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Abstract

This study addresses the problem of unsupervised vi-
sual learning. It examines existing popular model order
selection criteria before proposes two novel criteria for im-
proving visual learning given sparse data and without any
knowledge about model complexity. In particular, a rec-
tified Bayesian Information Criterion (BICr) and a Com-
pleted Likelihood Akaike’s Information Criterion (CL-AIC)
are formulated to estimate the optimal model order (com-
plexity) for learning the dynamic structure of a visual scene.
Both criteria are designed to overcome poor model selec-
tion by existing popular criteria when the data sample size
varies from very small to large. Extensive experiments
on learning a dynamic scene structure are carried out to
demonstrate the effectiveness of BICr and CL-AIC, com-
pared to that of BIC [15], AIC [1], ICL [3] and a MML
based criterion [7].

1. Introduction
We wish to learn the underlying visual structure of a

given dynamic scene which can be considered as a seman-
tically meaningful decomposition of spatial regions for hu-
man behaviour interpretation [11], or a decomposition of
prototypic facial expressions for facial expression recogni-
tion [16]. We consider the problem of learning the under-
lying structural constraints for the activities captured in a
visual scene. In particular, we address the problem of au-
tomatic model order selection for mixture models based vi-
sual structure learning given limited data of unknown com-
plexity.

We aim to choose the most appropriate probabilistic cri-
teria for model selection according to the nature of visual
data. Existing probabilistic model selection criteria can be
classified into two categories: (1) methods based on approx-
imating the Bayesian Model Selection criterion [12], such
as Bayesian Information Criterion (BIC) [15], Laplace Em-
pirical Criterion (LEC) [14], and the Integrated Completed
Likelihood (ICL) [3]; (2) methods based on the informa-
tion coding theory such as the Minimum Message Length
(MML) [7], Minimum Description Length (MDL) [13], and

Akaike’s Information Criterion (AIC) [1]. The performance
of various probabilistic model selection criteria has been
studied intensively in the literature [14, 7, 3, 12, 4, 8], which
motivated the derivation of new criteria. In particular, a
number of previous works were focused on mixture mod-
els [14, 7, 3]. However, most previous studies assume the
sample sizes of data sets to be sufficiently large in compar-
ison to the number of model parameters [14, 7, 3], except
for a few works that focused on linear autoregression mod-
els [4, 8]. This is convenient due to the fact that the deriva-
tions of all existing probabilistic model selection criteria in-
volve approximations that can only be accurate when the
sample size is sufficiently large. Existing criteria for mix-
ture models are also mostly based on known model kernels,
e.g. Gaussian. Realistically, however, visual data available
for dynamic scene modelling are always sparse, incomplete,
noisy and with unknown model kernels.

We propose two novel probabilistic model selection cri-
teria to improve model estimation for sparse data sets, and
with unknown kernels and severe overlapping among mix-
ture components. In Section 2, we formulate a rectified
Bayesian Information Criterion (BICr) which gives a more
acceptable approximation to the Bayesian Model Selection
(BMS) criterion compared to the conventional BIC, and rec-
tifies the under-fitting tendency of BIC with small sample
sizes. However, BICr is not able to rectify the over-fitting
tendency of BIC when the true distribution kernel functions
are very different from the assumed ones. Integrated Com-
pleted Likelihood (ICL) was proposed in [3] to solve this
problem. Nevertheless, ICL performs poorly when data be-
longing to different mixture components are severely over-
lapped. We argue that to overcome these problems with the
existing criteria, we need to optimise explicitly the explana-
tion and prediction capabilities of a mixture model. To this
end, we introduce in Section 3 a Completed Likelihood AIC
(CL-AIC) criterion, which aims to give the optimal cluster-
ing of a given data set and best predict unseen data. Exten-
sive experiments are presented in Section 4 to demonstrate
the effectiveness of BICr and CL-AIC on learning the dy-
namic structure of a visual scene, compared favourably to
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the performance of a number of popular criteria including
BIC, AIC, ICL and the MML based criterion proposed in
[7]. Conclusions are drawn in Section 5.

2. Rectified BIC (BICr)
Suppose a D-dimensional random variable y follows a

K-component mixture distribution, the probability density
function of y can be written as p(y|θ) =

∑K
k=1 wkp(y|θk),

where wk is the mixing probability for the kth mixture com-
ponent with 0 ≤ wk ≤ 1 and

∑K
k=1 wk = 1, θk is the inter-

nal parameters describing the k-th mixture component, and
θ = {θ1, . . . ,θK ;w1, . . . , wK} is a CK dimensional vec-
tor describing the complete set of parameters for the mix-
ture model. Let us denote N independent and identically
distributed samples of y as Y = {y(1), ...,y(N)}. The log-
likelihood of observing Y given a K-component mixture
model is

log p(Y|θ) =
N∑

n=1

(
log

K∑
k=1

wkp(y(n)|θk)

)
, (1)

where p(y(n)|θk) defines the model kernel for the k-th
component. In this paper, the model kernel functions for
different mixture components are assumed to have the same
form. If the number of mixture components K is known,
the Maximum Likelihood (ML) estimate of model parame-
ters, given by θ̂ = arg maxθ{log p(Y|θ)}, can be com-
puted using the EM algorithm [6]. Therefore the problem
of estimating a mixture model boils down to the estimation
of K, known as the model order selection problem. A K-
component mixture model is thereafter denoted as MK .

We formulate BICr to rectify the under-fitting tendency
of BIC given small sample size. BIC was derived as an
approximation of the Bayesian Model Selection (BMS) cri-
terion [12]. This approximation is accurate only when the
sample size is sufficiently large, ideally approaching infin-
ity. It is shown by [14, 7] and also our experiments (see
Sections 3 and 4) that BIC tends to underestimate the num-
ber of mixture components given sparse data. We suggest
that the inaccurate approximation during the derivation of
BIC based on BMS causes model under-fitting and propose
a rectified BIC (BICr) to overcome it by providing more ac-
ceptable approximation. This introduces an extra penalty
term in BICr which favours large K given sparse data.

To derive BICr, let us first briefly describe the general
BMS criterion, which chooses a model that produces the
Maximum a Posteriori (MAP) probability of observing a
data set Y: K̂ = arg maxK {p(MK |Y)}. Using Bayes’
rule, the posterior probability is:

p(MK |Y) =
p(Y|MK)p(MK)

p(Y)
, (2)

where p(Y|MK) is the marginal probability (likelihood) of
the data and p(MK) is the a priori probability of model

MK . If no a priori knowledge exists that favors any of the
candidate models, the BMS method selects the model that
yields the maximal marginal probability, given as:

p(Y|MK) =
∫

p(Y|MK ,θ)p(θ|MK)dθ, (3)

where p(θ|MK) is the a priori probabilistic density func-
tion of θ given MK and p(Y|MK ,θ) is the probabilistic
density function of Y given MK and its parameters θ. For a
simpler notation, we leave out the specific model label MK

in the following derivations without losing generality.
Laplace approximation is adopted to compute the mar-

ginal probability p(Y|MK) (see [15] for details), giving:

log p(Y) = log p(Y|θ̂) + log p(θ̂) +
CK

2
log(2π)

−CK

2
log N − 1

2
log |i| + O(N− 1

2 ). (4)

where CK is the dimensionality of the parameter space, N
is the sample size, θ̂ is the ML estimate of θ, i is the ex-
pected Fisher information matrix for one observation [12],
|i| is its determinant, and O(N− 1

2 ) represents any quantity
such that N

1
2 O(N− 1

2 ) approaches a constant value as N
approaches infinity. The first term on the right-hand side of
Equation (4) is of order O(N), the fourth term is of order
O(log N), while all the other terms are of order O(1) or
less. Eliminating those order O(1) or less terms gives:

BIC = − log p(Y) = − log p(Y|θ̂) +
CK

2
log N. (5)

The approximation error in BIC is thus of order O(1) which
can be significant given small N . To have a more accurate
approximation with small N , we keep the order O(1) terms
in Equation (4) in the following derivation of BICr.

Assuming that the parameters for different mixture com-
ponents are independent from each other and also from the
mixing probabilities, the parameter priori p(θ̂) is computed
as p(θ̂) = p(ŵ1, ..., ŵK)

∏K
k=1 p(θ̂k). The form and para-

meters of the prior distributions are determined according
to three criteria: (1) They lead to an analytic solution; (2)
They represents the common situation where a little, but not
much, prior information is available; (3) The order O(1)
terms in Equation (4) favour large K given small N , thus
rectifying the under-fitting tendency of BIC. To this end, the
Dirichlet prior [2] is employed for the mixing probabilities:

p(ŵ1, ..., ŵK) =
Γ(

∑K
k=1 uk)∏K

k=1 Γ(uk)

K∏
k=1

ŵuk−1
k , (6)

where uk are distribution parameters and Γ(.) is the gamma
function. Here we set uk = 1

2 to reflect the lack of knowl-
edge about the mixing probabilities. For the internal pa-
rameters θ̂k, independent flat priors are adopted. More
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specifically, each element of the mean vector of each of
the K components follows a flat distribution in the range
of (−ασY , ασY) and the diagonal covariance elements of
each component follow a flat distribution in the range of
(0, βσY) where σY is the maximal diagonal element of the
covariance matrix of the data set Y and α and β are scale
parameters. We thus have:

K∏
k=1

p(θ̂k) =
1

(2αβσ2
Y)KD

, (7)

where D is the dimensionality of the data space. As pointed
out by Roberts et al. [14], the scale parameters α and β are
essentially arbitrary. We thus set

α = β =
Γ(K

2 )
1

2KD (2π)
CK
4KD√

2σYΓ( 1
2 )

1
2D |i| 1

4KD

(8)

to satisfy the prior selection criteria (1) and (3). Replacing
p(θ̂) in Equation (4) using Equations (6)-(8) gives:

log p(Y) = log p(Y|θ̂)−1
2

K∑
k=1

log ŵk−CK

2
log N+O(N− 1

2 ).

A rectified BIC is then derived as the negative of log p(Y)
with the order O(N− 1

2 ) term being eliminated:

BICr = − log p(Y|θ̂) +
1
2

K∑
k=1

log ŵk +
CK

2
log N. (9)

For the particular prior distributions we choose (Equa-
tions (6)-(8)), the error in the approximation of BICr is of
order O(N− 1

2 ) instead of O(1) in that of BIC. BICr is thus a
more accurate approximation of Bayesian Model Selection
and able to better select model in the sense of maximising
p(Y|MK). Also importantly, the extra penalty term in BICr
( 1
2

∑K
k=1 log ŵk) has the following property:

−∞ <
1
2

K∑
k=1

log ŵk ≤ −1
2
K log K ≤ 0,

given 0 ≤ wk ≤ 1. It thus weakens the effect of the
other penalty term CK

2 log N especially when K becomes
large with some mixture components only being poorly sup-
ported by the data. In other words, it favors larger K com-
pared to BIC. Since the extra penalty term is of order O(1),
its effect is only significant given sparse data. This extra
penalty term in BICr thus rectifies the under-fitting tendency
of BIC given spare data and results in better model selec-
tion. It is noted that the idea of integrating a priori knowl-
edge of model parameters into a existing model selection
criterion has been exploited previously in [14, 7]. However,

unlike our BICr, none of them were directly motivated by
rectifying the weakness of existing criteria.

Even with BICr, the problem of BIC tending to over-
fit remains when the true model kernels are very different
from the assumed ones (e.g. typically Gaussian). To solve
this problem, we propose a Completed Likelihood Akaike’s
Information Criterion (CL-AIC).

3. Completed Likelihood AIC
Given a data set Y , a mixture model MK can be used

for three objectives: (1) estimating the unknown distribu-
tion that most likely generates the observed data, (2) clus-
tering a given data set, and (3) predicting unseen data. Ob-
jectives (1) and (2) emphasise data explanation while ob-
jective (3) is concerned with data prediction. Both BIC and
BICr choose the model that maximises p(Y|MK). They
thus enforce mainly objective (1). When the true mixture
distribution kernel functions are very different from the as-
sumed ones, both BIC and BICr tend to choose the model
with its number of components larger than the true number
of components in order to approximate the unknown distri-
bution more accurately. To better balance the explanation
and prediction capabilities of a mixture model, we derive
a novel model selection criterion, referred as CL-AIC. CL-
AIC utilises Completed Likelihood (CL), which makes ex-
plicit the clustering objective of a mixture model, and fol-
lows a derivation procedure similar to that of AIC, which
chooses the model that best predict unseen data.

Let us first formulate Completed Likelihood (CL). The
completed data for a K-component mixture model is a com-
bination of the data set and the labels of each data sample:

Ȳ = {Y,Z} =
{

(y(1), z(1)), ..., (y(N), z(N))
}

,

where Z =
{
z(1), ..., z(n), ..., z(N)

}
, and z(n) ={

z
(n)
1 , ..., z

(n)
K

}
is a binary label vector such that z

(n)
k = 1

if y(n) belongs to the kth mixture component and z
(n)
k = 0

otherwise. Z is normally unknown, and must be inferred
from Y . The completed log-likelihood of Ȳ is:

CL(K) = log p(Y|θ) + log p(Z|Y,θ) (10)

=
N∑

n=1

log
K∑

k=1

wkp(y(n)|θk) +
N∑

n=1

K∑
k=1

z
(n)
k log p

(n)
k

where p
(n)
k is the conditional probability of y(n) belonging

to the kth component and can be computed as:

p
(n)
k =

wkp(y(n)|θk)∑K
i=1 wip(y(n)|θi)

. (11)

In practice, the true parameters θ in Equation (11) is re-
placed using the ML estimate θ̂ and the completed log-
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likelihood is rewritten as:

CL(K) =
N∑

n=1

log
K∑

k=1

ŵkp(y(n)|θ̂k)+
N∑

n=1

K∑
k=1

ẑ
(n)
k log p̂

(n)
k

(12)
where

ẑ
(n)
k =

{
1 if arg maxj p̂

(n)
j = k

0 otherwise.
(13)

CL-AIC aims to choose the model that gives the best
clustering of the observed data and has the minimal diver-
gence to the true model, which thus best predicts unseen
data. The divergence between a candidate model and the
true model is measured using the Kullback-Leibler infor-
mation [10]. Given a completed data set Ȳ , we assume
that Ȳ is generated by the unknown true model M0 with
model parameter θM0 . For any given model MK and the
Maximum Likelihood Estimate θ̂MK

, the Kullback-Leibler
divergence between the two models is computed as

d(M0,MK) = E

[
log

(
p(Ȳ|M0,θM0)

p(Ȳ|MK , θ̂MK
)

)]
. (14)

Ranking the candidate models according to d(M0,MK) is
equivalent to ranking them according to δ(M0,MK) =
E

[
−2 log p(Ȳ|MK , θ̂MK

)
]
. δ(M0,MK) cannot be

computed directly since the unknown true model is
required. However, it was noted by Akaike [1]
that −2 log p(Ȳ|MK , θ̂MK

) can serve as a biased ap-
proximation of δ(M0,MK), and the bias adjustment

E
[
δ(M0,MK) + 2 log p(Ȳ|MK , θ̂MK

)
]

converges to

2CK when the number of data sample approximates infin-
ity. Our CL-AIC is thus derived as:

CL−AIC = − log p(Ȳ|MK , θ̂MK
) + CK , (15)

where CK is the dimensionality of the parameter space. The
first term on the right hand side of (15) is the completed
likelihood given by Equation (12). We thus have:

CL−AIC = −
N∑

n=1

log
K∑

k=1

ŵkp(y(n)|θ̂k)

−
N∑

n=1

K∑
k=1

ẑ
(n)
k log p̂

(n)
k + CK , (16)

The first and third terms on the right hand side of Equa-
tion (16) emphasise the prediction capability of the model.
These two terms favour those candidate models that give
small generalisation error. In the meantime, the second
term favours well-separated mixture components through
minimizing entropy of assigning data samples into differ-
ent components. The second term has the effect of selecting

models that give small training error. It thus enforces the ex-
planation capability of the model. This results in a number
of important advantages compared to existing techniques:
(1) Unlike previous probabilistic model selection criteria,
our CL-AIC attempts to optimise explicitly the explanation
and prediction capabilities of a model. This makes CL-
AIC theoretically attractive. Its effectiveness in practice is
demonstrated later in this paper. (2) Compared to a stan-
dard AIC, our CL-AIC has an extra penalty term (the sec-
ond term on the right hand side of Equation (16)) which
always assumes a non-negative value. This extra penalty
term makes CL-AIC in favour of smaller K compared to
AIC given the same data set. It has been shown that AIC
tends to over-fit by both theoretical [9] and experimental
studies [8]. The extra penalty term in our CL-AIC thus has
the effect of rectifying the over-fitting tendency of AIC.

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

BIC

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

AIC

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

ICL

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

BICr

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

CL−AIC

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

Figueiredo−Jain

(a) Selected Model orders
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(c) Typical examples of the selected models

Figure 1: Model selection results for a toy problem.

A toy problem is used here to illustrate the effectiveness
of CL-AIC and BICr, compared to that of AIC, BIC, ICL
and a MML based criterion proposed by Figueiredo and
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Jain [7] (referred as F-J hereafter1). Experiments on learn-
ing the visual structure of three different real scenarios are
presented in Section 4. We consider a synthetic 2D data set
where data from each cluster follow the uniform random
distribution:

ur(y1, y2) =




1
(r2−r1)·(r4−r3)

if r1 ≤ y1 ≤ r2

& r3 ≤ y2 ≤ r4

0 otherwise,

where r = [r1, r2, r3, r4] are the parameters of the distri-
bution. Our data set was generated using a 5-component
uniform mixture model. Its parameters are:

w1 = 0.05, w2 = 0.10, w3 = 0.20, w4 = 0.40, w5 = 0.25;
r1 = [−1.89, 4.07, 4.89, 7.94], r2 = [5.58, 8.42,−0.77, 2.77],
r3 = [4, 17, 7.83, 2.23, 5.77], r4 = [5.41, 8.59, 6.79, 7.21],
r5 = [−0.61, 6.61, 2.47, 3.53].

Gaussian mixture models were adopted to illustrate the situ-
ation where the unknown kernel functions are very different
from the assumed ones. Models with the number of com-
ponents K varying from 1 to Kmax, a number that is con-
sidered to be safely larger than the true number Ktrue, were
evaluated. Kmax was set to 10 in this case. To avoid being
trapped at local maxima, the EM algorithm used for esti-
mating model parameters θ was randomly initialised for 20
times and the solution that yielded the largest observation
likelihood after 30 iterations were chosen. Different model
selection criteria were tested on the data set with sample
sizes varying from 25 to 1000 in increments of 25. The
mean and ±1 standard deviation of the model order selec-
tion results over 50 trials are plotted against sample size in
Figure 1(a), with each trial having a different random num-
ber seed. Figure 1(b) shows only the mean of the model or-
der selected by different criteria in a single plot. Examples
of models selected by different criteria are shown in Figure
1(c). It can be seen from Figure 1(b) that with a small sam-
ple size (e.g. 50 < N < 200), the number of components
selected by BICr was the closest to the true number 5. As
the sample size increased, both BIC and BICr slightly over-
fitted and ICL slightly under-fitted, while CL-AIC yielded
the most accurate results. F-J and AIC exhibited large vari-
ations in the estimated model order no matter what the sam-
ple size was, while other criteria had smaller variation given
larger sample sizes. It is also noted that F-J and AIC suf-
fered from severe over-fitting and failed to converge.

4. Experiments
Experiments were conducted on learning the dynamic

structures of three different visual scenes. Gaussian mix-
ture models were adopted in our experiments while the true

1Courtesy of M. Figueiredo for providing the code for implementing
F-J.

model kernels were unknown and clearly non-Gaussian by
observation. The model estimation results were obtained
by following the same procedure as that of the toy prob-
lem experiment presented in the preceding section, unless
otherwise specified.

(a) A typical scene (b) Motion trajectories (c) Inactivity points
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(d) Selected Model orders
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(e) Mean of the selected model orders
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(f) Typical examples of the selected models

Figure 2: Model selection for learning inactivity zones. The
inactivity zones in the tearoom scene included “A”,“B”:
standing spots around the left table, “C”,“D”: two chairs
around the left table, “E”,“F”: two chairs around the right
table, “G”: work surface, and “H”: sink area. They were
labelled in (f) when estimated correctly.

4.1. Learning Inactivity Zones
A tearoom scenario was captured at 8Hz over three dif-

ferent days of changeable natural lighting, giving a total of
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45 minutes (22430 frames) of video data. Each image frame
has a size of 320×240 pixels. The scene consists of a kitch-
enette on the top right hand side of the view and two dining
tables located on the middle and left side of the view re-
spectively (see Figure 2(a)). Typical activities occurring in
the kitchenette area included people making tea or coffee at
the work surface, and people filling the kettle or washing up
in the sink area. Other activities taking place in the scene
mainly involved people sitting or standing around the two
dining tables while drinking, talking or doing the puzzle. In
total 66 activities were captured, each of them lasting be-
tween 100 and 650 frames.

In this tearoom scenario, the dynamic structure of the
visual scene includes semantically meaningful spatial re-
gions, especially inactivity zones where people typically re-
main static or exhibit only localised movements (e.g. sink
area and chairs). The problem of learning inactivity zones
was tackled by performing unsupervised clustering of the
inactivity points detected on motion trajectories. Firstly,
a tracker yielded temporally discretised motion trajectories
(see Figure 2(b)). The established trajectories were then
smoothed using an averaging filter and the speed of each
person tracked on the image plane was estimated. Secondly,
inactivity points on the motion trajectories were detected
when the speed of the tracked people was below a thresh-
old. This inactivity threshold was set to the average speed
of people walking slowly across the view. A total of 962
inactivity points were detected over the 22430 frames (see
Figure 2(c)). As can be seen in Figure 2(c)), these inactiv-
ity points were mainly distributed around the semantically
meaningful inactivity zones, although they were also caused
by errors in the tracker and the fact that people can exhibit
inactivity anywhere in the scene.

Finally, inactivity points were clustered using a Gaussian
Mixture Model with each of the learned mixture compo-
nents specifying one inactivity zone. The total number of
mixture components, corresponding to the total number of
inactivity zones, was determined using a model selection
criterion. Through observation of the captured video data,
8 inactivity zones can be identified which correspond to the
left side of the work surface, the sink area, 4 of the chairs
surrounding the two dining tables, and 2 spots near the left
dining table where people stand while doing the puzzle. In
our experiments, the sample size of the data set varied from
24 to 962 in increments of 24. The maximum number of
components Kmax was set to 15. The model selection re-
sults are shown in Figure 2. It can be seen that when the
sample size was small but not too small compared to the
number of model parameters (e.g. 100 < N < 250), all cri-
teria tended to under-fit, with BICr outperforming the other
five. As the sample size increased, all criteria turned to-
wards slightly over-fitting except ICL, with the model or-
ders selected by CL-AIC being the closest to the true model

order of 8. Figure 2(f) demonstrates that each estimated
cluster corresponded to one inactivity zone when the model
order was selected correctly.

4.2. Learning Facial Expression Categories

(a) Example image frames with the corresponding mouth shapes extracted
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(b) Selected Model orders
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(d) Typical examples of the selected models

Figure 3: Model selection for learning facial expres-
sion categories. The visual structure of facial expres-
sions included “A”: sad, “B”:smile, “C”:neutral, “D”:anger,
“E”:grin,“F”:fear, and “G”:surprise. They were labelled in
(d) only when estimated correctly.

The visual task of modelling the dynamics of facial ex-
pressions and performing robust recognition becomes eas-
ier if key facial expression categories can be discovered and
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modelled. In this experiment, we aim to learn the range
of mouth shape change caused by variation in expression.
A face was modeled using the Active Appearance Model
(AMM) [5]. The face model was learned using 1790 images
sized 320 × 240 pixels, capturing people exhibiting differ-
ent facial expression continuously. Firstly, the jaw outline
and the shapes of eye, eyebrow and mouth were manually
labeled and represented using 74 landmarks during train-
ing. Secondly, the trained model was employed to track
face and extract the shape of mouth (represented using 12
landmarks) from the test data which consisted of 613 im-
age frames. Both the training and test data included seven
different expression categories: neutral, smile, grin, sad-
ness, fear, anger and surprise. Some example test frames
are shown in Figure 3(a). Thirdly, the mouth shape data
extracted from the test frames were projected onto a Mix-
ture of Probabilistic Principal Component Analysis (MP-
PCA) space [17] which was learned using the mouth shape
data labeled manually from the training data. It was identi-
fied that only the second and third principal components of
the learned MPPCA sub-space corresponded to facial ex-
pression changes. Facial expressions were thus represented
using a 2D feature vector comprising the second and third
MPPCA components of the mouth shape data.

Finally, unsupervised clustering was performed using a
Gaussian Mixture Model in the 2D feature space with the
number of clusters automatically determined by a model se-
lection criterion. Ideally, each cluster corresponds to one fa-
cial expression category and the right model order is 7. The
data set was composed of 613 2D feature vectors obtained
from the testing data set. Different model selection crite-
ria were tested with sample sizes varying from 30 to 600
in increments of 30. The maximum number of components
Kmax was set to 15. The model selection results are shown
in Figure 3. It can be seen that all criteria except AIC tended
to under-estimate the number of components when the sam-
ple size was small but not too small (e.g. 50 < N < 200)
with BICr outperforming the other five. With an increasing
sample size, the models selected by BIC, BICr and CL-AIC
turned towards slightly over-fitting with CL-AIC perform-
ing better than the other two, while those selected by ICL
remained under-fitting. Figure 3(d) shows that, when the
model order was selected as 7, each learned cluster corre-
sponded correctly to each of the 7 expression categories.

4.3. Learning Visual Event Classes
A simulated ‘shopping scenario’ was captured at 5Hz,

giving a total of 19 minutes of video data with 5699 frames
of images sized 320× 240 pixels (see 4(a)). The scene con-
sists of a shopkeeper sat behind a table on the right side of
the view. A large number of drink cans were laid out on
a display table. Shoppers entered from the left and either
browsed without paying or took a can and paid for it.

Interpreting the shopping behaviour requires not only

(a) Typical scene

(b) Examples of automatically detected events indicated with bounding boxes
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(d) Mean of the selected model orders
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(e) Typical examples of the selected models

Figure 4: Model selection for learning scene event classes.
The estimated models are shown using the first 3 principal
component of the feature space. The scene event classes
therefore the underlying visual structure of the shopping
scene included “A”: shopkeeper moving, “B”:can being
taken, “C”:shopper entering/leaving, “D”:shopper brows-
ing, and “E”:shopper paying. They were labelled in (e)
when estimated correctly.

the understanding of the behaviour of shoppers and shop-
keeper in isolation, but also the interactions between them.
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Detecting whether a drink can is taken by the shopper is
also a key element to shopping behaviour interpretation. To
build such a complex behaviour model, it is important to
learn the underlying visual structure which, in this case, cor-
responds to significant and semantically meaningful scene
changes characterised by the location, shape and direction
of the change. These significant scene changes, referred to
as scene events, are detected and clustered with the number
of clusters being determined using model selection crite-
ria. It was observed and labeled manually that there were
largely 5 different types of scene events captured in this
scenario, caused by ‘shopper entering/leaving the scene’,
‘shopper browsing’, ‘can being taken’, ‘shopper paying’,
and ‘shopkeeper moving’ respectively. Firstly, events were
automatically detected as groups of accumulated local pixel
changes occurred in the scene. An event was represented by
a group of pixels in the image plane (see Figure 4(b)) and
defined as a 7D feature vector [18]. A total of 1642 scene
events were detected.

Secondly, unsupervised clustering was performed in the
7D feature space. A Gaussian Mixture Model was adopted.
In our experiments, the sample size of the data set varied
from 58 to 1624 in increments of 58. The model selection
results are presented in Figures 4. Note that in Figures 4(e)
only the first 3 principal components of the feature space are
shown for visualisation. It can be seen that when the sam-
ple size was small but not too small (e.g. 100 < N < 800),
BIC, BICr, F-J and ICL all tended to under-fit while AIC
and CL-AIC tended to over-fit. In comparison, BICr gave
the best performance. As the sample size increased, model
orders selected by BIC, BICr and CL-AIC were getting
closer to the true model order of 5 with CL-AIC performing
slightly better than the other two. Figure 4(e) demonstrates
that each estimated cluster corresponded to one scene event
class when the model order was selected correctly.

5. Conclusions
Our experiments demonstrate that the proposed BICr and

CL-AIC outperform BIC, ICL, F-J, and AIC given severely
overlapped data sets of different sizes arisen from both syn-
thetic and real-world visual structure learning problems.
This result was obtained using mixture models in the realis-
tic situation where the true kernel distribution functions are
very different from the assumed ones. Specifically, given
sparse data, BICr rectifies the under-fitting tendency of BIC
and also outperforms ICL, AIC, F-J, and CL-AIC. Given
moderate to large data sample sizes, CL-AIC appears to be
the best choice among the 6 criteria being compared.

Similar to BICr, the F-J criterion exploits the idea of in-
tegrating a priori knowledge of model parameters into a ex-
isting model selection criterion. ICL also aims to improve
existing criteria by combining them together, which is the
same motivation behind the derivation of CL-AIC. How-
ever, both F-J and ICL failed to produce satisfactory results

for the challenging problem of learning the dynamic struc-
ture of a visual scene. Our study thus highlights the im-
portance of analysing the strength and weakness of existing
criteria and the nature of data distribution for deriving a bet-
ter criterion.
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