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Abstract
We aim to tackle the problem of unsupervised visual learn-
ing. A novel relevance learning algorithm is proposed for
data clustering using eigenvectors of a data affinity matrix.
We show that it is critical to select the relevant eigenvectors
for both estimating the optimal number of clusters and per-
forming data clustering especially given noisy and sparse
data. The effectiveness of our algorithm are demonstrated
on solving two challenging visual data clustering problems:
image segmentation and video behaviour profiling.

1. Introduction
Spectral clustering has been widely used for unsupervised
visual learning [10, 12, 9, 7, 8]. Although there have been
extensive studies on spectral clustering, two critical issues
remain largely unsolved: (1) How to automatically deter-
mine the number of clusters? and (2) How to perform ef-
fective clustering given noisy and sparse data. Regarding
the first issue, most previous work assumed that the num-
ber of clusters is known or has been manually set. To our
knowledge, only two approaches have been proposed in
the literature to automatically determine the cluster num-
ber. Smyth [9] proposed to use a Monte-Carlo cross vali-
dation approach to determine the number of clusters for se-
quences modelled using Hidden Markov Models (HMMs).
This approach is computationally expensive and thus not
suitable for large data sets common to applications such
as image segmentation. Porikli and Haga [8] employed
a validity score computed using the largest eigenvectors
(i.e. eigenvectors corresponding to the largest eigenvalues)
of a data affinity matrix to determine the number of clusters
for video-based activity classification. However, their ap-
proach does not take into account the inevitable presence of
noise in a realistic data set and thus is error prone especially
when the sample size is small. There is no published work
that has tackled the second issue explicitly.

We propose a novel spectral clustering algorithm based
on learning the relevance of eigenvectors of a data affinity
matrix for data clustering. Instead of using the eigenvectors
indiscriminately, the relevance of each eigenvector is mea-
sured according to how well it separates one group of data

samples from others. To minimise the influence of noise on
the distributions of eigenvectors and reduce the dimension-
ality of the affinity matrix eigenspace, the irrelevant eigen-
vectors are removed and the relevant ones are weighted us-
ing the learned relevance measure for data clustering. Un-
like previous unsupervised feature relevance learning algo-
rithms such as [4, 2], our algorithm is specially tailored
for fast and robust selection of the relevant eigenvectors of
an affinity matrix based on the a priori knowledge on the
data distribution in the eigenspace. We demonstrate the ef-
fectiveness of our algorithm through experiments on image
segmentation and video behaviour profiling.

2. Learning Eigenvector Relevance
Given a set of feature vectors D = {f1, . . . , fn, . . . , fN}, we
aim to estimate the optimal number of clusters Ko for best
describing the underlying distribution of the data set. Note
that different feature vectors can be of different dimension-
ality. An N×N affinity matrix A = {Aij} can be formed
whose element Aij measures the distance/dissimilarity be-
tween the ith and jth feature vectors. The eigenvectors of
A can be employed directly for clustering. However, it has
been shown in [10] that it is more desirable to perform clus-
tering based on the eigenvectors of the normalised affinity
matrix Ā, defined as Ā = L− 1

2 AL− 1
2 where L is an N×N

diagonal matrix with Lii =
∑

j Aij . It has also been shown
in [12, 10] that the largest K eigenvectors of Ā are suffi-
cient to partition the data set into K clusters.

We assume that the number of clusters K is between
1 and Km, a number considered to be sufficiently larger
than Ko. The training data set is then represented us-
ing the Km largest eigenvectors of Ā, denoted as De =
{x1, . . . ,xn, . . . ,xN}, with the nth feature vector fn
being represented as a Km dimensional vector xn =
[e1n, . . . , ekn . . . , eKmn], where ekn is the nth element of
the kth largest eigenvector ek.

Because only the first Ko largest eigenvectors are
needed for grouping Ko clusters, there are certainly redun-
dant/irrelevant eigenvectors among the Km largest eigen-
vectors. It is important to identify and remove those ir-
relevant but large eigenvectors because that (1) irrelevant
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features degrade the accuracy of learning, and (2) the di-
mensionality of the features space (Km) can be high com-
pared to the sample size (N ) resulting in learning subject to
the curse of dimensionality. To overcome these problems,
we derive here a novel eigenvector relevance learning al-
gorithm based on the following observations of the affinity
matrix eigenspace: (1) A small eigenvector is less likely to
be relevant in data clustering than a large one, and (2) Each
of the relevant eigenvectors of the normalised affinity ma-
trix is able to separate one cluster from others while those
irrelevant ones are not [10]. Specifically, we proposed to
measure the relevance of an eigenvector according to how
well it can separate a data set into different clusters.

We denote the likelihood of the kth largest eigenvector
ek being relevant as Rek

. Apparently, we have 0 ≤ Rek
≤

1. We assume that the elements of ek, ekn follow two differ-
ent distributions depending on whether ek is relevant. The
probability density function (pdf) of ekn is thus formulated
as a mixture model of two components:
p(ekn|θekn

) = (1 − Rek
)p(ekn|θ1

ekn
) + Rek

p(ekn|θ2
ekn

)

where θekn
are the parameters describing the distribu-

tion, p(ekn|θ1
ekn

) is the pdf of ekn when ek is irrele-
vant/redundant and P (ekn|θ2

ekn
) otherwise. Rek

acts as the
weight or mixing probability of the second mixture com-
ponents. The distribution of ekn is assumed to be a single
Gaussian to reflect the fact that ek cannot be used for data
clustering when it is irrelevant:

p(ekn|θ1
ekn

) = N (ekn|μk1, σk1)

where N (.|μ, σ) denotes a Gaussian of mean μ and covari-
ance σ. We assume the second component of P (ek|θek

) as
a mixture of two Gaussians to reflect the fact ek can sepa-
rate one group of data from others when it is relevant:
p(ekn|θ2

ekn
) = wkN (ekn|μk2, σk2)+(1−wk)N (ekn|μk3, σk3)

where wk is the weight of the first Gaussian in p(ekn|θ2
ekn

).
There are 8 parameters required for describing the distribu-
tion of ekn: θek

= {Rek
, μk1, μk2, μk3, σk1, σk2, σk3, wk}.

The maximum likelihood (ML) estimate of θek
can be ob-

tained using the following algorithm. First, the parame-
ters of the first mixture component θ1

ekn
are estimated as

μk1 = 1
N

∑N
n=1 ekn and σk1 = 1

N

∑N
n=1(ekn − μk1)2.

The rest 6 parameters are then estimated iteratively using
Expectation Maximisation (EM) [1].

Since our relevance learning algorithm is essentially a
local (greedy) searching method, the algorithm could be
sensitive to parameter initialisation especially given noisy
and sparse data [1]. To overcome this problem, our a pri-
ori knowledge on the relevance of each eigenvector can be
utilised to set the initial value of Rek

. Specifically, we
set R̃ek

= λ̄k, where R̃ek
is the initial value of Rek

and
λ̄k ∈ [0, 1] is the normalised eigenvalue for ek with λ̄1 = 1
and λ̄Km

= 0.

The estimated Rek
provides a continuous-value mea-

surement of the relevance of ek. Since a ‘hard-decision’
is needed for dimension reduction, we simply eliminate
the kth eigenvector ek among the Km candidate eigen-
vectors if Rek

< 0.5 and weight the relevant eigenvec-
tors using Rek

. This gives us a new data set denoted as
Dr = {y1, . . . ,yn, . . . ,yN}. We model the distribution of
Dr using a Gaussian Mixture Model (GMM) for data clus-
tering. The Bayesian Information Criterion (BIC) is then
employed together with the learning of the GMM using EM
to select the optimal number of components, corresponding
to the optimal number of clusters Ko. Each feature vector in
the training data set is then labelled as one of the Ko clusters
using the learned GMM with Ko Gaussian components.

3. Image Segmentation
Our relevance learning based spectral clustering algorithm
has been applied to image segmentation. A pixel-pixel pair-
wise affinity matrix A is constructed for an image based on
the Intervening Contours method introduced in [6]. First,
for the ith pixel on the image the magnitude of the orienta-
tion energy along the dominant orientation is computed as
OE(i) using oriented filter pairs [6]. The value of OE(i)
ranges between 0 and infinity. A probability-like variable
pcon is then computed as pcon = 1−exp(−OE(i)/σ). The
value of σ is related to the noise level of the image. It is set
as 0.02 in this paper. The value of pcon is close to 1 when
the orientation energy is much greater than the noise level,
indicating the presence of a strong edge. Second, given any
pair of pixels in the image, the pixel affinity is computed as

Aij = 1 − max
x∈Mij

Pcon(x)

where Mij are those local maxima along the line connecting
pixels i and j. The dissimilarity between pixels i and j is
high (Aij is low) if the orientation energy along the line
between the two pixels is strong (i.e. the two pixels are on
the different sides of a strong edge).

Our algorithm has been tested on a variety of natural im-
ages. Fig. 1&2 show typical segmentation results. Km was
set to 20 in our experiments. Our results show that (1) Re-
gions corresponding to objects or object parts are clearly
separated from each other, and (2) The optimal numbers
of image segments estimated by our algorithm reflect the
complexity of the images very well. The results verify our
argument that selecting the relevant eigenvectors is critical
for spectral clustering. In particular, it is discovered by our
experiments that performing spectral clustering without rel-
evance learning caused the number of image segments be-
ing severely underestimated. A typical image segmentation
process is shown in details in Fig. 1. Fig. 1(k) shows the
learned relevance for each of the largest 20 eigenvectors for
an image shown in Fig. 1(a). The most relevant and irrel-
evant eigenvectors, shown in Fig. 1(b)-(e) and Fig. 1(f)-(i)
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(a) Original image

(b) e1 (c) e2 (d) e3 (e) e5

(f) e13 (g) e14 (h) e17 (i) e20

(j) Segmentation result with Ko estimated as 8
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Figure 1: An image shown in (a) is segmented as shown in (j). The learned relevance for the 20 largest eigenvectors is
shown in (k). (b)-(e) and (f)-(i) show the top 4 most relevant and irrelevant eigenvectors among the 20 largest eigenvectors
respectively. (l) and (m) show that Ko was estimated as 2 and 8 without and with relevant eigenvector selection respectively
using BIC. (n) shows that Ko was estimated as 5 using the validity score [8].

respectively, demonstrate that our relevance learning algo-
rithm is able to select those eigenvectors that are most capa-
ble of grouping pixels into meaningful regions. The number
of segments in the image was determined as 8 by BIC us-
ing only the relevant eigenvectors (see Fig. 1(m)). It was
determined as 2 and 5 by BIC and the validity score [8] re-
spectively without relevance learning (see Fig. 1(l)&(n)).

4. Video Based Behaviour Profiling
Our spectral clustering algorithm has also been applied
to video behaviour profiling which can be considered as
a more challenging problem compared to image segmen-
tation due to the often very sparse and noisy data avail-
able. A continuous video V is segmented into N segments
V = {v1, . . . ,vn, . . . ,vN} so that each segment contains
approximately a single behaviour pattern. Video segmenta-
tion can be performed by either utilising non-activity gaps
between two consecutive behaviour patterns for a not-too-
busy scenario, or employing an on-line segmentation algo-
rithm [11] for a busy scenario. Alternatively, the video can
also be simply sliced into overlapping segments with a fixed

time duration [13]. A discrete event based approach is then
adopted for behaviour representation [3]. First, an adap-
tive Gaussian mixture background model is used to detect
foreground pixels. Second, the foreground pixels in a vicin-
ity are grouped into a blob using the connected component
method. Each blob with its average pixel-change-history
value greater than a threshold is then defined as an event.
An event is represented as a 7-dimensional feature vector
capturing location, shape and motion information. Third,
classification is performed in a 7D feature space using a
Gaussian Mixture Model (GMM). The number of event
classes Ke is determined automatically using BIC. The
learned GMM is used to classify each detected event into
one of Ke event classes. Finally, the behaviour pattern cap-
tured by the nth video segment vn, consisting of Tn image
frames, is represented as a behaviour pattern feature vector
Pn=[pn1, . . . ,pnt, . . . ,pnTn

], where the tth element pnt

is a Ke dimensional variable: pnt = [p1
nt, ..., p

k
nt, ..., p

Ke
nt ];

pnt is computed from the tth image frame of vn where pk
nt

is the posterior probability that an event of the kth event
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Figure 2: Examples of image segmentation. Left: original
images; Right: segmentation results. From top to bottom,
the optimal number of segments Ko were automatically de-
termined as 7, 7, 8, 5, 9, and 4 respectively.

class has occurred in the frame given the learned GMM.
Consider a training data set D =

{P1, . . . ,Pn, . . . ,PN} consisting of N behaviour
patterns, where Pn is the nth behaviour pattern feature
vector as defined above. We aim to first discover the
natural grouping of the training behaviour patterns upon

which a behaviour model can be based. This is an unsu-
pervised clustering problem with the number of clusters
unknown. However, there are two characteristics of the
behaviour feature vectors that make the clustering problem
challenging: (1) Each feature vector can be of different
length therefore requires dynamic warping before they can
be compared with. (2) A definition of a distance/affinity
metric among these variable length feature vectors is not
simply Euclidean therefore requires a nontrivial string
similarity measure.

We propose to utilise Dynamic Bayesian Networks
(DBNs) to provide a dynamic representation of each behav-
iour pattern feature vector in order to both address the need
for dynamic warping and provide a string similarity met-
ric. More specifically, each behaviour pattern in the train-
ing set is modelled using a DBN. To measure the affinity
between two behaviour patterns represented as Pi and Pj ,
two DBNs denoted as Bi and Bj are trained on Pi and Pj

respectively using the EM algorithm [1, 5]. The affinity be-
tween Pi and Pj is then computed as:

Aij =
1
2

{
1
Tj

log P (Pj |Bi) +
1
Ti

log P (Pi|Bj)
}

, (1)

where P (Pj |Bi) is the likelihood of observing Pj given
Bi, and Ti and Tj are the lengths of Pi and Pj respec-
tively. DBNs of different topologies can be used. In
this work, we employ a Multi-Observation Hidden Markov
Model (MOHMM) [3]. The number of hidden states for
each hidden variables in the MOHMM is set to Ke, i.e. the
number of event classes 1.

C1 From the office area to the near end of the corridor
C2 From the near end of the corridor to the office area
C3 From the office area to the side-doors
C4 From the side-doors to the office area
C5 From the near end of the corridor to the side-doors
C6 From the side-doors to the near end of the corridor

Table 1: Six classes of commonly occurred behaviour pat-
terns in the entrance scene.

Using our spectral clustering algorithm described in Sec-
tion 2, the N behaviour patterns in the training set are classi-
fied into Ko behaviour pattern classes. To build a model for
the observed/expected behaviour, we first model the kth be-
haviour class using a MOHMM Bk. The parameters of Bk,
θBk

are estimated using all the patterns in the training set
that belong to the kth class. A behaviour model M is then
formulated as a mixture of the Ko MOHMMs. Given an un-
seen behaviour pattern, represented as a behaviour pattern
feature vector P, the likelihood of observing P given M
is P (P|M) =

∑K
k=1

Nk

N P (P|Bk), where Nk is the num-
ber of training behaviour patterns that belong to the kth be-
haviour class. An unseen behaviour pattern is detected as

1Ke reflects the complexity of the behaviour patterns, so is the number
of hidden states. So it is appropriate to set these two to be equal.
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(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

Figure 3: Behaviour patterns in the entrance scene. (a)–(f) show image frames of typical behaviour patterns belonging to the
6 behaviour classes listed in Table 1. Events detected during each behaviour pattern are shown by colour-coded bounding
boxes in each frame.
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Figure 4: An typical example of model training. (a): The normalised behaviour affinity. (b): the learned relevance for the
Km largest eigenvectors. (c) and (d) show the BIC model selection results without and with relevant eigenvector selection
respectively. (e) shows that Ko was estimated as 1 using the validity score. (f)-(j): the distributions of some eigenvectors.

abnormal if P (P|M) < ThA where ThA is a threshold.
When an unseen behaviour pattern is detected as normal,
the normal behaviour model M can also be used for recog-
nising it as one of the K behaviour pattern classes learned
from the training set. More specifically, an unseen behav-
iour pattern is assigned to the k̂th behaviour class when
k̂ = arg maxk {P (P|Bk)}.

Experiments were conducted on an entrance surveillance
scenario. A CCTV camera was mounted on the ceiling of an
office entry corridor, monitoring people entering and leav-
ing the office area (see Fig. 3). The office area is secured
by an entrance-door which can only be opened by scanning
an entry card on the wall next to the door (see middle frame
in Fig. 3(b)). Two side-doors were also located at the right
hand side of the corridor. Typical behaviours occurring in

the scene would be people entering or leaving either the of-
fice area or the side-doors, and walking towards the camera.
Each behaviour pattern would normally last a few seconds.
For this experiment, a data set was collected over 5 different
days consisting of 6 hours of video totalling 432000 frames
captured at 20Hz with 320× 240 pixels per frame. This
data set was then segmented into sections separated by any
motionless intervals lasting for more than 30 frames. This
resulted in 142 video segments of actual behaviour pattern
instances. Each segment has on average 121 frames with
shortest 42 and longest 394.

Model training — Each training set consist of 80 randomly
selected video segments without any behaviour class la-
belling of the video segments. The remaining 62 segments
were used for testing later. This model training exercise was
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Figure 5: The performance of abnormality detection and
behaviour recognition for the corridor scene. (a): The mean
and ±1 standard deviation of the ROC curves for abnormal-
ity detection obtained over 20 trials. (b): Confusion matrix
for behaviour recognition. Each row represents the proba-
bilities of that class being confused with all the other classes
averaged over 20 trials. The main diagonal of the matrix
shows the the fraction of patterns correctly recognised and
is as follows: [.68 .63 .72 .84 .92 .85 .85].

repeated 20 times and in each trial a different model was
trained using a different random training set. Given each
training set, 4 classes of discrete events were detected and
classified using automatic model order selection in cluster-
ing (see Figure 3). Over the 20 trials, on average 6 eigen-
vectors were automatically determined as being relevant for
clustering with smallest 4 and largest 9. Km was set to 16
in the experiments. Fig. 4 shows an typical example of the
model training. The number of clusters for each training
set was determined automatically as 2 and 6 in every trial
without and with relevant eigenvector selection respectively
(see Fig. 4(c)&(d)). In the meantime, the number of clus-
ters was severely under-estimated using the validity score
(see Fig. 4(e)). By observation, each discovered data clus-
ter mainly contained samples corresponding to one of the 6
behaviour classes listed in Table 1.
Abnormality detection — To measure the performance of
the learned models on abnormality detection, each behav-
iour pattern in the testing sets was manually labelled as nor-
mal if there were similar patterns in the corresponding train-
ing sets and abnormal otherwise. On average, there were 7
abnormal behaviour patterns in each testing set. The de-
tection rate and false alarm rate of abnormality detection
are shown in the form of a ROC curve. Fig. 5(a) shows
that high detection rate and low false alarm rate can be
achieved. ThA was set to −0.2 in the rest results unless
otherwise specified, which gave an abnormality detection
rate of 85.4 ± 2.9% and false alarm rate of 6.1 ± 3.1%.
Recognition of normal behaviours — To measure the per-
formance of behaviour recognition results, the normal be-
haviour patterns in the testing sets were manually labelled
into different behaviour classes. A normal behaviour pat-
tern was recognised correctly if it was detected as normal
and classified into the right behaviour class. The behav-

iour recognition results is illustrated as a confusion matrix
shown in Fig. 5(b). Overall, the recognition rates had a
mean of 77.9% and standard devation of 4.8% for the 6
behaviour classes over 20 trials. Fig. 5(b) also shows that
when a normal behaviour pattern was not recognised cor-
rectly, it was most likely to be recognised as another class
of normal behaviour pattern instead of being detected as an
abnormality. This is a desirable feature from the perspective
of achieving low false alarm rate for abnormality detection.

5. Conclusions
We have shown in this paper that selecting relevant eigen-
vectors is key for robust spectral clustering without knowing
the number of clusters and proposed a novel algorithm for
relevance learning. The effectiveness and robustness of our
algorithm have been demonstrated through experiments on
image segmentation and video based behaviour profiling.
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