoid the struc-
ture learning problem by setting the structure manually
[21,26,8,15]. However, it has been shown that a learned structure
can be advantageous over manually set ones given sparse and
noisy visual data [19]. In this paper, we address the problem of
how to accurately and robustly learn the optimal structure of a
DBN for video content analysis in a realistic situation where only
sparse and noisy visual data are available.

Most previous structure learning techniques have adopted a
search-and-score paradigm [17].! These techniques first define a
scoring function/model selection criterion consisting of a maximum
likelihood term and a penalty term to penalise complex models. The
model structure space is then searched to find the optimal model
structure with the highest score. The most commonly used scoring
functions include Bayesian information criterion (BIC) [29] , mini-
mum description length (MDL) [28], BDe [20], Akaike’s information
criterion (AIC) [1], integrated completed likelihood (ICL) [6], and var-
iational Bayesian (VB) [5,4]. The selected models are ‘optimal’ in the
sense that they can either best explain the existing data (BIC, MDL),
or best predict unseen data (AIC). It has been demonstrated both
theoretically and experimentally in the case of static models
that explanation oriented scoring functions suffer from model

! Alternatives include the Bayesian approach to model selection [5] and context-
specific independence [9].
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under-fitting while prediction oriented ones suffer from model over-
fitting [23,30,6,35].

To address the problems associated with existing scoring func-
tions, we argue that a better scoring function should select a model
structure that is capable of both explaining the observed data and
predicting unseen data optimally at the same time. To this end, we
derive completed likelihood AIC (CL-AIC) for learning the structure
of a DBN. CL-AIC was first introduced in our previous work [35] for
Gaussian mixture models (GMMs) which can be represented as a
static graphical model (see Fig. 1(a)). In this paper, CL-AIC is
derived as a general scoring function suitable for both static and
dynamic graphical models, with GMMs and DBNs as special cases.
In particular, CL-AIC is formulated for determining the number of
hidden states of a HMM and for learning the topology of a dynam-
ically multi-linked HMM (DML-HMM) (see Fig. 1(b) and (c)).

The effectiveness of CL-AIC on DBNs structure learning is dem-
onstrated through comparative experiments against BIC, AIC, ICL,
and VB. Experiments on synthetic data were carried out to examine
and quantify the effect of sample size on the performance of differ-
ent score functions. The results, for the first time, reveal a key dif-
ference in structure learning of static and dynamic graphical
models in terms of the definition of data sparseness. We further
considered two video content analysis problems using real data:
(1) content based surveillance video segmentation and (2) discov-
ering causal/temporal relationships among visual events for group
activity modelling. Our experimental results demonstrate that
CL-AIC is superior to alternative scoring functions in building
dynamic graphical models for video content analysis especially
given sparse and noisy data.

The rest of the paper is structured as follows: in Section 2, we
derive CL-AIC as a general scoring function for graphical models
with hidden variables. We also formulate CL-AIC for two special
cases of DBN, namely a HMM and a DML-HMM, and present syn-
thetic experiments to compare CL-AIC to existing scoring functions
including BIC, AIC, ICL, and VB. In Section 3, we address the
problem of learning the optimal number of video segments for sur-
veillance video segmentation. Comparative experiments are con-
ducted using over 10h of challenging outdoor surveillance video
footages. We then compare CL-AIC with other competing scoring
functions in learning the topology of a DML-HMM for group activ-
ity modelling in Section 4. The paper concludes in Section 5.

2. Completed likelihood AIC for graphical models with hidden
variables

We derive CL-AIC for graphical models with hidden variables
with GMMs and DBNs as special cases. Let us first consider the nat-
ure of computation in estimating and using a graphical model.
Consider an observed data set % modelled by a graphical model

. with hidden variables. .# can be used to perform three tasks:
(1) estimating the unknown distribution that most likely generates
%, (2) inferring the values of hidden variable in .# from #, and (3)
predicting unseen data. Computing (1) and (2) emphasises data
explanation while solving (3) concerns with data prediction and
synthesising. In this context, scoring functions based on approxi-
mating the Bayesian Model Selection criterion [27] such as BIC
and VB choose a model that maximises p(#|.#), the probability
of observing # given .#y or the marginal likelihood of the model.
They thus enforce mainly task (1). AIC, on the other hand, chooses
the model that best predicts unseen data, therefore optimising (3).
CL-AIC utilises CL in order to makes explicit the task (2), while fol-
lowing a derivation procedure similar to that of AIC.

Completed likelihood was originally derived for as a scoring
function for mixture models [7,6]. The model that best explains
both the observed data and hidden variables inferred from the ob-
served data is selected by CL as the optimal model. CL is thus a
strongly explanation-oriented scoring function. Here, we first ex-
tend the definition of CL to a general case of graphical models with
hidden variables. The complete data, denoted as %, for such a mod-
el is a combination of the observed data (#) and the values of the
hidden variables (%) : (# = {#%,%}, where % is unknown, and
must be inferred from #. The completed log-likelihood of # is

CL(K) = logp(%|Mx,0.4,) + 10gp(Z|¥, Mk, 0.4,),

where 6 4, are the true model parameters and K is the index of the
candidate models. In practice, 6 ,, are replaced using the Maximum
Likelihood (ML) estimate (9,,,,K and the unknown values of the hidden
variables # is replaced by #, the values inferred from the observed
data #. The completed log-likelihood is thus rewritten as

CL(K) = log p(¥|.#x,0.4,) + l0g p(Z|Y, Mk, 0.4). (1)

CL-AIC aims to choose a model that best explains the observed data
and has the minimal divergence to the true model, therefore best
predicting the unseen data as well. The divergence between a
candidate model and the true model is measured using the
Kullback-Leibler information [24]. Given a completed data set %,
we assume that # is generated by the unknown true model .#,
with model parameter 6 ,,. For any given model .#x and the
maximum likelihood estimate 0,,,,,(, the Kullback-Leibler divergence
between the two models is computed as

p(?j/|,////0,0.,// )
d( sy, M) = E|log | ——— %2 | | 2
(Mo, M) [ g(p(@///,(,f)//,() :

Ranking the candidate models according to d(.#,, .#x) is equivalent
to ranking them according to

O(Mo, My) = E[—Z log p(#|.ux, é,f/,()].
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Fig. 1. Three different types of graphical models with hidden nodes, among which HMM and DML-HMM are DBNs. Observation nodes are shown as shaded circles and hidden

nodes as clear circles.
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O( My, M) cannot be computed directly since the unknown true
model is required. However, it was noted by Akaike [1] that
7210gp(@|J//,<,(9¢/,K) can serve as a biased approximation of
S(Mo, M), and the bias adjustment

E [5(%/0, M)+ 2logp(W|.uy, &/,K)]

converges to 2Cx when the number of data sample approaches
infinity. Our CL-AIC is thus derived as

CL — AIC(K) = — logp(#|.#x, 0 4,) + Ck, 3)

where Cy is the dimensionality of the parameter space of model .#.
The first term on the right-hand side of (3) is the completed likeli-
hood given by Eq. (1). We thus have

CL— AIC(K) = —log p(#|.dx, 0 4,) — logp(Z |, Mk, 0.4,) + Ck.
(4)

The candidate model structure that has the minimal CL-AIC value
will be chosen as the optimal structure.

By utilising an explanation-oriented scoring function (CL) and
following a derivation procedure similar to that of a prediction-ori-
ented scoring function (AIC), CL-AIC is able to select the model
structure that maximises both the probability of the observed data
and the posterior probability of the inferred hidden/incomplete
data simultaneously whilst having a minimum number of free
parameters (i.e., as simple as possible). This formulation results
in a number of important differences compared to existing tech-
niques: (1) Unlike previous scoring functions, CL-AIC attempts to
optimise explicitly the explanation and prediction capabilities of a
model. This makes CL-AIC theoretically attractive. The effective-
ness of CL-AIC in practice is demonstrated through experiments
in the following sections. (2) It has been shown that CL can be com-
bined with BIC which leads to an ICL scoring function [6]. However,
the experiments reported in [6] indicated that in the case of mix-
ture models, ICL performs poorly when data belonging to different
mixture components are severely overlapped. We suggest this is
caused by the factor that ICL is a combination of two explana-
tion-oriented scoring functions without considering the prediction
capability of the model. Since CL-AIC integrates an explanation-ori-
ented scoring function with a prediction-oriented one, it is theoret-
ically better justified than ICL. Our experiments in the following
reinforce this observation.

As shown above, CL-AIC is derived based on a very intuitive prin-
ciple and can be formulated for a general category of models, namely
graphical models with hidden variables. Example of these models in-
clude both static statistical models such as GMMs, naive Bayesian
classifiers, principal component analysis (PCA), and Independent
Components Analysis (ICA), and dynamic ones such as HMMs and
their variants, and Kalman Filters. Since we are interested in Dy-
namic Bayesian Networks (DBNs) for video content analysis in this
paper, we formulate CL-AIC for two cases of DBNs in the following.

2.1. Determining the number of hidden states of a HMM

Let us now consider a specific problem of learning the structure of
a hidden Markov model (HMM). A HMM has a fixed topology with
one hidden variable and one observation variable at each time in-
stance t (see Fig. 1(b)). The hidden variable is discrete in most appli-
cations. The structure learning problem for a HMM thus refers to
how to determine the number of hidden states that the hidden var-
iable can assume. Assuming that at each time instance t, the discrete
hidden variable S; can have K different values (states), the complete
data for the model is % = {#, 2’} where Z is the true hidden variable
values over different time instances (i.e. the true hidden state se-
quence). The completed log-likelihood of # is computed as

CL(K) = log (ZP(?/IS (3‘:<)P(591<)> +logp(S = 71w, by), )
N

where S={S;,...,Sr} represents all the possible hidden state
sequences, T is the length of the sequence, 8 are the ML (maximum
likelihood) estimate of the model parameters of a HMM with K
hidden states, % is the most probable state sequence (i.e. the
hidden state sequence among S that best explains the observation
sequence) given 0x and %. 0x can be computed using the forward-
backward (Baum-Welch) algorithm [3] based on dynamic program-
ming and Z can be obtained using the Viterbi algorithm [16]. We
thus have

CL - AIC(K) = — log (ZP(@IS, (91<)p(59z<)>
S

—logp(S = Z|%, 6x) + Cx. (6)

A detailed description on how to use the forward-backward proce-
dure and the Viterbi algorithm to efficiently compute the first and
second terms on the right hand side of Eq. (6) can be found at
Rabiner’s excellent HMM tutorial [25]. The optimal number of
hidden states K is then determined as

K =arg min CL - AIC(K). (7)

Synthetic experiments were conducted to compare the effective-
ness of CL-AIC with that of BIC, AIC, ICL, and VB on determining
the number of hidden states of a HMM given data of different sam-
ple sizes. One-dimensional data were first generated from a 3-state
HMM (i.e., the hidden variable at each time instance can assume 3
states) whose parameters are

1/3 1/6 1/2 1/3 i =1,02=05
A=| 0 1/3 2/3|, n=[1/3|, B={ y,=3,03=05},
12 1/2 0 1/3 s =5,02 =05

8)

where A is the transition matrix, = is the initial state probability and
B contains the parameters of the emission density (Gaussians with
the indicated means and variances). The total number of free
parameters is 14 for this HMM. The data were then perturbed by
uniformly distributed random noise with a range of [-0.50.5).
HMMs with the number of hidden states K varying from 1 to 10
were evaluated. The five different scoring functions were tested
on the data sets with the sample size T varying from 25 to 4000.
To avoid being trapped at local minima, the EM algorithm? used
for estimating model parameters was randomly initialised for 20
times and the solution that yielded the largest likelihood after 30
iterations were chosen. The results are shown in Fig. 2 using the
mean and +1 standard deviation of the selected number of hidden
states over 50 trials, with each trial having a different random num-
ber seeds.

Fig. 2(b) shows the mean of the number of states estimated by
different scoring functions over 50 trials in a single plot. It can be
seen that when the sample sizes were small, all five scoring func-
tions tended to favour under-fitted models (i.e., underestimate the
number of states), with AIC and CL-AIC clearly outperforming BIC,
ICL and VB. As the sample sizes increased, the number of hidden
states determined using all scoring functions converged to the true
number 3. Given densely sampled data sets (T > 400), our results
show that both AIC, BIC, and VB tended to slightly over-fit while
ICL and CL-AIC yielded more accurate estimation of the number
of hidden states. Fig. 2(a) shows the variations of the structure
learning results across different trials which indicate the sensitiv-

2 A modified EM algorithm was used for computing the VB scoring function [4].
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Fig. 2. Synthetic data experiment results for determining the number of hidden states of a HMM using different scoring functions. (a) Selected number of hidden states (mean
and +1 standard deviation over 50 trials). (b) Mean of the selected number of hidden states (the true number of hidden states is 3).

ity of different scoring function to the distribution of data and
more importantly the presence of noise. It can be seen from
Fig. 2(a) that both AIC and VB exhibited large variations in the esti-
mated number of states no matter what the sample size was, while
other scoring functions had smaller variations given larger sample
sizes. Fig. 3 shows two examples of determining the optimal num-
ber of hidden states using different scoring functions. The value of
different scoring functions is plotted against the number of hidden
states in the candidate models. It can be seen that the scoring func-
tion value plots of AIC and VB have more local minimals and are
less discriminative for different candidate model structures than
the other three. This partially explains why the structure learning
results for AIC and VB exhibited larger variations across different
trials. Overall, the results show that CL-AIC has the best perfor-
mance among the five scoring functions that we compared.

It can be seen from Figs. 2 and 3 that different scoring function
perform differently as the sample size increases. In particular,
Fig. 2(b) shows that when the data set is sparse, all five scoring
functions tend to underfit the model. In the experiment presented
in Figs. 2 and 3, the distribution of the observed data follows three

Gaussians (see Eq. (8)) and each hidden state will correspond to
one Gaussian when both the model structure and model parame-
ters are learned accurately. When the sample size is small with
the presence of noise, some of the three Gaussians may not be well
supported by the data. This explains the underfitting tendency of
the five scoring functions. Both Figs. 2(b) and 3(a) also show that
given a sparsely sampled data set, CL-AIC and AIC outperform the
other three. It is easy to understand why CL-AIC is less underfitting
than ICL in this case. A comparison of the two shows that they only
differ in their penalty terms in formulation. In particular, CL-AIC
has a weaker penalty term, therefore always favouring more com-
plicated model compared to ICL. For exactly the same reason, AIC is
less underfitting than BIC in Figs. 2(b) and 3(a) given sparse data.
Both Figs. 2(b) and 3(a) also suggest that the hidden data likelihood
terms in CL-AIC and ICL played an insignificant role when the size
of the data set is small. This is reflected by the fact that CL-AIC and
AIC behaved very similarly given sparse data, so did ICL and BIC.
When the data set is densely populated, the three Gaussians are
all well supported by the data samples. Therefore, all scoring func-
tions have a much easier task to estimate the number of hidden
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Fig. 3. Examples of choosing optimal number of hidden states using different scoring functions. The value of five different scoring functions are plotted against the number of
hidden states. The global minimals on the plots correspond to the selected numbers of hidden states. In (a), both AIC and CL-AIC chose the correct hidden state number 3
while the other three select 2 given a data set of 250 samples. In (b) all five scoring functions selected the correct number given a data set of 1000 samples.

states. However, with the randomly distributed noise, the distribu-
tion of the data contained in each original Gaussian can become
non-Gaussian. We know that a non-Gaussian distribution can be
approximated using multiple Gaussians, which will then result in
more than three hidden states in the estimated model structure.
This explains why the models selected by VB, BIC and AIC are
slightly overfitted. Nevertheless, Fig. 2 shows that CL-AIC and ICL
do not suffer from the same problem. This is because for both of
them, complete likelihood is part of the scoring function, which
means that an estimated model must explain explicitly the hidden
state sequence as well. The temporal order of the hidden states
that correspond to the noise-caused extra Gaussians cannot be
well explained by the data. For instance, if two Gaussians are
now used to approximate an original single Gaussian, the temporal
order of these two Gaussians will be random. This results in low
likelihood of the hidden data. In other words, a model that is more
complicated than the true one would be penalised by both the pen-
alty term and the term corresponding to the likelihood of the hid-
den data in CL-AIC and ICL. Therefore, both ICL and CL-AIC give
more accurate estimates when sample size is large given noisy data
compared to the other three scoring functions.

Both Figs. 2 and 3 show that VB is sensitive to initialisation even
with densely sampled data (see the error bar in Fig. 2(a) and the
local minima on the plots corresponding to VB in Fig. 3). Note that
the key difference between computing VB and the other four
scoring functions is that the former is based a modified EM algo-
rithm and the latter use standard EM algorithm [4]. The modified
EM algorithm involves computing a distribution over the model
parameters rather than a point estimate of them in the M-step. This
makes VB even more sensitive to initialisation than the other four.
Consequently, both the plots in Fig. 3(a) and (b) that correspond
to VB are less smooth with more local minima than the others.

2.2. Determining the topology of a DML-HMM

We now consider the problem of determining the unknown
topology of a dynamically multi-linked HMM (DML-HMM) [19]
from data using CL-AIC as the scoring function. DML-HMMs were
first proposed in [19] to overcome a limitation of HMMs in model-
ling complex dynamic processes. In particular, a HMM requires a
large number of parameters to describe if it is to model multiple
temporal processes simultaneously. This implies that a single hid-
den state variable and a single observation variable are to represent
implicitly multiple sources of variations at any given time instance.
Unless the training data set is very large and relatively ‘clean’, poor
model learning is expected. To address this problem, various topo-
logical extensions to the standard HMMs can be considered to fac-

torise the observation and/or state space by introducing multiple
hidden state variables and multiple observation variables for mod-
elling different temporal processes explicitly and simultaneously.
Instead of being fully connected as in the case of a coupled HMM
(CHMM) [12] or being without any inter-links between different
temporal processes as in the case of a parallel HMM (PaHMM)
[32], a DML-HMM aims to only connect a subset of relevant hidden
state variables across multiple temporal processes. This is in order
to learn the optimal factorisation of the state space and more
importantly to be less sensitive to data noise. Instead of being fixed
as in the cases of CHMMs and PaHMM:s, the structure of a DML-
HMM is learned from data. Given a data set, it is assumed that at
each time instance the temporal process responsible for each data
sample is known and the number of hidden states for each hidden
variable is also known. The unknown structure to be learned is thus
the topology of the graph, i.e., the links among different hidden
nodes within two consecutive time instances.

To learn the optimal topology of a DML-HMM, CL-AIC is com-
puted for each candidate topology using Eq. (6) where the sub-
script K becomes the index of different topologies. The first and
second terms on the right-hand side of Eq. (6) can be computed
using an extended forward-backward algorithm for a DML-
HMM. A detailed description of the algorithm can be found in
the appendix of this paper. Note that the total number of candidate
topologies K. is exponential in the number of temporal processes
N¢. Each candidate topology can be represented using a N; x N; in-
ter-connection matrix whose elements have value 1 if there is a di-
rected link between the two corresponding hidden nodes within
two consecutive time instances and O otherwise.

Synthetic experiments were carried out to examine the effec-
tiveness of CL-AIC in comparison with that of BIC, AIC, ICL on deter-
mining the topology of a DML-HMM given data of different sample
sizes.? Data sets were randomly generated using a DML-HMM with
three temporal processes whose topology is shown in Fig. 1(c). The

1 01
model inter-connection matrix is thusf0 1 0]. Both the observa-
011
tion and hidden variables are discrete with three possible values.
The total number of free parameters of the model is therefore 66.
The model parameters were set randomly. One-fourth of the obser-
vational data were replaced by random numbers to synthesise noise
contained in the observation. DML-HMMs with K,.x = 64 different
topologies were evaluated by four different scoring functions using

3 Variational Bayesian (VB) was not evaluated here because implementing VB for a
dynamic graphical model with multiple temporal processes such as a DML-HMM is
not trivial and beyond the scope of this paper.
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data sets with sample size T varying from 25 to 4000. The perfor-
mance of different scoring functions was measured by looking at
both the number of links connecting hidden nodes within two con-
secutive time instances (the true number is 5) and the hamming dis-
tance between the estimated inter-connection matrices and the true
one (the distance is zero if the structure is estimated correctly). The
former measures model complexity while the latter measures the
accuracy of the learned structure. The experimental results were ob-
tained over 50 trials, and are shown in Fig. 4.

It can be seen from Fig. 4 that given sparse and noisy data the
optimal models selected using all four different scoring functions
tended to underfit with ICL and CL-AIC outperforming the other
two. As the sample sizes increased, the optimal number of links
among hidden nodes selected by CL-AIC and ICL converged to-
wards the true number 5, while those selected by BIC and AIC con-
verged to 4, (i.e., underfitting). In the meantime, the hamming
distance obtained using different scoring functions decreased, with
that obtained using CL-AIC being the smallest. Our experiment
shows that all four scoring functions are sensitive to initialisation

315

of the model parameters (see the large standard deviations de-
picted in Fig. 4(a) and (c)). The main reason for this shortcoming
is that the EM algorithm used for learning model parameters and
estimating the likelihood terms in different scoring functions is
sensitive to initialisation. This is well reported in the literature.
Although we have taken measures to avoid this problem by ran-
domly initialising the EM algorithm and choosing a solution that
yields the highest likelihood, the problem is not totally eliminated.
This suggests that each scoring function has a tendency to form a
complicated surface with a large number of local minima with re-
spect to the candidate model topologies. To solve this problem,
more sophisticated method needs be exploited/developed.

Apart from this common limitation, the results also show that
BIC and AIC tend to underfit the model whist CL-AIC and ICL do
not suffer from that problem given sufficient data. There is an intu-
itive explanation for this. Essentially for both BIC and AIC, the like-
lihood of the observed data would not benefit directly from having
interlinks between different time processes. In the meantime, the
penalty terms in their formulation would increase exponentially
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(d), smaller Hamming distances indicate more accurate structure learning.
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with the increase of the number of interlinks. It is therefore natural
to observe that underfitted models are preferred by BIC and AIC
even given sufficient data. As for CL-AIC and ICL, they do not have
the same problem because the likelihood of the inferred hidden
state sequence is included in their formulation. Having multiple
interlinks, especially those correct ones, helps greatly in explaining
away the temporal occurrence of different states and therefore
leads to higher likelihood of the hidden data.

3. Surveillance video segmentation

HMMs have been widely used for automatic segmentation of
sequential/time-series data such as speech [14], DNA sequences
[10] and video [8,11,34]. Here we propose to use HMM for content
based surveillance video segmentation, i.e. to segment a continu-
ous surveillance video based on activities captured in the video.
Note that since there is only one video shot in a continuous surveil-
lance video, the conventional shot-change detection based seg-
mentation approach [2] cannot be adopted. We thus employed a
video content trajectory based method. Specifically, a L-dimen-
sional feature vector is first extracted from each image frame.
The video content is thus represented a video trajectory in this L-
dimensional feature space. This feature vector is then represented
as the observational input of a HMM at each time instance. The
conditional probability distributions (CPDs) of each observation
variable are Gaussian for each of the K states of its parent hidden
variable. The video content is then monitored using the discrete
hidden variables in the model. The changes of video content can
thus be detected as the changes of hidden states which correspond
to breakpoints on a video trajectory (N detected change points/
breakpoints result in N + 1 video segments for a continuous video).
Using a left-to-right HMM model [25], the number of hidden states
would correspond to the number of video segments which can be
automatically determined using CL-AIC.

3.1. Activity-based video content representation

For clarity and concreteness, we shall illustrate our approach
using surveillance videos monitoring aircraft docking operations
at an airport. The total number of activities taking place in the air-
craft docking area was decided as 15 by airport ground control offi-
cers. A trained ground control officer in the control room is
required to monitor these 15 activities via both video inputs from
multiple cameras and audio communications with various staff
members on the ground. However, this does not imply that all of
the 15 activities to be monitored by ground control officers are
identifiable when CCTV video is the only input. It turns out that,
when watching video for identifying these 15 activities on the list,
most of them are completely or partially blocked by the aircraft

and the air bridge (e.g., crew bus picking up crew, engineers doing
service check) and only six activities on the list are visually detect-
able. This is because the data were captured using a single camera
from the frontal view. Obviously if more cameras were deployed to
cover different angles, the number of detectable activities will in-
crease. But it is still unlikely that all 15 activities will be visually
detectable due to the limit of the cameras one can possibly install
in reality and also the long distance from the camera to the objects
of interest resulting in low image resolution.

Fig. 5 shows an example activity based structure of a complete
aircraft docking operation. One activity can be followed by either
another activity immediately or a period of inactivity when no
meaningful visual changes can be detected. The durations of activ-
ities and inactivity gaps vary hugely during a single aircraft dock-
ing operation and across different operations. There are also
variations in the temporal order of activities and inactivity gaps.
For example, the temporal order of frontalCargoService and
frontalCateringService appears to be arbitrary. It is noted
that some activities such as airCraftArrival involve the move-
ment of a single object while other activities such as frontalCar-
goService and frontalCateringService consist of the
movement of multiple objects which may leave and re-appear in
the scene. For the latter case, there often exist a number of short
inactivity break-ups within an activity which are different from a
long inactivity gap between two activities only by their durations.
All these characteristics make analysis of the video content very
challenging.

We consider an activity based video content representation
[33]. Visual events are detected and classified automatically in
the scene. The semantics of video content are considered to be best
encoded in the occurrence of such events and the temporal corre-
lations among them. First, an adaptive Gaussian mixture back-
ground model [31] is adopted to detect foreground pixels which
are modelled using pixel change history (PCH) [33]. Second, the
foreground pixels in vicinity are grouped into a blob using the con-
nected component method. Each blob with its average PCH value
greater than a threshold is then defined as an event. A detected
event is represented as a seven-dimensional feature vector

V= [)_(7_)_}7W7h7Rf7MPX>MPy]7 (9)

where (X, y) is the centroid of the blob, (w, h) is the blob dimension, Ry
is the filling ratio of foreground pixels within the bounding box asso-
ciated with the blob, and (Mpx, Mpy) are a pair of first-order moments
of the blob represented by PCH. Among these features, (x,y) are loca-
tion features, (w, h) and R are principally shape features but also con-
tain some indirect motion information, and (Mpx, M,y) are motion
features capturing the direction of object motion. Classification is
then performed in the 7D event feature space over a collection of
training videos using a Gaussian mixture model (GMM). The number

aircraftArrival

airbridgeConnection

aircraftDeparture  airbridgeDisconnection

frontalCateringService

Fig. 5. An example structure of a complete aircraft docking video. Representative frames of different activities occurred in the scene are also shown.
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of event classes captured in videos is determined using CL-AIC (see
[35] for the formulation of CL-AIC for GMMs). For the aircraft docking
scene videos, eight classes of events were automatically detected. It is
worth mentioning that different events occur simultaneously and
such an event detection mechanism makes mistakes. Mis-detection
and wrong labelling can be caused by discontinuous movement and
closeness of different objects. An example of event detection and clas-
sification is shown in Fig. 6.

Classified events can be considered as ‘snapshots’ of activities
captured in a scene. To hide the image feature information and fo-
cus on the semantic video content, a scene vector is constructed for
each image frame of a video. A scene vector sv, for a video frame t
is defined as

sV, =[s!,...,sk . 8K,

.St (10)
where K is the number of event classes automatically determined
using CL-AIC. The value of s¥ is the number of events of the kth
event class detected in the frame t. A scene vector gives a descrip-
tion of ‘what is happening’ in the scene through the class labels of
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the detected events. It is thus a concise representation of the video
content at the semantic level (see Fig. 7 for an example). However,
directly using this scene vector to detect video content changes can
cause problems for video segmentation. Specifically, the value of a
scene vector sv; can become 0 (i.e., absent of any event at a given
frame) frequently throughout the video sequence (see Fig. 7). This
can be caused by either frequent but short inactivity break-ups
within activities or long inactivities between activities. Each ‘com-
ing to zero’ is reflected as a dramatic change in the value of sv;
due to the discrete nature of s¥. Those changes that correspond to
real changes of video content can thus easily be overwhelmed by
changes caused by the inactivity break-ups within activities, which
makes temporal segmentation of the video difficult.

To overcome this problem, let us now consider representing the
video content using a cumulative scene vector computed at frame
t using sv; from frame 1 to the frame t. More specifically, the k™ ele-
ment of the cumulative scene vector (denoted as sv,) is computed as

t
<k _ k
sE= sk
i=1

(11)
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Fig. 6. Event detection and classification in an aircraft docking scene video. Eight classes of events are detected automatically, each of which corresponds to different
movement patterns in the image frame. For example, event class 7 corresponds to the movements of the aircraft. Event classes 4, 5, and 6 correspond to the movements of
objects involved in activities frontalCargoService and frontalCateringService. (a) Events are detected and classified into different classes which are highlighted
using bounding boxes in different colours. The spatial and temporal distribution of events of different classes are illustrated in (b) and (c), respectively, with centroids of
different classes of events depicted using different colours. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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Fig. 7. The example video shown in Fig. 6 is represented by scene vectors evolving over time. We have K = 8 for this video. s¥ is depicted by a dot in colour when s > 0. There
are frequent but short inactivity break-ups within activities (see between frame 1 and frame 2000) and a long inactivity gaps between activities (between frame 3000 and

frame 6000).
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The value of each element of sv, becomes continuous and will in-
crease monotonically with time (see Fig. 8). Compared to the scene
vector representation sv; (see Fig. 7), the short inactivity break-ups
at individual frames have little impact on the values of the cumula-
tive scene vector evolved over time. It thus becomes easier to detect
breakpoints that correspond to significant changes in video content.

3.2. Determining the number of video segments

Now each image frame of the aircraft docking scene videos is
represented as a 8-dimensional feature vector which is then uti-
lised as observational input for a HMM for temporal segmentation.
The problem to be solved here is to automatically determine K, the
number of hidden states which corresponds to the number of video
segments.

Our data set consists of seven aircraft docking scene videos cap-
tured using a fixed CCTV analogue camera. After digitalisation, the
final video sequences have a frame rate of 2 Hz. Note that it is not
uncommon to have such an extremely low frame rate for CCTV sur-
veillance videos, which makes the video segmentation problem
even more challenging. Each image frame has a size of 320 x 240
pixels. The seven video sequences of aircraft docking lasted from
6470 to 17,262 frames per sequence (around 50-140 min of
recording), giving in total 72,776 frames (10 h) of video data that
cover different times of different days under changing lighting con-
ditions, from early morning, midday to late afternoon. They are re-
ferred as video 1 to video 7, respectively. The seven videos were
first manually segmented into activities to give the ground truth
of the breakpoints for segmentation, resulting in a total of 64
breakpoints and 71 segments. The lengths of these video segments
were within the range of 127-3210 frames.

The performance of different score functions are compared by
looking at the number of detected breakpoints, the number of true
positives, false positives, and false negatives. The results are shown
in Table 1 and Fig. 9. Given the true number of breakpoints 64, it
can be seen from Table 1 that both BIC, ICL, and VB underestimated
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Fig. 8. The eight elements of sv, over time for the example video shown in Fig. 6.
Each element of sv, is normalised to have a value range of [0, 1].

Table 1
Comparing different scoring functions for video segmentation (the true number of
breakpoints was 64)

BIC AIC ICL CL-AIC VB
# Det. B points 49 73 45 62 52
# True positives 39 52 37 54 40
# False positives 10 21 8 8 12
# False negatives 15 12 17 10 14

the number of segments while AIC overestimated the segment
number. In the meantime, the number of segments estimated
using CL-AIC was the closest to the true number. On the accuracy
of breakpoint detection, Table 1 shows that CL-AIC yielded the
highest true positive number and lowest false positive and false
negative numbers. In the meantime, both BIC, ICL, and VB gave
low false positive number but low true positive number as well.
As for AIC, high true positive number was obtained at the price
of high false positive number.

4. Discovering causal relationships in group activity modelling

A group activity involves multiple objects co-existing and inter-
acting in a shared common space. Examples of group activities in-
clude ‘people playing football’ and ‘shoppers checking out at a
supermarket’. Group Activity modelling is concerned with not only
modelling actions executed by different objects in isolation, but
also the interactions and causal/temporal relationships among
these actions. Adopting a DML-HMM based activity modelling ap-
proach [19], we consider that a group activity is composed of dif-
ferent classes of dynamically linked visual events representing
significant changes in the image over time caused by different ob-
jects in the scene. An event is represented by a multi-dimensional
feature vector and automatically detected and classified into differ-
ent event classes (see Section 3.1 for details). The detected events
are then taken as the observational input to a DML-HMM so that
learning causal and temporal relationships among different classes
of events can be achieved by learning the optimal structure of the
DML-HMM for modelling the dynamics of the detected events and
the interactions among them. More specifically, each temporal pro-
cess of the DML-HMM is used to model the dynamics of one class
of events and those links among different processes capture the
causal/temporal relationships of different classes of events. An in-
ter-link between two temporal processes therefore indicates the
existence of causality between the two corresponding classes of
events.

Experiments were carried out to compare the performance of
different scoring functions for learning the structure of a DML~
HMM and therefore the causal relationships among different clas-
ses of visual events. A simulated ‘shopping scenario’ was captured
on a 20 min video. Some typical scenes can be seen in Fig. 10(a).
The scene consists of a shopkeeper sitting behind a table on the
right side of the view. Drink cans were laid out on a display table.
Shoppers entered from the left and either browsed without paying
or took a can and paid for it. The data used for this experiment
were sampled at 5 frames per second with total number of 5699
frames of images sized 320 x 240 pixels.

In the 20-min video, a total of 4634 events were automati-
cally detected and classified into five event classes. By observa-
tion, the five classes of events corresponds to five key
constituents of the shopping activity. They were labelled as can-
Taken, entering/leaving, shopkeeper, browsing and pay-
ing respectively (see Fig. 10(a)). It was noted that different
classes of events occurred simultaneously. It is also true that
our event recognition model made errors. Some of the errors
were caused by the occlusion, closeness and visual similarity
among different events. Some others were due to the factor that
the causal/temporal relationships among events were not consid-
ered at the level of event detection. For example, when a shop-
per stands in front of the shopkeeper, it is impossible to tell
whether he/she is going to pay unless one takes into consider-
ation whether any drink can was taken a moment ago. The event
classifier is therefore expected to make such errors without tak-
ing into account the temporal and causal correlations among dif-
ferent classes of events. Such causal/temporal relationships are
modelled using a DML-HMM.
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Fig. 9. Determining the number of video segments for an aircraft docking video (video 2 of the 7 videos) using a HMM with different score functions. (a) Representative
frames of different activities captured video 2. These activities were (from left to right): aircraftArrival, airbridgeConnection, frontalCargoService,
frontalCateringService, airbridgeDisconnection, and aircraftDeparture. (b) Ground truth obtained by manually segmenting the video. (c)-(e) segmentation
results using different scoring functions with the detected breakpoints shown on the video trajectory. Note that in (b)-(e) the video trajectories are shown in a 3D PCA space
of the original 8D video content feature space just for the illustration purpose (the computation was done in the original 8D feature space).

There are five temporal processes in this DML-HMM, each
corresponding to one class of events. We also consider two
states for each hidden state variable, i.e., a binary variable
switching between the status of True and False which corre-
spond to whether or not an event of a certain class is truly
present in each frame. Each observation variable is continuous
and given by a 7D feature vector representing a detected event
(see Eq. (9)). Their distributions are mixtures of Gaussian with
respect to the states of their discrete parent nodes. For model
learning, the distributions of the detected events learned using
GMMs are used to initialise the distributions of the observation
vectors. The priors and transition matrices of states are initia-
lised randomly. The number of candidate topologies for a 5-
temporal-process DML-HMM is too large to be searched exhaus-
tively. The Structural EM algorithm [17] was thus adopted to
search for the optimal structure more efficiently using different
scoring functions.

The discovered causal/temporal relationships among different
classes of events are embedded in the learned topologies of the
DML-HMM:s. For instance, a link pointing from the canTaken pro-
cess towards the paying process indicates the causality between
these two classes of events. Compared with the expected structure
of the shopping activity shown in Fig. 10(e), it can be seen that the
causal relationships among different classes of events and the tem-
poral structure of the activity were discovered correctly by CL-AIC
(Fig. 10(b)). In comparison, an over-complicated DML-HMM topol-
ogy was selected using AIC (Fig. 10(d)) while both BIC and ICL
underestimated the number of inter-links among different tempo-
ral processes (Fig. 10(c)), resulting in over-simplified causal rela-
tionships among different classes of events.

Note that in Sections 3 and 4 the proposed scoring function is
employed to address two very different vision problems. In Section
3, the objective is to temporally segment a continuous surveillance
video according to the activities taking place in the scene. As ex-
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(a) Examples of detected and classied events in a shopping scene
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Fig. 10. Discovering causal relationships among visual events in a shopping scene. In (a), events belonging to five event classes canTaken, entering/leaving,
shopkeeper, browsing and paying are indicated with bounding boxes in magenta, red, blue, green and cyan, respectively. (b)-(d) Topologies of DML-HMMs learned using
different scoring functions. (e) The expected causal and temporal structure of the shopping activity. (For interpretation of color mentioned in this figure the reader is referred

to the web version of the article.)

plained earlier, the number of activities that are visually identifi-
able and can be segmented from a video is determined by the nat-
ure of the camera view and the image resolution (i.e., the distance
from the camera to the objects of interest). In Section 4, the objec-
tive is to discover the causal relationship among the detected
events. Obviously, if different number of events were detected
(e.g., using different features), the set of causal relationships will
be different as well. But, what we are interested in is, for a given
set of events, whether the correct causal relationship can be recov-
ered using different graphical model structure scoring functions.
So, the focus here is not about what is the optimal number of
events one should detect. It is about whether the causal relation-
ship among the actually detected events can be learned correctly.

5. Discussion and conclusion

Our experimental results show that the performance of CL-AIC
on learning the structure of a dynamic graphical model with hid-
den variables is superior to that of existing popular alternatives
including BIC, AIC, ICL, and VB. This is especially true when the gi-
ven data set is noisy and sparse. Similar results were reported in
the case of static graphical models in [35]. However, it is interest-
ing to note the difference in the definitions of ‘data sparseness’ in
the context of DBNs and in that of static models such as GMMs.
The sparseness of a data set is normally measured in comparison
to the number of free parameters of a model. The experiments re-
ported in [35] show that a sample size smaller than 5 times of the
parameter number should be considered as sparse while our
experiments on HMMs and DML-HMMs show that a sample size
smaller than 20 times of the number of parameters would qualify
for being sparse (see Fig. 2 and 4).

It is worth pointing out that our CL-AIC and the other four scor-
ing functions evaluated in this paper can be classified into two cat-
egories based on the underlying principles of derivation. Both AIC
and CL-AIC are derived based on information coding theory. Our
experimental results suggest that the extra term in the formation
of CL-AIC compared to AIC (the second term on the right-hand side
of Eq. (4)) is able to rectify the overfitting tendency of AIC given
densely distributed data. Different from AIC and CL-AIC, both BIC,
ICL, and VB are derived as approximations to Bayesian Model
Selection (BMS) [27] which aims to select a model that maximise
the marginal likelihood for a data set given the model. Compared
to BIC, the approximation made in the derivation of VB is less dras-
tic therefore more accurate resulting in better structure learning.
However, it also pays the price for losing generality - VB can only
be applied to discrete graphical models whilst the other four can
also be implemented for continuous ones such as PCA, ICA, Kalman
Filters, and continuous HMMs.

It is also interesting to compare our CL-AIC with an recently
proposed structure learning algorithm based on an entropic prior
and parameter extinction [13]. The method has been applied to
HMM for activity modelling [11]. However, despite being called a
structure learning algorithm, it is essentially a parameter learning
algorithm aiming to learn the optimal hidden state transition prob-
abilities which are part of the model parameters rather than model
structure. With the addition of state trimming, it is possible for the
method to learn the optimal number of hidden states for a HMM.
Nevertheless, as pointed out in [13], the algorithm tend to keep
superfluous gating states in the learned structure. It therefore not
suitable for determining the state number for a HMM. Moreover,
it cannot be applied for more general dynamical graphical models
such as DML-HMMs.



T. Xiang, S. Gong/Computer Vision and Image Understanding 112 (2008) 310-323 321

It is critical to distinguish the ‘expected model’ (the model
learned from data) and the true underlying model when studying
a real-world model selection problem. In particular, one must
note that the expected model and the real (unknown) model
underpinning the original data are not necessary the same. We
consider that one of the main causes of this discrepancy is that
when solving a real-world data-modelling problem, for computa-
tional tractability, one must first perform feature extraction and
data pre-processing before a model can be built. However, if
those features extracted are not a good representation of the ori-
ginal data, the estimated model, even if it corresponds well to the
feature representation, is not a good model for explaining the ori-
ginal data. To make sure that a model does indeed capture accu-
rately the underlying nature of the original data, the choice of
feature selection and representation is crucial. We have done ex-
actly that in the two real-data experiments presented in this pa-
per. Specifically, the discrete event based video trajectory
representation for the video content analysis has been shown to
be more informative and robust to noise compared to conven-
tional representations in our previous work [34]. We have also
demonstrated that the event based activity representation is
superior to other commonly used representations in revealing
the causal/temporal relationships in [19]. We therefore argue
with strong justification that for the experiments carried out in
this work, the ‘expected’ model does go some way to explain
the true underlying nature of the original problem rather than
merely a good explanation of the wanted results.

In conclusion, we have proposed a novel scoring function,
CL-AIC for selecting the optimal structure of DBNs. The effec-
tiveness of CL-AIC has been demonstrated on solving the chal-
lenging problem of video content analysis. In particular, it is
evident from our results that CL-AIC is superior to the com-
monly used scoring functions including BIC, AIC, ICL, and VB,
especially give sparse and noisy visual data. It is worth pointing
out that either model parameter estimation or computing the
posterior probabilities will become computational intractable
for learning the structure of a large DBN. To address this prob-
lem, approximation methods such as stochastic simulation [22]
or variational approximations [18] need to be adopted. Our
ongoing work includes further investigation on how the perfor-
mance of different scoring functions will be affected by the use
of approximation methods.

Appendix. Computing CL-AIC for a DML-HMM

CL-AIC for a DML-HMM is formulated as follows:
CL - AIC(K) = —log (ZP(@IS, 91<)p(591<)>
S

—logp(S = Z|%, ) + Cx. (12)

To compute the first and second terms on the right-hand side of the
above equation, the ML (maximum likelihood) estimation of the
model parameters, 0¢ has to be obtained first. This is achieved
through an extended dynamic programming algorithm similar to
the forward-backward algorithm for a standard HMM.

Let us consider a DML-HMM with C temporal processes and one
hidden variable and one observation variable, respectively, for each
temporal process at each time instance. We thus have N, = N, = C
where N;, and N, are the number of hidden state variables and
observation variables at each time instance, respectively. It is as-
sumed that all the hidden state variables are discrete and all the
observation variables are continuous whose probability density
functions are Gaussian with respect to each state of their parent
hidden state variables. The parameter space thus consists of the
following components:

1. The mitial state dlStrlbuthD T = {0} where T =P(S\ =
Q(c)) 1 C) and 1 C

2. The state transmon probability distribution A_{
where aq, =PSY, =q|PaSY,) = Pa( S(P? are

Pa(j) f+1 = 45 t+1 an&L ’ t11)
the hidden variables at time ¢ on which S}, is conditionally
dependent, Pa(j') are subscrlpts of those dlscrete values that
Pa(S\?,) can assume, 1 <j <N“ and 1 <c<C.

3. The observation probabllity distribution B = {b o (%)}, where
bye (@) = (B ,,u, @), Uy and Uy are the mean vector
and covariance matrix of the normal (Gaussian) distribution
with respect to S = g0, 1 <i <N“and 1 <c < C.

Given an observation sequence # and a model structure 4, we
need to determine the model parameters (1) = {A, B, } that max-
imise the probability of the observation sequence given the model
structure P(#|4,0(4)). There is no analytical solution to determine
the optimal parameters given a finite observation sequence. How-
ever, the parameters can be estimated iteratively using dynamic
programming. Let us first define the following variables:

e The forward variableo, (i, ....i9) = P(@y,%,, ..., %, S =g,
59 = qy0|4,0(4)), i.e., the probability of the partial observa—
tion sequence until time t and states for S",... S\, given the

model 4 and 0(4):

ifro1,
-’(O)aPa(i'c‘)i‘C))bi\'() (‘@/EC))) if1<t <T.

{HS 10 bgo (7))

e The backward variableﬁ[(i“),...,i(c)) =P,,..., 1,5 = qu,
59 = q,0|4,6(4)), i.e., the probability of the partial observa-
tion sequence from t+ 1 to T, given the states for SV, ... S

and the model 4 and 6(4):

B, ..., i9)

1 ift=T,
‘{z-n o(Hm(pa(,m by (1) ) s q...,j@)) fl<e<T

. fr(i“)---w GV J N =P =g, SO = qi0, S = g,
Sm = gjo ol4, 0(1)) i.e., the probability of being at certain
states at time t and t+ 1, given the model and observation
sequence:

.(1 .c .(1 .(C

_ ﬂt+l (i(l)i )Hc 1O(f(l(])"" 7i(C>)aPa(j< )_1 b_)(c)(y(H)])
P(#12,0(2)) ’

where P(%|4,0(4)) can be computed using the forward and back-
ward variables:

P, 0() = > (V.. i) ", .1 ). (13)

o 7., i =PESY = qu,...,89 = q0|#,4,002)), ie, the
probabillty of being at certain states at time ¢, given the model

and observation sequence:

+(1 +(C -(1 «(C
T e N A (L L))/ X (RS o))
R (1) O p (D) o (14)
i i(C)fo(l yeeesl )ﬁt(l syl )

Denote the current parameter estimates as (1) = {A,B, i}, the
re-estimated parameters 6(4) = {A,B, 7t} can be computed using
the following re-estimation formula: Denote the current parameter
estimates as 6(4) ={A,B,m}, the re-estimated parameters
0(4) = {A,B, 7} can be computed using the following re-estimation
formula:
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Tci(fl = Z V1(i<1)7---7i(c))7 (15)

T-1 2 (1 (0) +(1 «(C
t=1 ij ic 11_]'(5\1)____‘/'(5)‘1'(5’)#13“(}‘(5))gt(l( LS L0 AL ))

Pa(j');© T (1) +(C) )
thlz,-m#pau-m)%(l yeeesl )
(16)
_ Z-:l (me ..... GG z‘oyt(l >’ 71(0))”//([) (17)
Mo = = : : T < )
' o _gen e o (i, 19)
I 1) OV g © © T
Z] <Zi<“ ..... jengen Vel ))(?yr = o) (¥ = o)
_ &
H(c) =— .(1 .(C N
I ZL] o i(cfl)_’i(wl)w“j(f)yt(l( ),...,l( ))
(18)

If we iteratively use 0(4) to replace 0(4) and repeat the re-estimation
calculation until some limiting point is reached, the final result is a
maximum likelihood estimate of parameters 0(4).

Now given the learned parameters 6(4), the first term on the
right-hand side of Eq. (12) can be computed using Eq. (13). The
remaining problem is to compute the second term which involves
the estimation of the most probable hidden state sequence. We
formulate an extended Viterbi algorithm to infer the sequence gi-
ven the observation and learned parameters. Let us first define
the following variables:

o oliV, i) = maxisy s PAS L AL SY =g
SO = qu0, ¥4, .., WA, 0(4)).where £S5y = {stV ... s9y.
5:(iV, ..., i) is the highest probability of the partial observa-
tion sequence until time ¢t and a sequences of hidden states from
time 1 to time ¢, given the model 4 and 0(4).

o ¢, (i",...,i9), which is an array used to store the best state
sequence. The best hidden states at time ¢ for the C hidden state

variables are denoted as {S;}.
The extended Viterbi algorithm has the following steps:

1. Initialisation:

C
01 (i(l), ey i(c)) = H T bi(c) (@EO),
c=1

@,(i",...,i% =0.
2. Recursion:
C
-(1 +(C +(1 +(C y
a(i .. 19) :j(ﬂ]aﬂxo Hém(l( L ))apa(j(fl),'(c)bim @) ¢,
), pelc’

where 1 <t <T.
3. Termination:

{59} = arg max (", ...,i9).
i O

4. Best state sequence backtracking:
{9 = e (S
wheret=T-1,T-2,...,1.

Given the most probable hidden states sequence Z = {5,993,
the second term of Eq. (12) is computed as

T
lng(S = :}Z|j—q701() = Z IOgytx (19)
t=1

where y,, computed using Eq. (14), is the probability of being at the
most probable hidden states sequence at time t given the model and
observation sequence.
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