
Available online at www.sciencedirect.com
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 111 (2008) 59–73
Incremental and adaptive abnormal behaviour detection q

Tao Xiang *, Shaogang Gong

Department of Computer Science, Queen Mary, University of London, London E1 4NS, UK

Received 27 September 2006; accepted 10 June 2007
Available online 26 January 2008
Abstract

We develop a novel visual behaviour modelling approach that performs incremental and adaptive model learning for online abnor-
mality detection in a visual surveillance scene. The approach has the following key features that make it advantageous over previous
ones: (1) Fully unsupervised learning: both feature extraction for behaviour pattern representation and model construction are carried
out without the laborious and unreliable process of data labelling. (2) Robust abnormality detection: using Likelihood Ratio Test
(LRT) for abnormality detection, the proposed approach is robust to noise in behaviour representation. (3) Online and incremental model

construction: after being initialised using a small bootstrapping dataset, our behaviour model is learned incrementally whenever a new
behaviour pattern is captured. This makes our approach computationally efficient and suitable for real-time applications. (4) Model

adaptation to reflect changes in visual context. Online model structure adaptation is performed to accommodate changes in the definition
of normality/abnormality caused by visual context changes. This caters for the need to reclassify what may initially be considered as
being abnormal to be normal over time, and vice versa. These features are not only desirable but also necessary for processing large
volume of unlabelled surveillance video data with visual context changing over time. The effectiveness and robustness of our approach
are demonstrated through experiments using noisy datasets collected from a real world surveillance scene. The experimental results show
that our incremental and adaptive behaviour modelling approach is superior to a conventional batch-mode one in terms of both perfor-
mance on abnormality detection and computational efficiency.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Abnormal behaviour detection in video is one of the most
critical problems in visual surveillance. Although its impor-
tance has long been recognised and much effort has been
made to tackle the problem [3–5,8,10,11,14,18,23,28,32,33],
it remains largely unsolved especially for cluttered busy
scenes outside a well-controlled laboratory environment.
This is due to not only the complexity and variety of visual
behaviour in a realistic and unconstrained environment,
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but also the ambiguous nature in the definition of normality
and abnormality, which is highly dependent on the visual
context and can change over time. In particular, a behaviour
can be considered as either being normal or abnormal
depending on when and where it takes place. This causes
problems for the conventional behaviour models learned in
batch mode which remain static once trained.

In this paper, we develop a novel behaviour modelling
approach that performs incremental and adaptive behav-
iour model learning for online abnormality detection. After
initialisation using a small bootstrapping dataset, our
behaviour model performs online abnormal behaviour
detection and incremental model parameter updating
simultaneously whenever a new behaviour pattern is cap-
tured. More importantly, our model is capable of detecting
changes of visual context and definition of abnormality and
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1 The notion of abnormal behaviour appeared in different names in the
literature including unusual, suspicious, or surprising behaviour/events/
activities, or simply anomaly, abnormality, irregularities or outliers.
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carrying out model adaptation to reflect these changes. Our
approach has a number of key features which distinguish it
from previous approaches:

1.1. Fully unsupervised learning

Both feature extraction for behaviour pattern represen-
tation and behaviour model construction are fully unsuper-
vised in our approach. In particular, our behaviour model
learning is based on unlabelled data without knowing
whether each training behaviour pattern is normal and
to which normal behaviour class it belongs. Compared
to existing supervised learning based approaches
[18,14,10,8], our approach offers a number of significant
advantages: (a) The laborious, often impractical and unre-
liable process of manual labelling is avoided. (b) Abnormal
behaviour patterns are commonly rare and unexpected,
therefore, difficult to define. Our approach lifts the burden
of manually defining and selecting abnormal training
samples.

1.2. Robust abnormality detection

A Likelihood Ratio Test (LRT) [16] based abnormal
behaviour detection method is developed. Specifically,
apart form a model for normal behaviour, an approximate
abnormal behaviour model is also constructed. Both mod-
els are built based on mixtures of Dynamic Bayesian Net-
works (DBNs) [9]. Given a newly observed behaviour
pattern, whether it is abnormal is determined using the
likelihood ratio of generating the pattern using the two
models. As a probabilistic model, a mixture of DBNs can
cope with behaviour representation errors occurred at indi-
vidual frames. Moreover, the adoption of LRT takes into
account the subtle and ambiguous nature of defining nor-
mality/abnormality especially given the inevitable errors
in representation. Our method is thus robust to noise in
behaviour representation.

1.3. Online and incremental model construction

After being initialised using a small bootstrapping data-
set, our behaviour model is learned in an online and incre-
mental manner. Specifically, given a newly observed
behaviour pattern, it is detected as either normal or abnor-
mal by the model learned using the patterns observed so
far; the model parameters are then updated incrementally
using only the new data based on an incremental Expecta-
tion–Maximisation (EM) algorithm. This is in contrast
with most previous behaviour modelling techniques that
operate in a batch mode where observing (and collecting)
sufficiently large samples of behaviour patterns is necessary
before model training. Online incremental learning is not
only desirable but also necessary for processing large vol-
ume of unlabelled surveillance video data for which a
batch-mode method is both computationally and logisti-
cally too expensive. Based on online incremental statistic
learning, our approach is computationally efficient for
modelling complex behaviours observed continuously over
time and thus suitable for real-time surveillance
applications.

1.4. Model adaptation to reflect changes in visual context

Whether a behaviour pattern is abnormal is highly
dependent on the visual context. Existing methods assume
what was considered to be normal/abnormal in the training
dataset would continue to hold true regardless of the inev-
itable circumstantial changes over time. Our approach
enables model adaptation to reflect these changes. This is
achieved through online model structure updating and
introducing a bias towards more recent observations. For
instance, when an unfamiliar behaviour pattern is
observed, it would be initially considered to be an abnor-
mality. However, if similar patterns were to appear repeat-
edly thereafter, they shall be deemed as normal. In this
case, our behaviour model would adapt to this change of
context and the model structure will be updated to accom-
modate the addition of a new normal behaviour class. Note
that although both incremental learning and model adapta-
tion are part of the online model updating processes, they
focus on different aspects of a model, namely model param-
eters and model structure, respectively. Furthermore,
unlike incremental model learning which is triggered by
the arrival of new data, model adaptation takes place only
when visual context changes are detected.

The rest of the paper is structured as follows: Section 2
reviews related work to highlight the contributions of this
work. Section 3 addresses the problem of behaviour repre-
sentation. An event based behaviour representation is pre-
sented. The incremental and adaptive behaviour modelling
algorithm is described in Section 4. It consists of three key
steps: model initialisation using a bootstrapping dataset
(Section 4.1), online abnormality detection based on LRT
(Section 4.2), and online model updating based on incre-
mental EM learning and model adaptation (Section 4.3).
In Section 5, the effectiveness and robustness of our
approach are demonstrated through experiments using
noisy datasets collected from a real world surveillance
scene. In particular, its performance on abnormality detec-
tion and computational efficiency is compared with a
batch-mode method. The paper concludes in Section 6.

2. Related work

Much work on abnormal behaviour detection1 took a
supervised learning approach [18,14,10,8,6,22] based on
the assumption that there exist well-defined and known a

priori behaviour classes (both normal and abnormal). As
demonstrated in [28], a supervised model can give inferior



T. Xiang, S. Gong / Computer Vision and Image Understanding 111 (2008) 59–73 61
abnormality detection performance compared to that of an
unsupervised model even though more efforts are required
in manual labelling of data. Note that the approaches pro-
posed in [6,22] are rule-based approaches, i.e. human
knowledge on what is normal/abnormal in a scene is
hand-crafted into the model. This differs from most other
approaches which are based on statistical learning. These
rule-based approaches provide an effective solution for
detecting abnormality in a simple and static scene. How-
ever, defining and hand-crafting rules become infeasible
for modelling complex behaviour. Moreover, these
approaches break down when the scene context and defini-
tions of normality/abnormality change over time.

More recently, a number of techniques have been pro-
posed for unsupervised learning of behaviour models
[33,11,3,28,24]. They can be further categorised into two
different types according to whether an explicit model is
built. Approaches that do not model behaviour explicitly
either perform clustering on observed patterns and label
small clusters as abnormal [33,11], or build a database of
spatio-temporal patches using only regular/normal behav-
iours (manually labelled) and detect those patterns that
cannot be composed from the database as being abnormal
[3]. The approach proposed in [33] cannot be applied to
any previously unseen behaviour patterns therefore is suit-
able for post-mortem analysis rather than on-the-fly abnor-
mality detection. This problem is addressed by the
approaches proposed in [11,3]. However, in these
approaches all the previously observed normal behaviour
patterns must be stored either in the form of sequences of
discrete events [11] or ensembles of spatio-temporal patches
[3] for detecting abnormality from unseen data, which jeop-
ardises the scalability of these approaches. Alternatively,
an explicit model-based on a mixture of Dynamic Bayesian
Networks (DBNs) can be constructed to learn specific
behaviour classes for the automatic detection of abnormal-
ities on-the-fly given unseen data [28]. However, since the
model is trained in a batch mode, it cannot cope with
changes of visual context.

There is also another approach that differs from both
the supervised and unsupervised techniques above. A
semi-supervised model was introduced by [32] with a
two-stages training process. In stage one, a normal
behaviour model is learned using labelled normal pat-
terns. In stage two, an abnormal behaviour model is
learned unsupervised using Bayesian adaptation. This
approach still suffers from the laborious manual data
labelling process.

The work presented in this paper is closely related to our
earlier work [28] in the aspect of behaviour representation.
However, in addition to the key advantage of online incre-
mental and adaptive model learning, we develop a more
principled criterion for abnormality detection based on a
Likelihood Ratio Test (LRT) originally proposed for
key-words detection in speech recognition [25]. This makes
our approach more robust to errors in behaviour represen-
tation. It is also worth pointing out that both the
approaches proposed in [11,3] are claimed to be incremen-
tal and online. Nevertheless, in [11] online abnormality
detection only takes place after the model is built in a batch
mode, while in [3] the incremental model learning process
requires human intervention (i.e. manually defining a new
class of normal behaviour and adding it to the database).
In our approach, model learning/adaptation and abnor-
mality detection are carried out simultaneously without
human intervention as new data become available.

3. Behaviour representation

A continuous video V is segmented into N video seg-
ments V ¼ fV1; . . . ;Vn; . . . ;VNg so that ideally each seg-
ment contains a single behaviour pattern that does not
necessarily restrict to a single object (i.e. may consist of a
group or interactive activity). The nth video segment Vn

consists of T n image frames represented as
Vn ¼ fIn1; . . . ; Int; . . . ; InT ng where Int is the tth image frame.
Note that in this paper, a behaviour pattern is defined as a
sample of a class of behaviour visually captured in a video.
For instance, in a supermarket, the behaviour of customer
checking out at a counter can be captured many times as
behaviour patterns over a short period of time in a surveil-
lance video. Each of such behaviour patterns, although
belonging to the same behaviour class, can exhibit consid-
erable variations visually. This characteristic must be con-
sidered when a behaviour modelling approach is designed.

In this paper, we focus on surveillance videos taken by
fixed cameras. The most commonly used shot change
detection based segmentation approach is thus not appro-
priate because a continuous surveillance video contains
only a single shot. Depending on the nature of the video
sequence to be processed, a number of approaches can be
adopted to address the problem. In a not-too-busy sce-
nario, there are often non-activity gaps between two con-
secutive behaviour patterns which can be utilised for
activity segmentation. In the case where obvious non-activ-
ity gaps are not available, an on-line segmentation algo-
rithm proposed in [27] can be adopted. More specifically,
surveillance video contents are firstly represented holisti-
cally in space and over time based on discrete events
detected automatically in the scene resulting in a high-
dimensional video content trajectory (more details about
the discrete scene events follows). The break points on
the trajectory correspond to video content changes and
can be detected using the on-line algorithm proposed in
[27]. Alternatively, the video can be simply sliced into over-
lapping segments with a fixed time duration [33].

A discrete scene event based approach [10,29] is adopted
for behaviour pattern representation. It has been demon-
strated in [29] that a discrete event based representation
is much more effective for cluttered and busy scenes in
comparison to a continuous trajectory based representa-
tion employed by most existing approaches. Firstly, an
adaptive Gaussian mixture background model [23] is
adopted to detect foreground pixels which are modelled
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using Pixel Change History (PCH) [26]. Secondly, the fore-
ground pixels in a vicinity are grouped into a blob using the
connected component method. Each blob with its average
PCH value greater than a threshold is then defined as a
scene event. A detected scene event is represented as a
seven-dimensional feature vector

f ¼ ½�x; �y;w; h;Rf ;Mpx;Mpy�; ð1Þ

where ð�x; �yÞ is the centroid of the blob, w and h are the
width and height of the bounding box associated with the
blob, respectively, Rf is the filling ratio of foreground pixels
within the bounding box, and ðMpx;MpyÞ are a pair of first
order moments of the PCH image within the bounding
box. Among these features, ð�x; �yÞ are location features,
ðw; hÞ and Rf are principally shape features but also contain
some indirect motion information, and ðMpx;MpyÞ are
motion features capturing the direction of object motion.2

Thirdly, classification is performed in the 7D scene event
feature space using a Gaussian Mixture Model (GMM).
The number of scene event classes Ke captured in the vid-
eos is determined by automatic model order selection based
on Bayesian Information Criterion (BIC) [21]. The learned
GMM is used to classify each detected event into one of the
Ke event classes. Finally, the behaviour pattern captured in
the nth video segment Vn is represented as a feature vector
Pn, given as

Pn ¼ ½pn1; . . . ; pnt; . . . ; pnT n
�; ð2Þ

where T n is the length of the nth video segment and the tth
element of Pn is a Ke dimensional variable:

pnt ¼ ½p1
nt; . . . ; pk

nt; . . . ; pKe
nt �: ð3Þ

pnt represents the behaviour captured by the tth image
frame of Vn, where pk

nt is the posterior probability that an
event of the kth event class has occurred in the frame given
the learned GMM. If an event of the kth class is detected in
the tth image frame of Vn, we have 0 < pk

nt 6 1; otherwise,
we have pk

nt ¼ 0.
In our approach, a behaviour pattern is represented as a

sequence of semantically meaningful scene events. Instead
of using low level image features such as location, shape,
and motion directly for behaviour representation (e.g.
Eq. (1)), we represent a behaviour pattern using the prob-
abilities of different classes of event occurring in each
frame. Consequently, the behaviour representation is com-
pact and concise. This is critical for a model-based behav-
iour profiling approach because model construction based
upon concise representation is more likely to be computa-
tionally tractable for modelling complex behaviours. It is
worth pointing out that different types of behaviour pat-
terns can be distinguished by either the classes of events
they are composed of, or the temporal orders of the event
2 Similar to the Motion History Image (MHI) introduced by Bobick and
Davis (see [2]), PCH implicitly represents the direction of movement. First
order moments based on PCH value distribution within the bounding box
is thus capable of measuring the direction of movement quantitatively.
occurrences. For instance, behaviour patterns A and B are
deemed as being different if (1) A is composed of events of
classes a, b, and d, whereas B is composed of events of clas-
ses a, c and e; or (2) Both A and B are composed of events
of classes a, c and d; however, in A, event (class) a is mostly
followed by c, while in B, event (class) a is more likely fol-
lowed by d.
4. Incremental and adaptive behaviour modelling

An outline of our incremental behaviour learning algo-
rithm is shown in Fig. 1 and each step of the algorithm is
explained in details as follows.
4.1. Model initialisation

4.1.1. Behaviour affinity matrix

Consider a small bootstrapping dataset D consisting of
N feature vectors:

D ¼ fP1; . . . ;Pn; . . . ;PNg; ð4Þ

where Pn represents the behaviour pattern captured by the
nth video segment Vn (see Eq. ((2)). The problem to be ad-
dressed is to discover the natural grouping of the training
behaviour patterns upon which an initial behaviour model
can be built. We treat this as an unsupervised temporal
string clustering problem. There are two aspects that make
this problem challenging: (1) Different feature vectors, as
multivariate strings, can be of different lengths because
each behaviour pattern has a variable temporal duration.
Conventional clustering algorithms such as K-means and
mixture models require that each data sample is repre-
sented as a fixed length feature vector. These algorithms
thus cannot be applied to our problem. (2) A definition
of a distance/affinity metric among these temporal strings
of variable lengths is nontrivial [17]. Measuring affinity be-
tween feature vectors of variable length often involves dy-
namic time warping [12].

Dynamic Bayesian Networks (DBNs)3 provide a solu-
tion for overcoming the above-mentioned difficulties. More
specifically, each behaviour pattern in the training set D is
modelled using a DBN. To measure the affinity between
two behaviour patterns represented as Pi and Pj, two
DBNs denoted as Bi and Bj are trained on Pi and Pj,
respectively, using the Expectation–Maximisation (EM)
algorithm [7,9]. The affinity between Pi and Pj is then com-
puted as:

Sij ¼
1

2

1

T j
log P ðPj j BiÞ þ

1

T i
log P ðPi j BjÞ

� �
; ð5Þ
3 Dynamic Bayesian Networks (DBNs), or Dynamic Probabilistic
Networks, are graphical models suitable for temporal or time-series data
[9]. Examples of DBNs include Kalman Filters, Hidden Markov Models
(HMMs), and variations of HMMs such as Coupled Hidden Markov
Models (CHMMs).
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Fig. 2. Modelling a behaviour pattern Pn ¼ fpn1; . . . ; pnt; . . . ; pnT n
g where pnt ¼ fp1
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nt; . . . ; pKe
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Fig. 1. Outline of our incremental and adaptive behaviour modelling algorithm.
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where P ðPj j BiÞ is the likelihood of observing Pj given Bi,
and T i and T j are the lengths of Pi and Pj, respectively.4

DBNs of different topologies can be employed. A straight-
forward choice would be a Hidden Markov Model (HMM)
(Fig. 2a). In this HMM, the observation variable at each time
instance corresponds to pnt (Eq. (3)), which represents the
behaviour captured in the tth frame of the nth behaviour pat-
tern. The observation variable is of dimension Ke, i.e. the
number of event classes. The conditional probability distri-
butions (CPD) of pnt is assumed to be Gaussian for each of
the Ns states of its parent node. However, a drawback of
using a HMM is that too many parameters are needed to
describe the model when the observation variables are of
high-dimension. This makes a HMM vulnerable to overfit-
ting therefore generalising poorly to unseen data. It is espe-
cially true in our case because a HMM needs to be learned
for every single behaviour pattern in the training dataset
which could be short in duration. To solve this problem,
we employ a Multi-Observation Hidden Markov Model
(MOHMM) [10] shown in Fig. 2b. Compared to a HMM,
the observational space is factorised by assuming that each
observed feature (pk

nt) is independent of each other. Conse-
4 Note that there are other ways to compute the affinity between two
sequences modelled using DBNs [19,20]. However, we found through our
experiments that different affinity measures make little difference for our
behaviour modelling task.
quently, the number of parameters for describing a
MOHMM is much lower than that for a HMM (2KeN s þ
N 2

s � 1 for a MOHMM and ðK2
e þ 3KeÞNs=2þ N 2

s � 1 for a
HMM). In this paper, N s, the number of hidden states for
each hidden variables in the MOHMM, is set to Ke, i.e. the
number of event classes. This is reasonable because the value
of Ns should reflect the complexity of a behaviour pattern, so
should the value of Ke.

Now, we have constructed an N � N affinity matrix
S ¼ ½Sij� where Sij is computed using Eq. (5) for the boot-
strapping dataset D. As we explained earlier, the aim of con-
structing a behaviour affinity matrix is to cluster the N

behaviour patterns in D. Let us denote the number of clusters
discovered using the affinity matrix as Kc. Once the clustering
is done, each cluster would correspond to one bootstrapping
behaviour class and each of the N behaviour patterns in the
bootstrapping dataset D can be labelled as one of the Kc

behaviour classes. Data clustering using an affinity matrix
can be performed using a spectral clustering algorithm. In
this paper, the multiclass spectral clustering algorithm pro-
posed by Yu and Shi [31] is employed.

4.1.2. Bootstrapping behaviour models

Now each of N behaviour patterns in the bootstrapping
dataset D are labelled as one of the Kc behaviour classes.
Bootstrapping behaviour models are then constructed as
mixtures of MOHMMs based on the clustering result.
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First, we model the kth (1 6 k 6 Kc) behaviour class using
a MOHMM denoted as Bk. The parameters of Bk, denoted
as hBk, are estimated using all the patterns that belong to
the kth class in D. Second, each of the Kc behaviour classes
is labelled as being either normal and abnormal according
to the number of patterns within the class. More specifi-
cally, the Kc classes are ordered in descending order
according to the number of class members and the first
Kn classes are labelled as being normal. Kn is computed as:

Kn ¼ arg min
Kn

XKn

k¼1

N k

N
> Q

 !
; ð6Þ

where Nk is the number of members in the kth class and Q

corresponds to the minimum portion of the behaviour pat-
terns in the bootstrapping training set to be deemed as
being normal. We thus have 0 < Q 6 1. Third, a bootstrap-
ping normal behaviour model Mn is constructed as a mix-
ture of Kn MOHMMs for the Kn normal behaviour classes.
An approximate abnormal model Ma is also constructed
using the Ka ¼ Kc � Kn abnormal behaviour classes in the
bootstrapping dataset. Let P be a sample of Mn. The prob-
ability density function (pdf) of Mn can be written as:

P ðP jMnÞ ¼
XKn

k¼1

wnkP ðP j BnkÞ; ð7Þ

where wnk is the mixing probability/weight of the kth mix-
ture component with

PKn
k¼1wnk ¼ 1 and Bnk is the kth

MOHMM corresponding to the kth normal behaviour
class. Similarly for Ma, we have:

P ðP jMaÞ ¼
XKa

k¼1

wakP ðP j BakÞ: ð8Þ

The parameters of the normal behaviour model Mn are

hMn ¼ Kn;wn1; . . . ;wni; . . . ;wnKn ; hBn1
; . . . ; hBni ; . . . ; hBnKn

� �
:

Similarly, the parameters of the approximate abnormal
behaviour model Ma are

hMa ¼ Ka;wa1; . . . ;waj; . . . ;waKa ; hBa1
; . . . ; hBaj ; . . . ; hBaKa

� �
:

In model initialisation, given a very small bootstrapping
training set with poor statistics, we perform abnormal
behaviour detection for the initial training set simply
according to the rarity of behaviours as there is no other
meaningful discriminative information available in the
small bootstrapping training set. For further abnormality
detection as more data becomes available online, we for-
mulate a more elaborate approach. The approach takes
into consideration the generalisation capability of mixture
models learned using an incremental Expectation–Maximi-
sation (EM) algorithm.

4.2. Online abnormality detection

Beyond the initial bootstrapping step, we address the
problem of abnormality detection using the Likelihood
Ratio Test (LRT) method [16] to achieve robustness in dis-
tinguishing abnormal behaviours from normal ones. Spe-
cifically, given a newly observed behaviour pattern
represented as Pnew and the current models Mn and Ma,
abnormality detection is performed based on a hypothesis
test between

H 0 : Pnew is from the hypothesised model Mn; i:e: normal

H i : Pnew is from the a model other than Mn; i:e: abnormal

H 0 is called the null hypothesis while H i is called the alter-
native hypothesis. Pnew is accepted as a normal behaviour
pattern if H o hits; otherwise Pnew is detected as being
abnormal. The most popular solution to this hypothesis
test is LRT given by

KðPnewÞ ¼
P ðPnew; H 0Þ
PðPnew; H iÞ

P ThK accept H 0

< ThK accept Hi

�
; ð9Þ

where P ðPnew; H 0Þ and P ðPnew; H iÞ are the likelihood func-
tions of the hypotheses H 0 and Hi, respectively, and ThK is
called a rejection threshold.

The key issue in LRT is how to accurately construct the
alternative model which in our case is the abnormal behav-
iour model. As we pointed out earlier in this paper, an
abnormal behaviour model is much more difficult if even
possible to construct accurately compared with a normal
one because abnormal behaviours are rare and unpredict-
able (e.g. there could be infinite number of ways of being
abnormal). To overcome this problem, Ma, constructed
as a mixture of MOHMMs using the abnormal behaviour
patterns observed so far, is employed to approximate the
abnormal behaviour model. The LRT is then rewritten as:

KðPnewÞ ¼
P ðPnew jMnÞ
P ðPnew jMaÞ

P ThK accept H 0

< ThK accept Hi

�
; ð10Þ

where P ðPnew jMnÞ and P ðPnew jMaÞ are computed using
Eqs. (7) and (8), respectively.

4.3. Online incremental parameter updating and model

structure adaptation

Now given that a newly observed behaviour pattern Pnew

has been classified as either normal or abnormal, the
parameters of Mn and Ma are updated as follows:

4.3.1. Updating parameters of the normal behaviour model

Mn

If Pnew was detected as being normal, Pnew is matched
with the mixture component of Mn that has the maximal
posterior probability, i.e. the probability that Pnew could
be generated by the component. The best matched compo-
nent is denoted as Bni and the posterior probability for Bni

is computed as:

PðBni j PnewÞ ¼
wniPðPnew j BniÞ

P ðPnew jMnÞ
; ð11Þ

where P ðPnew jMnÞ is given by Eq. (7).



Fig. 3. An online incremental EM algorithm for updating the parameters of the mixture component of Mn matched by the newly observed normal pattern
Pnew. Details on the forward/backward procedure and computing sufficient statistics can be found in [13,1]. Convergence of the algorithm is reached when
P ðPnew j h½pþ1�

Bni
Þ � PðPnew j h½p�Bni

Þ < Thp where Thp is a threshold.
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The parameters of Bni (denoted as hBni) are updated
using an incremental EM algorithm. The general principle
of incremental EM was originally introduced in [15]. Here,
we formulate an algorithm for online incremental learning
of Bni given the detected normal behaviour pattern Pnew, as
outlined in Fig. 3. It has been proved that stable conver-
gence is guaranteed for such an incremental EM algorithm
(see [15]). Both a conventional (batch) EM algorithm [7]
and an incremental one have the identical M step. The dif-
ference lies in the way in which sufficient statistics S½pþ1� is
computed in the E step. Specifically, the batch EM algo-
rithm computes sufficient statistics on the whole dataset
at each iteration. In contrast, the incremental algorithm
updates S½pþ1� incrementally using a subset of the dataset,
in our case a single data item. As pointed out in [15], the
main rationale behind an incremental EM algorithm in
an off-line learning setup is that faster convergence can
be achieved because the information from the new data
contributes to the parameter estimation more quickly than
the batch EM algorithm. In other words, the parameter
estimation efficiency is the main concern. In our on-line
learning case, the main motivation for adopting the incre-
mental EM algorithm is that data only become available
sequentially, i.e. the whole dataset never exist. Note that
the E step of the algorithm only looks at a single data item
Pnew. Furthermore, both the E step and the M step take
constant time, regardless of the number of behaviour pat-
terns observed so far. These characteristics make the algo-
rithm computational and memory efficient, and therefore
suitable for real-time applications.

After hBni are updated, the weight of the matched mix-
ture component is updated as:
w½new�
ni ¼ w½old�

ni þ a 1� w½old�
ni

� �
; ð12Þ

where w½old�
ni is the weight before seeing Pnew and a with

0 6 a 6 1 is a learning rate. The weights for the compo-
nents of hMn are then renormalised so that they satisfyPKn

k¼1wnk ¼ 1. Consequently, the weight of the matched
component has been increased whilst the weights for the
other components of Mn have been decreased. The learning
rate a will determine the speed at which the weights are
updated.

4.3.2. Updating parameters of the approximate abnormal
behaviour model Ma

If Pnew was detected as being abnormal, we need to
establish whether Pnew belongs to one of the existing abnor-
mal behaviour classes. Specifically, the best matched com-
ponent of Ma is determined using posterior probability as
above and denoted as Baj. The similarity/distance between
Pnew and Baj is then measured as the normalised log-likeli-
hood of observing Pnew given Baj:

dðPnew;BajÞ ¼
1

T Pnew

log P ðPnew j hBajÞ;

where T Pnew is the length of Pnew (total number of frames).
If

dðPnew;BajÞ > Thd : ð13Þ

Pnew is determined as belonging to the best matched mix-
ture component Baj and both hBaj and waj are updated in
the same way as hBni and wni (see Fig. 3 and Eq. (12)).
Otherwise (i.e. Pnew was detected as being abnormal and
Eq. (13) was not satisfied), a new component correspond-
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ing to a new abnormal behaviour class is added to Ma

whose parameters are estimated using Pnew and its weight
is set to the smallest weight of the existing components of
Ma. Weight renormalisation is then performed to ensure
that

PKa
k¼1wak ¼ 1.

4.3.3. Model structure adaptation via mixture component
trimming

Model adaptation is achieved through mixture compo-
nent trimming. Unlike model parameters updating which
is carried out whenever new data are available, model
adaptation is performed only when changes in visual con-
text are detected. More specifically, when a normal behav-
iour class, represented as one of the mixture component of
Mn, has not been supported by any new observations, its
weight would be decreased gradually following the model
parameter updating procedure above. When its weight is
smaller than a threshold Thw1, it can be assumed that this
behaviour class has become abnormal and the correspond-
ing mixture component would be regrouped into the
approximate abnormal behaviour model Ma. In the mean-
time, when an abnormal behaviour class is matched repeat-
edly by new observations with Eq. (13) being satisfied, the
weight of the corresponding mixture component will
increase gradually. When its weight becomes greater than
a threshold Thw2, it becomes normal and the corresponding
mixture component would be regrouped into the normal
behaviour mixture Mn. The abnormal classes whose
weights are smaller than Thw1 would then be discarded in
order to impose a limit on the total number of abnormal
behaviour classes that a model is designed to cope. This
is because that in a realistic situation, there are always lim-
ited computational resources available while the total num-
ber of abnormal behaviour classes can potentially be
unlimited. After component trimming, the mixture weights
of Mn and Ma are renormalised. Component trimming
makes our behaviour model adaptive to changes in visual
context. Consequently the numbers of mixture compo-
nents/behaviour classes for both the normal and abnormal
models can vary over time.

4.3.4. Discussions

A number of issues deserve further discussions:
1. Two mixtures of MOHMMs, Mn and Ma are initia-

lised and updated for modelling normal and abnormal
behaviours, respectively. Having two models for normal
and abnormal behaviours rather than modelling normal
behaviours alone is necessary and critical in our approach.
This is because (a) it makes it possible for robust abnormal-
ity detection based on Likelihood Ratio Test (LRT), which
is advantageous over the conventional Maximum Likeli-
hood (ML) method as demonstrated by our experiments
to be presented in Section 5; and (b) it enables our behav-
iour model to be adaptive to changes in visual context.
Note that it will be impossible to build an exact model
for abnormal behaviours in most cases because they are
rare and unpredictable. However, it is possible to build
an approximate one using a mixture model given the
abnormal patterns detected so far (i.e. Ma). In particular,
as a mixture of MOHMMs, Ma is a generative model
which is capable of generalising from a limited number of
samples. Based on the observed abnormal behaviour pat-
terns, our approximate abnormal model aims to capture
the randomness and unexpectedness of those unseen
abnormal behaviour patterns therefore providing a good
alternative model for Mn in LRT.

2. As emphasised above, Ma differs from Mn in that Ma

is an approximate model. As a result, the parameters and
structures of Ma and Mn are updated differently. In partic-
ular, when Pnew is detected as being normal, it must be clas-
sified to one of the existing normal behaviour classes and
the corresponding mixture component of Mn is to be
updated. Nevertheless, when Pnew is detected as abnormal,
we update the best matched mixture component only when
we have sufficient confidence (i.e. Eq. (13) is satisfied).
Otherwise, a new component will be added to reflect the
fact that an unseen abnormal behaviour classes is observed.
Again, this difference is caused by the rarity and unpredict-
ability of abnormal behaviours.

3. Although It has been shown by Neal and Hinton [15]
that stable convergence is guaranteed for each mixture
component of Mn and Ma, no theoretical proof can be
given for the convergence of our behaviour model as a
whole. In particular, our behaviour model is based on mix-
ture models with changing component numbers. An incre-
mental EM algorithm thus cannot be implemented directly
to the two mixture models (i.e. estimating the parameters
of each mixture component and the mixture weights simul-
taneously). In our solution, the mixture weight updating
(Eq. (12)) and component trimming parts of the algorithm
are based on online approximations and therefore are
slightly ad-hoc. Nevertheless, experimental results to be
presented in Section 5 demonstrate empirically that our
model converges to a satisfactory solution.

4. Although a discrete event based behaviour represen-
tation is adopted in our approach, other behaviour repre-
sentations can also be used in our approach provided
that a behaviour pattern can be represented as a feature
vector.

5. Experiments

5.1. Dataset and behaviour representation

A CCTV camera was mounted on the ceiling of an office
entry corridor, monitoring people entering and leaving an
office area (see Fig. 4). The office area is secured by an
entry-door which can only be opened by scanning an entry
card on the wall next to the door (see the middle frame of
Fig. 4b). Two side-doors were located at the right hand side
of the corridor. People from both inside and outside the
office area have access to these two side-doors. Typical
behaviours occurring in the scene would be people entering
or leaving either the office area or the side-doors, and walk-



Fig. 4. Examples of behaviour patterns captured in a corridor entrance/exit scene. Panels (a)–(f) show image frames of commonly occurred behaviour
patterns belonging to the six behaviour classes listed in Table 1. Panels (g) and (h) show examples of rare behaviour patterns captured in the scene. (g) One
person entered the office following another person without using an entry card. (h) Two people left the corridor after a failed attempt to enter the door.
The four classes of events detected automatically, ‘entering/leaving the near end of the corridor’, ‘entering/leaving the entry-door’, ‘entering/leaving the
side-doors’, and ‘in corridor with the entry-door closed’, are highlighted in the image frames using bounding boxes in blue, cyan, green and red,
respectively. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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ing towards the camera. Most captured behaviour patterns
involved 1–2 people. Each behaviour pattern would nor-
mally last a few seconds. For this experiment, a dataset
was collected over 5 different days consisting of 6 h of video
totalling 432,000 frames captured at 20 Hz with
320 � 240 pixels per frame. This dataset was then automat-
ically segmented into sections separated by any motionless
intervals lasting for more than 30 frames. This resulted in
142 video segments of actual behaviour pattern instances.
Each segment has on average 121 frames with the shortest
42 and longest 394. Examples of behaviour patterns cap-
tured in the 6 h video are shown in Fig. 4.

Discrete events were detected and classified using auto-
matic model order selection in clustering, resulting in four
classes of events corresponding to the common constituents
of all behaviours in this scene: ‘entering/leaving the near
end of the corridor’, ‘entering/leaving the entry-door’,
‘entering/leaving the side-doors’, and ‘in corridor with
the entry-door closed’. Examples of detected events are
shown in Fig. 4 using colour-coded bounding boxes. It is
noted that due to the narrow view nature of the scene, dif-
ferences between the four common events are rather subtle
and can be mis-identified based on local information (space
and time) alone, resulting in errors in event detection. The
fact that these events are also common constituents to dif-
ferent behaviour patterns means that local events treated in
isolation hold little discriminative information for behav-
iour profiling. All experiments described below were con-
ducted on an 3 GHz platform.

5.2. Model initialisation

A bootstrapping dataset consisting of N video segments
was randomly selected from the overall 142 segments for
model initialisation. N was set to either 20 or 60 in our
experiments. The remaining segments (142� N in total)
were used for incremental and adaptive model learning
and abnormality detection later. This model initialisation
exercise was repeated 20 times each for N ¼ 20 and
N ¼ 60 and in each trial a different model was initialised
using a different random dataset. This is in order to test
the effect of the size of initial training set and avoid any
bias in the abnormality detection results. The number of
initial behaviour classes to be established through model
bootstrapping Kc was set to 10 in our experiments. Q (see
Eq. (6)) was set to 0.7 and on average the numbers of nor-
mal behaviour classes determined using Eq. (6) were 5
when N ¼ 20 and 6 when N ¼ 60 over 20 trials. Fig. 5
shows examples of the model initialisation process. It is
noted that given a small random initial training set
ðN ¼ 20Þ, mixture components in Mn often corresponded
to only part of the six commonly occurred behaviour clas-
ses (Table 1). In this case, the rest of the six common
behaviour classes were either labelled as being abnormal
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Fig. 5. Examples of spectral clustering for model initialisation. The spectral clustering results were illustrated using the ordered affinity matrices of the
bootstrapping datasets. The affinity matrices were plotted such that ‘‘white” corresponds to the highest affinity value while ‘‘black” represents the lowest
value. They were ordered according to the clustering results so that data points belonging to the same cluster formed a bright block along the diagonals of
the matrices. The discovered clusters were then re-organised in a descending order in size from top-right to bottom-right along the matrix diagonal lines.
The top Kn clusters corresponded to normal behaviour classes and were used to initialised the normal behaviour model Mn, while the remaining clusters
were used in building the abnormal model Ma. The values of Kn, obtained using Eq. (6), were 5 and 7 for (a) and (b), respectively.

Table 1
Six classes of commonly occurred behaviour patterns in the corridor scene

C1 From the office area to the near end of the corridor
C2 From the near end of the corridor to the office area
C3 From the office area to the side-doors
C4 From the side-doors to the office area
C5 From the near end of the corridor to the side-doors
C6 From the side-doors to the near end of the corridor
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behaviour classes and modelled by Ma or did not form any
cluster due to their rare occurrence in the small bootstrap-
ping dataset. It is also observed that given a larger initial
training set N ¼ 60, all six commonly occurred behaviour
classes can find their corresponding components in Mn in
most trials (15 out of 20). It can be seen in Fig. 5 that there
were fair amount of similarities among different clusters
even between the normal and abnormal ones, as indicated
by those bright cells off the affinity matrix diagonal blocks
in Fig. 5a and b. This was because (1) different behaviour
classes shared the same events as constituents and often dif-
fered only in temporal orders of those events, and (2) there
were considerable amount of noise/errors in event
detection.

5.3. Online abnormality detection and incremental learning

After model initialisation, online abnormality detection
and incremental model updating were performed. Parame-
ters for incremental and adaptive model updating were set
as: learning rate a ¼ 0:1 (Eq. (12)), convergence threshold
for parameter updating of matched mixture components
using incremental EM Thp ¼ 0:0001 (see caption of
Fig. 3), threshold for matching abnormal behaviour classes
Thd ¼ �0:5 (Eq. (13)), and thresholds for mixture compo-
nent trimming: Thw1 ¼ 0:05 and Thw2 ¼ 0:25. It was
observed in our experiments that the our algorithm were
not sensitive to these parameters.

As new behaviour patterns were being presented to the
model for abnormality detection and incremental learning,
the numbers of mixture components in Mn and Ma,
denoted as Kn and Ka, respectively, increased before stabil-
ising around constant numbers. On average, Kn and Ka

converged to 8 and 12, respectively, in our experiments.
The convergence took place after an average of 35 new
behaviour patterns were observed when N ¼ 20. The num-
ber of new observations needed for model convergence was
down to 23 when N ¼ 60.

To evaluate the performance of the learned models on
abnormality detection, ground truth was extracted by
labelling the testing/incremental learning datasets such that
each behaviour pattern was labelled as being normal if
there were similar patterns that have been seen before
and abnormal otherwise. The performance of the models
was measured using the detection rate and false alarm rate
in abnormality detection which are functions of ThK (see
Eq. (9)). Varying ThK gave us a ROC curve in each trial.
The ROC curves averaged over 20 trials for N ¼ 20 and
N ¼ 60 are shown in Fig. 6a and b, respectively. The stan-
dard deviation of the ROC curves across different trials are
also depicted in Fig. 6a and b to demonstrate the effects of
the bootstrapping dataset selection on the model perfor-
mance. Comparing Fig. 6a and 6b, it is clear that better
performance was obtained using larger initial training sets.
This is because the models were initialised poorly using
small bootstrapping datasets. Poor initialisation is also
the reason why the models initialised using smaller datasets
needed more data to converge. Nevertheless, it is observed
that even with small initial training sets, our models were
able to discover all the normal behaviour classes and reach
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Fig. 6. Comparing the performance of abnormality detection for models learned using different experimental settings. The performance was measured
using detection rate and false alarm rate plotted in ROC curves. Panels (a)–(d) show means ±1 SD of the ROC curves obtained over 20 trials under
different experimental settings. The mean ROC curves were also shown in a single plot in (e) to better illustrate the differences.
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convergence when sufficient observations became available
after model initialisation. In particular, when behaviour
patterns belonging to one of the 6 typical behaviour classes
in Table 1 were observed repeatedly, a new mixture compo-
nent would be added to Mn to represent the class if it was
not already there after model initialisation. The experimen-
tal results thus demonstrate that our incremental learning
model can cope with changes of visual context (in this case,
abnormal behaviour patterns becoming normal).

5.4. Comparative evaluation against batch-mode offline
learning

We compared the performance of our incremental and
adaptive behaviour modelling algorithm with the batch-
mode algorithm proposed in [28]. This batch-mode algo-
rithm was chosen for comparison in our experiments
because it uses an identical feature extraction and behav-
iour representation method. The difference in the results
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Fig. 7. Comparing our online incremental learning algorithm with a batch-mod
(a) and (b) show means ±1 SD of the ROC curves obtained over 20 trials
respectively. The mean ROC curves are plotted in a single figure in (c).
would thus be caused solely by the different ways of model
learning adopted by the two algorithms. Specifically, in the
batch-mode algorithm, only a normal behaviour model is
built using a training dataset. A newly observed behaviour
pattern is detected as being abnormal if the probability of
observing the pattern given the model is below a threshold.
As a batch-mode algorithm, no model updating is per-
formed during testing. Therefore, there are two key differ-
ences between our algorithm and the bath-mode one: (1) on
model construction: the former is incremental and adaptive
while the latter is batch-mode, and (2) on abnormality
detection: the former adopts LRT while the latter uses sim-
ple thresholding.

Two experiments were carried out. In the first experi-
ment, the same bootstrapping datasets used in our online
incremental algorithms above were used to construct the
batch-mode models. The averaged ROC curves obtained
using models trained in batch mode are shown in Fig. 6c
and d for training datasets of izes 20 and 60, respectively.
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Fig. 8. The performance of our incremental algorithm with and without
using LRT for abnormality detection.

Table 2
Comparing the computational cost of incremental learning with that of a
batch-mode learning method

Computational cost (second per frame)

Incremental 0.025
Batch-mode 0.137

These were for Matlab implementations.
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Comparing Fig. 6a and b with Fig. 6c and d, it is evident
that the incrementally learned models outperform those
learned in batch mode. The performance of the batch-
mode behaviour models with N ¼ 20 was especially poor
(see Fig. 6c). This was mainly due to the fact that these
models were learned poorly using the small training sets
and, without model updating, cannot cope with the
changes of visual context. It is also noted that the ROC
curves obtained using our incremental models exhibited
smaller variations across different trials indicated by the
smaller standard deviations shown in Fig. 6a and b. This
again can be explained by the model adaptation feature
of the incremental algorithm which makes the model less
sensitive to the choice of initial training data.

As mentioned earlier, the two algorithms differs in both
the way they construct the models and the way abnormal-
ity is detected. Both differences contributed to the superior
results obtained using our incremental and adaptive algo-
rithm. It is easier and more intuitive to understand the
advantage brought by employing an online incremental
model construction procedure in the above experiment.
In particular, an incremental and adaptive model keeps
updating itself whenever a new observation is captured.
On the contrary, a batch-mode model remains fixed once
the training has been done. The former one thus makes
use of more data available for model construction than
the latter one. In the second experiment, we examine the
performance of the two algorithms when they are presented
with the same amount of data for model building.

In this experiment, an online incremental model was ini-
tialised using 20 randomly selected behaviour patterns.
After being incrementally learned using another 80 pat-
terns, it was tested for the remaining 42 patterns without
model updating. For the batch mode algorithm, the same
dataset consisting of a total of 100 samples was used for
training. Again, the experiment was repeated for 20 trials
using different datasets for training. The comparative
results are presented in Fig. 7. It can be seen from Fig. 7
that our online incremental algorithm outperforms the
batch-mode algorithm even using the same amount of data
for model construction. Comparing Fig. 7a with Fig:corr-
occurves2b, it can also be seen that the results of our online
incremental algorithm exhibited less variations across dif-
ferent trials. This again shows that our algorithm is less
sensitive to the choice of training datasets than the batch-
mode algorithm. The results obtained in the second exper-
iment demonstrate that a behaviour model can be built
more efficiently and effectively even for off-line abnormality
detection thanks to the incremental and adaptive learning
feature of our algorithm.

5.5. Comparative evaluation of the effectiveness of LRT

The following experiment was carried out to highlight
the importance of using LRT in our algorithm. Online
behaviour models were constructed using the identical
datasets and following the same procedure as the second
experiment described above except that different ways of
abnormality detection were adopted. Specifically, instead
of using LRT, abnormality detection was performed by
thresholding the probability of observing a pattern given
the normal model Mn. The comparative results are pre-
sented in Fig. 8. The results show that better abnormality
detection performance can be achieved through the intro-
duction of LRT. This validates our argument that the use
of LRT makes our algorithm more robust against errors
in behaviour representation.

5.6. Computational cost

After model initialisation, the computational cost for
our online incremental algorithm was significantly lower
compared to the offline batch-mode algorithm (see Table
2). This is because only one behaviour pattern is used to
update a single mixture component of Mn or Ma at each
time. More importantly, since our algorithm is also online,
it can run in real-time.

6. Discussion and conclusion

The results of the two comparative experiments suggest
than both the incremental and adaptive learning aspect of
the proposed approach and the use of LRT contribute to
the better performance of our model on abnormality detec-
tion compared to a conventional batch-mode method. Our
experiments also demonstrate that the proposed algorithm
is capable of adapting to changes of visual context and can
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run in real-time. This makes our algorithm suitable for a
real world surveillance application processing 24/7 contin-
uous flow of video data.

In our approach, the abnormal behaviour model is
approximated by Ma using the abnormal behaviour pat-
terns observed so far. Such an approximate model is neces-
sary for both Likelihood Ratio Test (LRT) and model
adaptation based on mixture component trimming. As
pointed out earlier, the key for the success of using LRT
is to provide an accurate approximation for the alternative
model, in this case the abnormal behaviour model. Our
experimental results suggest that Ma, constructed as a mix-
ture of MOHMMs, is able to provide such an accurate
approximation. In particular, thanks to the generative nat-
ure of a mixture of Dynamic Bayesian Networks (DBNs),
it captures the randomness and unexpectedness which are
common features of any abnormal behaviour pattern. Ma

thus better explains an abnormal behaviour pattern that
has not been observed before compared to Mn. This is
the basis for LRT to work in our approach.

In spite of the improvement of performance brought by
the incremental and adaptive behaviour learning feature of
our approach, the detection and false alarm rates achieved
by the approach may still struggle to meet the requirements
of a practical surveillance application. The performance
would certainly be improved if a more complete/sophisti-
cated set of features are employed to detect events and rep-
resent behaviour patterns. Nevertheless it is noted that for
the particular office entry scene analysed in the paper, the
modest performance was mainly caused by the poor sur-
veillance camera setup. In particular, the camera was
mounted low and close to the scene which gives a very nar-
row view. Such a narrow view is ideal for face recognition,
but not for behaviour analysis. Moreover, the movements
of people are largely towards or away from the camera.
It is widely acknowledged that a side view would be more
ideal for activity and behaviour monitoring because it will
result in far less occlusions. For instance, in the current
camera setup, it is impossible to detect a ‘card-swiping’
event due to occlusions. Such an event class could provide
very useful information on the normality/abnormality of a
behaviour pattern in this scene.

In conclusion, we proposed a fully unsupervised
approach for visual behaviour modelling and abnormality
detection. Our approach differs from previous techniques
in that our model is learned incrementally and adaptively
given a small bootstrapping training set. In addition, our
model adapts to changes in visual context over time there-
fore catering for the need to reclassify what may initially be
considered as being abnormal to be normal over time, and
vice versa. Furthermore, our model adopts a LRT based
abnormality detection method which makes our approach
more robust to errors in behaviour representation. Our
experimental results demonstrate that the proposed
approach is superior to the conventional batch-mode ones
in terms of both performance on abnormality detection
and computational efficiency.
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