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Keywords: Learning for vision, visual context, modelmodel selection criteria has been studied intensively & th

selection, dynamic scene modelling, mixture model. literature [19, 8, 2, 17, 4, 10], which motivated the deiivat
of new criteria. In particular, a number of previous works
Abstract were focused on mixture models [19, 8, 2]. However, most

] ) ] N ) previous studies assume the sample sizes of data sets to be
Learning visual context is a critical step of dynamic Sceng ficiently large in comparison to the number of model

modelling. This paper addresses the problem of Choos'ﬁgrameters [19, 8, 2], except for a few works that focused
the most suitable probabilistic model selection criterfon 5, jinear autoregression models [4, 10]. This is convenient
learning visual _cor'1text of a dynamic scene. A Completefq (o the fact that the derivations of all existing prokiabit
Likelihood - Akaike's Information Criterion (CL-AIC) IS mode| selection criteria involve approximations that can
formulated to estimate the optimal model order (complgxity\y pe accurate when the sample size is sufficiently large,
for a given visual scene. CL-AIC is designed to overcomgeally approaching infinity. Existing criteria for mixeir
poor model selection by existing popular criteria when the,qels are also mostly based on known model kemnels, e.g.
data sample size varies from very small to large. Extensi,ssian. Realistically, visual data available for dyrami
experiments on leamning visual context for dynamic SCe€@Rene modelling are always sparse, incomplete, noisy ahd wi
modelling are carried out to demonstrate the effectives€ss nknown model kernels. Therefore, existing model selactio
CL-AIC, compared to that of BIC, AIC and ICL. criteria based on previous studies may not be suitable for
learning visual context given the nature of visual obséowvet

1 Introduction ;
commonly available.

The problem of dynamic scene understanding can be tackledthe rest of the paper, we propose a novel probabilistic
based on building models for various activities occurring imodel selection criterion to improve model estimation fatad
the scene [3, 9, 12, 24, 16]. Learning scene-specific visiglts with unknown distribution kernel functions and severe
context is a critical step of this model-based dynamic sce@eerlapping among mixture components. Mixture models
understanding approach, which reduces the complexity ae briefly described in Section 2. Bayesian Information
activity models and makes them tractable given limited aisuCriterion (BIC) is widely used for determining the model
observations. Visual context is scene specific. It is thesder of a mixture model [16, 9, 24], which is identical in
defined differently according to the nature of differentugs formulation to Minimum Description Length (MDL). It is
tasks. For example, the visual context of a scene can b&h@wn by our experiments (see Sections 4 and 5) that BIC
semantically meaningful decomposition of spatial regitmrs tends to under-fit when the sample size is small and tends to
human behaviour interpretation [16, 3], or a decompositibn over-fit when the sample size is large. Integrated Completed
prototypic facial expressions for facial expression redtign  Likelihood (ICL) was proposed in [2] to solve this problem.
[22]. We consider the problem of learning visual context asevertheless, ICL performs poorly when data belonging to
modelling the underlying structure of activity capturedan different mixture components are severely overlapped. We
dynamic scene. To this end, we model visual context usiaggue that to overcome these problems with the existing
mixture models based on automatic model order selection. criteria, we need to optimisexplicitly the explanation and
prediction functionalities of a mixture model through a rabd
In this paper, we address the problem of choosing tkelection criterion. To this end, we introduce in Section 3 a
most appropriate probabilistic criteria for model selecti Completed Likelihood AIC (CL-AIC) criterion, which aims
according to the nature of visual data. Existing probatilis to give the optimal clustering of the given data set and best
model selection criteria can be classified into two catexgori predict unseen data. In Section 4, we analyse through symthe
(1) methods based on approximating the Bayesian Modkta experiments how the performance of CL-AIC are affected
Selection criterion [17], such as Bayesian Informatioby two factors: (1) the sample size, and (2) whether and
Criterion (BIC) [20], Laplace Empirical Criterion (LEC)how the true kernel functions are different from the assumed
[19], and the Integrated Completed Likelihood (ICL) [2]ones. Extensive experiments are also presented in Section 5
(2) methods based on the information coding theory sutthdemonstrate the effectiveness of CL-AIC on learning afisu
as the Minimum Message Length (MML) [8], Minimumcontext for dynamic scene understanding, compared to that o
Description Length (MDL) [18], and Akaike’s InformationBIC, AIC and ICL. A conclusion is drawn in Section 6.
Criterion (AIC) [1]. The performance of various probaltilis



2 MixtureModels combination of the data set and the labels of each data sample

Suppose aD-dimensional random variable follows a y={y,2} = {(y(l),z(l))7~~7(y(N)7Z(N))},
K-component mixture distribution, the probability density
function of y can be written ag(y|6) = Zlewkp(ywk), where 2 = {z(1>,_,_,z(n),,,,,z(N)}, and z(™ =
where w; is the mixing probability for thekth mixture (n) () : n)

. X S s a binary label vector such that’/ = 1
component with) < w;, < 1 andY ), wy = 1, 6 is the {zl 2y } y f

internal parameters describing th¢h mixture component, if y(™ belongs to thekth mixture component and\” = 0
and @ = {0:,...,0k;w1,...,wk} is a Ck dimensional otherwise.Z is normally unknown, and must be inferred from
vector describing the complete set of parameters for tbe The completed log-likelihood Q¥ is:

mixture model. Let us denot® independent and identically

distributed samples of as Yy = {y®,...y™}. The CL(K) = logp(Y|6)+logp(Z|V,0) 2
log-likelihood of observingy given a K-component mixture N K N K
model is = D log Y wip(y™0x) + 3> 5V logpy”
n=1 k=1 n=1k=1
N K
logp(V]6) = Z (longkp(y(")wk)) ’ @) wherep|™ is the conditional probability of (") belonging to
n=1 k=1 the kth component and can be computed as:
where p(y(™|0,) defines the model kernel for thé-th (g
component. In this paper, the model kernel functions for P = ;{U’“p(y 16x) (3)
different mixture components are assumed to have the same e wip(y(™10;)

form. If the number of mixture componenis is known, the | . h fsin E ion (3) i laced
Maximum Likelihood (ML) estimate of model parameter n _practlce, the true parametefsin Equation (3) is replace

given byé — arg maxg{log p(V|)}, can be computed usingusmg the M-L estimat® and the completed log-likelihood is
the EM algorithm [6]. Therefore the problem of estimating [pwritten as:

mixture model boils down to the estimation &f, known as N K N K

the model order selection problem. &-component mixture CL(K) = > log > dup(y™[0:) + > Y 2" log p}"
model is thereafter denoted Ad i . n=1 k=1 n=1k=1 @

3 Completed Likelihood Akaike's Information Criterion  where
(CL-AIC) 2(n) _ 1 if argmax; p
k 0 otherwise.

=k (5)
Given a data sey, a mixture modelM g can be used for

three objectives: (1) estimating the unknown distributioat

most likely generates the observed data, (2) clustering the-AlC aims to choose the model that gives the best clugerin
given data set, and (3) predicting unseen data. Objecti@dhe observed data and has the minimal divergence to the tru
(1) and (2) emphasise data explanation while objectiveg3)model, which thus best predicts unseen data. The divergence
concerned with data prediction. Model selection critedadsl between a candidate model and the true model is measured
on approximating the Bayesian Model Selection criterio#sing the Kullback-Leibler information [14]. Given a coraf#
[17], such as Bayesian Information Criterion (BIC) [20] andlata set), we assume thay is generated by the unknown
Laplace Empirical Criterion (LEC) [19], choose the modeiith true modelM, with model paramete ,. For any given
maximisesp(Y| M), the probability of observing a data semodel My and the Maximum Likelihood Estimaté .,

Y given a candidate mode1x. They thus enforce mainly the Kullback-Leibler divergence between the two models is
objective (1). When the true distribution kernel functiome acomputed as

choose models with the number of components larger than the P(Y|Mo, Or,)

true number of clusters in order to approximate approximate d(Mo, Mx) = E |log ( L ﬂ - ©
the explanation and prediction capabilities of a mixturedelp Ranking the candidate models accordingdtoVy, M) is
we derive a novel model selection criterion, referred aguivalent to ranking them according (Mg, Mg) =

very different from the assumed ones, all these criterid ten
T P(YVIMic, Opay)
the unknown distribution more accurately. To better batanc

CL-AIC. CL-AIC utilises Completed Likelihood (CL), which S ;
L - o . FE|-21 .
makes explicit the clustering objective of a mixture modek { ng(y‘Mf_f’ BMK)] 0(Mo, M) cannot
follows a derivation procedure similar to that of AIC, whicP® computed directly since the unknown true model
Is required. However, it was noted by Akaike [1]

chooses the model that best predict unseen data. _ N ,
that —2logp(Y|Mk,00,) can serve as a biased

Let us first formulate Completed Likelihood (CL). TheAPProximation of 3(Mo, M), and the bias adjustment
complete data for ak-component mixture model is aF {5(M0,MK)+210gp(y|MK,0MK) converges t@Ck



when the number of data sample approaches infinity. QGunesented in this section aim to examine how the performance

CL-AIC is thus derived as: of different criteria is affected by the following two faecio (1)
- . the sample size and (2) how different the true kernel funetio
CL-AIC = —log p(Y|Mk, O pmy ) + Ck. (7)  are from the assumed ones. To this end, Gaussian mixture

) ) ) ) models were adopted while synthetic data sets were gederate
whereCy is the dimensionality of the parameter space. T ing non-Gaussian kernels with sample size varying from

first term on the right hand side of (7) is Fhe completeglry small to large in comparison to the number of model
likelihood given by Equation (4). We thus have: parameters. To simulate the real world data, data belonging
K to different mixture components were severely overlapped.
log Z Wep(y™|6y) Moreover, our synthetic data were unevenly distributedragno
o1 different mixture components.

CL-AIC = -

] =

Il
—

n

WE

K
2™ 10g p™ 4 0. (8) Models with the number of componenks varying from 1 to
k k . .
=1 Kz, @ Number that is considered to be safely larger than

. _ ' _ _the unknown true numbek,,., were evaluated. In our
The first and third terms on the right hand side of Equat'%kperiments,Kmax was 10 unless otherwise specified. To

(8) emphasise the prediction capability of the model, wttite  5y0id being trapped at local maxima, the EM algorithm used
second term, favouring well separated mixture componensy estimating model paramete#svas randomly initialized for
enforces the explanation capability of the model.  Thig) times and the solution that yielded the largest observation
formulation results in a number of important differencegcelihood after 30 iterations were chosen. Each Gaussian
compared to existing techniques: component was assumed to have full covariance. Different
model selection criteria were tested on the data sets with
sample sizes varying frob to 1000 in increments oR5. The

o - : final model selection results are illustrated using the naah
AIC attempts to optimisexplicitly the explanation andétl standard deviation of the selected number of components

prediction capabilities of a model. This makes CL-Al . . . i .
theoretically attractive. The effectiveness of CL-AIC i over 50 trials, with each trial having a different random fugm
' d.

practice is demonstrated through experiments in Sections
4 and 5.

n=1

1. Unlike previous probabilistic model selection critefa. -

We first consider a situation under which the assumed kernel
2. Compared to a standard AIC, our CL-AIC has an extfenctions are different from the true one, but not by too

penalty term (the second term on the right hand side Bfuch. A data set was firstly generated according to a Gaussian
Equation (8)) which always assumes a positive value. THRixture distribution whose parameters are:
extra penalty term makes CL-AIC in favour of smaller K
compared to AIC given the same data set. It has beet1 = 0.05,w2 = 0.10, w3 = 0.20, w4 = 0.40, w5 = 0.25;
shown that AIC tends to over-fit by both theoretical [7, 13]#1 = [1.5,6.0]", py = [7.0, 1.0]7, pg = [6.0,4.0]7,
and experimental studies [21, 11]. The extra penalty term, — 7.0, 7.0)7, p, = [3.0,3.0)7; %, = 1.89 0.25 ] ’

in CL-AIC thus has the effect of rectifying the over-fitting N 99 040'25 0.50
tendency of AIC. _ : : _ . .
Y 2= 014 034 |°237 | 004 065 |
3. Completed likelihood has been combined with BIC which2 [ 178 0.46 5 — 1.97 0.05
leads an Integrated Completed Likelihood (ICL) criterion™* — | 0.46 0.42 |’ ~ | 0.05 0.10 |’
[2]. However, reported experiments in [2] indicated that C)]

ICL performs poorly when data belonging to differentvhere wy, p, and 3, are the mixing probability, mean
mixture components are severely overlapped. We suggesttor and covariance matrix for tii¢h Gaussian component
this is caused by the factor that ICL is a combination okspectively. The data were then perturbed with uniformly
two explanation oriented criteria without considering thdistributed random noise. The noise had a range-6f5 0.5]
prediction capability of a mixture model. To that end, CLin each dimension of the data distribution space. The model
AIC integrates an explanation criterion and a predicticselection results are presented in Figure 1 and table 1.
criterion. It is thus theoretically better justified than.iC

BIC | AIC | ICL | CL-AIC

4 Experimentson Synthetic Data 100] O 10| O 48
725| 88 | 64 | 82 100

In this section, we illustrate the effectiveness of our CL-
AIC, compared to that of existing popular model selection
criteria including AIC, BIC and ICL, using synthetic dataTable 1: Percentage of correct model order selection (oer 5
Experiments on learning visual context of three differeffials) by different criteria for synthetic Noisy Gaussidata
real scenarios are presented in Section 5. The experimeMid 100 and 725 samples respectively.



e w0 — BIC | AIC | ICL | CL-AIC
o 100| 4 2 8 10
600| 86 4 94 100

Table 2: Percentage of correct model order selection (o@er 5
trials) by different criteria for synthetic uniform datativi1l00
and 600 samples respectively.

‘‘‘‘‘‘‘‘‘‘

Selected Model Order
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L (b) Mean of the selected model orders ’ BIC 0 “aC
IN=100 | [N=100 " CrT T EeRmEEE
o BIC & ICL BIC & ICL
% : PRI R SIS gl' I“"I' B 0 100 200 300 400 500 600 700 800 900
54 . . @ . . @ - Sample Size
! ! © - . {3 . Qg Q . 3 E (b) Mean of the selected model orders
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Figure 1: Model selection results for synthetic Gaussiaa ¢ o éL Alcﬁ ' ’ ’ AICE '
synthetic Gaussian data perturbed with uniformly distelu CL-AIG )
random noise. o o
Figures 1(a) and (b) show how the performance of differ e B IVIPUOS 1N=600
criteria were affected by the sample size of the data set. Wnen T CE
All but AIC AlIC
the data set was sampled extremely sparsely (8.g< 50), (a) Selected Model orders o oo e selocted model
all 5 criteria tend to over-fit. As the sample size increased, (c) Typical examples of the selected models

the number of components determined by all the criterj . : . .
decreased. In particular, BIC, ICL, and CL-AIC all turnedrfr (I'j?gtt:irsu%i.onModel selection resuilts for synthetic data of ot
over-fitting to under-fitting before converging towards thee '

component number, with the number of components selected

by CL-AIC being the closest to the true number 5. It is notegPmponents following the uniform random distribution:

that when the sample size is large (e)g.> 500), BIC tended N T TSN

to over-fit slightly. The over-fitting tendency of BIC when (ra—r)(ra=rs) 1 T1SYL = T2
the assumed kernels are different form the true ones was also “r(¥1:92) = &ry<ys <4
reported in [2]. Overall, AIC appears to favor larger numébier 0 otherwise

components even when the sample size is large. Itis alsd n%erer _
that AIC exhibited large variations in the estimated moddeo
no matter what the sample size was, while other criteria h
smaller variation given larger sample sizes.

[r1, 72,73, 74 are the parameters of the distribution.
r data set was generated using a 5-component uniform
xture model. Its parameters are:

w1 = 0.05,ws = 0.10, w3 = 0.20,wy = 0.40, w5 = 0.25;
We then consider an extreme case where the true kerng| = [—1.89,4.07,4.89,7.94],r, = [5.58,8.42, —0.77,2.77],
functions are completely different from the assumed ones. A; = [4,17,7.83,2.23,5.77], r, = [5.41,8.59,6.79, 7.21],
synthetic 2D data set were generated with data from eagh, = [-0.61,6.61,2.47,3.53].



The model selection results are presented in Figure 2 arid Tedame activities performed by different people can diffedy.
2. It can be seen from Figure 2(b) that with a small sample
size (e.g. 50 < N < 200), BIC and ICL tended to under- |
fit while AIC and CL-AIC tended to over-fit. As the sample
size increased, BIC slightly over-fitted and ICL slightlydamn-
fitted, while CL-AIC yielded the most accurate results. Agai
AIC exhibited large variations in the estimated model orde . /
no matter what the sample size was, while other criteria had (a) Atypical scene (b) Motion trajectories (c) Inactivity points

smaller variation given larger sample sizes. Itis also et
AIC suffered from severe over-fitting and failed to converge 1 T Ae

IcL
cL-AC| |

Our experiments show that CL-AIC outperforms BIC, Al :-
and ICL when the true kernel functions are different from 1 ;'
assumed ones and the sample size varies from small to li
Our experiments also indicate that all criteria tend to ov

Selected Model Order
®

fit given extremely sparse data (e.gV < 2Ck,,,. where o :
Ck,,.. IS the number of parameters of the true model). Gi\ 2 : :
a very small sample size, none of the mixture component AIC 0w W0 w0 o w0 wo T mm
supported well by the data. Data samples belonging to the s ¢+
mixture component tend to be interpreted as being drawn f ' (€) Mean of the selected model orders
different mixture components. This explains the oversfigti
tendency for all the model selection criteria. Our experitee o s wwws’ ) . .= - | 1 B . E.- - H
suggest that the more the true kernel functions differ frobe t - -' @ @ i ZiAIB:fi?C'Q @F ®
assumed ones, the more likely it is for BIC to over-fit and IC’ Hoo WD
to under-fit even with large sample size. On the other hand, . ICL| - N=144 « N=144
AIC utilises both the explanation and prediction capasitiea - © Ceiciek T 7 CLAlc C
mixture model. It is thus able to yields better model estiorat
especially when the sample size is moderate or sufficie ~ 11 . “ -
large. B D 0T v D@
d0 d0
5 Learning Visual Context . « N=144 = N=960
? CL-AIC T AacT T et

Experiments were conducted on learning visual contexi - G -
three different dynamic scene modelling problems. Gaos: ' L dBLESF A H L e s
mixture models were adopted in our experiments while [EEEEEE: VIR - g ®
true model kernels were unknown and clearly non-Gaussiau 2 D 4 9
by observation. The model estimation results were obtained | N=960 | N=960

: . (d) Selected Model order: e Al N
by following the same procedure as that of the synthené BIC,CL-AIC AlC
data experiments presented in the preceding section, sunles (f) Typical examples of the selected models

otherwise specified. Figure 3: Model selection for learning spatial context. The

. ) visual context of spatial regions in the tearoom scene dedu

5.1 Learning Spatial Context “A’ “B™: standing spots around the left table, “C”,“D": two
chairs around the left table, “E",“F": two chairs around the

A tearoom scenario was captured at 8Hz over three differerght table, “G”: work surface, and “H”: sink area. They were
days of changeable natural lighting, giving a total of 45ués  |abelled in (f) only when estimated correctly.
(22430 frames) of video data. Each image frame has a size of
320 x 240 pixels. The scene consists of a kitchenette on the tbp this tearoom scenario, the spatial context refers to
right hand side of the view and two dining tables located @n tkemantically meaningful spatial regions, especially tinéy
middle and left side of the view respectively (see Figurg)3(azones where people typically remain static or exhibit only
Typical activities occurring in the kitchenette area im#d localised movements (e.g. sink area and chairs). The proble
people making tea or coffee at the work surface, and people learning inactivity zones was tackled by performing
filling the kettle or washing up in the sink area. Other atié& unsupervised clustering of the inactivity points detected
taking place in the scene mainly involved people sitting @n motion trajectories.  Firstly, a tracker based on blob
standing around the two dining tables while drinking, tatki matching matrix [15] was employed which yielded temporally
or doing the puzzle. In total 66 activities were captureadheadiscretised motion trajectories (see Figure 3(b)). The
of them lasting between 100 and 650 frames. It is noted tleat #stablished trajectories were then smoothed using angingra



filter and the speed of each person tracked on the image plr

was estimated. Secondly, inactivity points on the moti

trajectories were detected when the speed of the trackqalepe

was below a threshold. This inactivity threshold was set .

the average speed of people walking slowly across the view.

A total of 962 inactivity points were detected over the 2245 <——= ~——
frames (see Figure 3(c)). As can be seen in Figure 3(c)),
these inactivity points were mainly distributed around the

semantically meaningful inactivity zones, although thesrev B
also caused by errors in the tracker and the fact that peaple | BIC
exhibit inactivity anywhere in the scene. .

BIC | AIC | ICL | CL-AIC
144 4 | 14 | 2 24 ,
960| 34 | 8 | 12 | 58 A AL

(a) Example image frames with the corresponding mouth shapes extracted

Selected Model Order
~

Table 3: Percentage of correct model order selection (d@e - T BT —

A|c 300
trials) by different criteria for learning spatial contexith 144 sempe see
and 960 samples respectively. g (c) Mean of the selected model orders
I v

Finally, inactivity points were clustered using a Gauss TR N\
Mixture Model with each of the learned mixture componel S PN 6 e o 60 =G
specifying one inactivity zone. The total number of mixture ;-~, A
components, corresponding to the total number of inagtih - 1cL W’N 150 “IN=150

zones, was determined using a model selection criter BICIGL e e
Through observation of the captured video data, 8 inagti
zones can be identified which correspond to the left sideef :- of g Y o Y

work surface, the sink area, 4 of the chairs surrounding %{ . P Q p—
> - S L (el R PV - S == W | R
two dining tables, and 2 spots near the left dining table @h S - 9.

people stand while doing the puzzle. The correct number of v

mixture components was thus set to 8. In our experiments. cioag -N=150 ] IN=390

sample size of the data set varied from 24 to 962 in increm: AIC BICICL
of 24. The maximum number of componerts, ., was set i,

. . . i wtB \E w g
to 15. The model selection results are shown in Figure 3 . Q

Table 3. It can be seen that when the sample size was s e ;’:a:C <n Gl 0%@» s, -

but not too small compared to the number of model parame N @D g

(e.g. 100 < N < 250), all criteria tended to under-fit, with N=390 ”’N =390

CL-AIC outperforming the other three. As the sample sizgb) Selected Model order: ™ '

increased, all criteria turned towards slightly overfidti

except ICL, with the model orders selected by CL-AIC being

the closest to the true model order of 8. Examples of tigure 4: Model selection for learning facial expression

estimated models shown in Figure 3(f) demonstrate that eaghegories. The visual context of facial expressions ufetl

estimated cluster corresponded to one inactivity zone witen “A’”: sad, “B”:smile, “C”:neutral, “D":anger, “E”:grin,“Ffear,

model order was selected correctly. and “G™surprise. They were labelled in (d) only when
estimated correctly.

CL AIC AIC

(d) Typical examples of the selected models

5.2 Learning Facial Expression Context

The visual task of modelling the dynamics of facial expressi training. Secondly, the trained model was employed to track
and performing robust recognition becomes easier if kelafacface and extract the shape of mouth (represented using 12
expression categories can be discovered and modelledisin thndmarks) from the test data which consisted of 613 image
experiment, we aim to learn this important visual contextgis frames. Both the training and test data included sevenrdiite

the shape of mouth. A face was modeled using the Actiexpression categories: neutral, smile, grin, sadness,geger
Appearance Model (AMM) [5]. The face model was learnednd surprise. Some example test frames are shown in Figure
using 1790 images size’0 x 240 pixels, capturing people 4(a). Thirdly, the mouth shape data extracted from the test
exhibiting different facial expression continously. Biysthe frames were projected onto a Mixture of Probabilistic Fpat

jaw outline and the shapes of eye, eyebrow and mouth w&emponent Analysis (MPPCA) space [23] which was learned
manually labeled and represented using 74 landmarks durugjng the mouth shape data labeled manually from the trginin



data. It was identified that only the second and third prialcipSSSE=
components of the learned MPPCA sub-space correspongi
to facial expression changes. Facial expressions were tif
represented using a 2D feature vector comprising the secé
and third MPPCA components of the mouth shape data.

BIC | AIC | ICL | CL-AIC
150| 6 14 | 8 24
390| 4 6 4 40

(b) Examples of automatically detected events indicated with bounding boxes

Table 4: Percentage of correct model order selection (o®@e | BIC 1
trials) by different criteria for learning facial expressicontext ° S
with 150 and 390 samples respectively. ! ? ~

° \\/_/\/\’\/\/\/\N
5

0 200 400 600 800 1000 1200 1400 1600
Sample Size

(d) Mean of the selected model orders

Finally, unsupervised clustering was performed using
Gaussian Mixture Model in the 2D feature space with = = = @ = = = =
number of clusters automatically determined by a model
selection criterion. Ideally, each cluster correspondsrie AIC
facial expression category and the right model order is & WMW
data set was composed of 613 2D feature vectors obtained | -
the testing data set. Different model selection criteriaen | .
tested with sample sizes varying from 30 to 600 in increme

of 30. The maximum number of componerts,,, was set

to 15. The model selection results are shown in Figure 4 an
Table 4. It can be seen that all criteria except AIC tende:

under-estimate the number of components when the sa

size was small but not too small (e.§0 < N < 200) with  *
CL-AIC outperforming BIC, ICL and AIC. With an increasin ’
sample size, the models selected by BIC and CL-AIC tur

towards slightly over-fitting with CL-AIC performing bette

than BIC, while those selected by ICL remained under-fitting
It is also noted that AIC suffered from over-fitting whate
the sample size was. Figure 4(d) shows that, when the m
order was selected as 7, each learned cluster correspc i/
correctly to each of the 7 facial expression categories. :

Selected Model Order

5.3 Learning Scene Event Context

A simulated ‘shopping scenario’ was captured at 25Hz, givin (c) Selected Model orders (e) Typical examples of the selected models
a total of 19 minutes of video data. The video data was Sampﬁdure 5 Model selection for leaming scene event context
at 5 frames per second with a total number of 5699 frames p ) 9 '

images sized20 x 240 pixels. Some typical scenes are show e estimated models are shown using thg first 3 principal
%ogponent of the feature space. The visual context of

in Figure 5. The scene consists of a shopkeeper sat behin . ; . o
table on the right side of the view. A large humber of drinR€Ne events in the shopping scene included "A’: shopkeeper
ving, “B":can being taken, “C":shopper entering/leayin

cans were laid out on a display table. Shoppers entered frt -shopper browsing. and “E”-shobper paving. Thev were
the left and either browsed without paying or took a can and ° PP wsing, _=-SNOpper paying. yw
labelled in (e) only when estimated correctly.

paid for it.

Interpreting the shopping behaviour requires not only the

understanding of the behaviour of shoppers and shopkeepesdene changes, referred to as scene events, are detected and
isolation, but also the interactions between them. Datgcticlustered with the number of clusters being determinedgusin
whether a drink can is taken by the shopper is also a kmpodel selection criteria. It was observed and labeled mbnua
element to shopping behaviour interpretation. To builchsaic that there were largely 5 different types of scene events
complex behaviour model, it is important to learn the visughptured in this scenario, caused by ‘shopper enteringriga
context which, in this case, corresponds to significant atfte scene’, ‘shopper browsing’, ‘can being taken’, ‘shappe
semantically meaningful scene changes characterisedeby phying’, and ‘shopkeeper moving’ respectively. Firstiyeets
location, shape and direction of the change. These significavere automatically detected as groups of accumulated local



pixel changes occurred in the scene. An event was represente Information Theory, pages 267-281, 1973.

by a group of pixels in the image plane (see Figure 5) angh] c. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture
defined as a 7D feature vector (see [24] for details). Atdtal 0  model for clustering with the integrated completed likelihood.
1642 scene events were detected from the 19 minutes of video. PAMI, 22(7):719-725, 2000.

[3] M. Brand and V. Kettnaker. Discovery and segmentation of
activities in video.PAMI, 22(8):844—-851, August 2000.

[4] O.Chapelle, V. Vapnik, and Y. Bengio. Model selection for small
sample regressioMachine Learning, 48(1):9-23, 2002.

BIC | AIC | ICL | CL-AIC
232 | 4 2 2 32
1044| 54 2 6 56

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active app&aran

models. INECCV, pages 484—498, 1998.

[6] A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood
from incomplete data via the EM algorithdournal of the Royal

Secondly, unsupervised clustering was performed in the 7D Statistical Society B, 39:1-38, 1977.

feature space. A Gaussian Mixture Model was adopted. Modgt] A. Dempster, N. Laird, and D. Rubin. Comments on model

selection was conducted using a data set consisting of 1642 selection criteria of Akaike and Schwardournal of the Royal

scene events. In our experiments, the sample size of the data Statistical Society B, 41:276-278, 1979.

set varied from 58 to 1624 in increments of 58. The modefg] M. Figueiredo and A.K. Jain. Unsupervised learning of finite

selection results are presented in Figures 5 and Table % Not mixture modelsPAMI, 24(3):381-396, 2002.

that in Figures 5(e) only the first 3 principal components ofg] s. Gong and T. Xiang. Recognition of group activities using

the feature space are shown for visualisation. It can be seen dynamic probabilistic networks. /CCV, pages 742—-749, 2003.

that when the sample size was small but not too S.ma”_(e[QO] C. Hurivich, R. Shumway, and C. Tsai. Improved estimators of

100 < N < 800), BIC and ICL tended to under-fit while " kyliback-Leibler information for autoregressive model selection

AIC and CL-AIC tended to over-fit. In comparison, CL-AIC in small samplesBiometrika, 77(4):709-719, 1990.

gave the best performance. As the sample Size_ increa 9] C. Hurivich and C. Tsai. Regression and time series model
model orders selected BIC and CL-AIC were getting closer * sejection in small sampleSiometrika, 76:297-307, 1976.

to the true model order of 5 W.Ith CL-AIC per.formlng SIIghtl.y[12] N. Johnson, A. Galata, and D. Hogg. The acquisition and use of
better than BI_C. In the me_antlme, ICL remame_d under-fitting interaction behaviour models. VPR, pages 866-871, Santa
and AIC remained over-fitting. Examples of estimated models  ggarhara, USA, 1998.

shown in Figure 5(e) demonstrate that each estimated cluﬁj%

corresponded to one scene event class when the model o ér
was selected correctly.

Table 5: Percentage of correct model order selection (over éS]
trials) by different criteria for learning scene event @twith
232 and 1044 samples respectively.

R. Kass and A. Raftery. Bayes factodeurnal of the American
Satistical Association, 90:377-395, 1995.

[14] S. Kullback. Information theory and statistics. Dover: New
6 Conclusion York, 1968.

Our experiments demonstrate the effectiveness of the peapol15] S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler

CL-AIC on learning visual context. It is worth pointing out ~ 1racking group of peopleCVIU, 80:42-56, 2000.

that the noise inevitably contained in the visual data can Bé&] S. McKenna and H. Nait-Charif. Learning spatial context from

distributed in a very complex manner. For instance, we motic  tracking using penalised likelihoods. IBPR, 2004.

that the noise formed additional cluster in the spatial exint [17] A. Raftery. = Bayes model selection in social research.

learning case, whereas the noise appeared to be distributed Sociological Methodology, 90:181-196.

randomly over the whole feature space in the scene ever¥] J. RissanenSochastic Complexity in Satistical Inquiry. World

context learning case. Due to the existence of noise, most Scentific, 1989.

model selection criteria tend to over-fit even when suffitien [19] s. Roberts, D. Husmeier, I. Rezek, and W. Penny. Bayesian

large data samples are available. approaches to Gaussian mixture modellipgMI, 20(11):1133—
1142, 1998.

In conclusion, a novel probabilistic model selection ¢it® [20] G. Schwarz. Estimating the dimension of a modahnals of
was proposed to improve existing model selection critesia f Satistics, 6:461-464, 1978.

variable data sample S|zes.. The effectlvengss of C?L'Al[gl] R. Shibata. Selection of the order of an autoregressive model by
were demonstrated on learning visual context informatam f Akaike’s Information CriterionBiometrika, 63:117—126, 1976.
dynamic scene modelling. Finally, it is worth pointing ou
that CL-AIC can be readily extended to select models for d
generated by many other real world problems which have t
similar characteristics to the visual data.

2] Y. Tian, T. Kanade, and J. Cohn. Recognizing action units for
2" facial expression analysi®AMI, 23:97-115, 2001.

E%] M. Tipping and C. Biship. Mixtures of probabilistic principal
component analyzerdleural Computation, 11:443-482, 1999.

[24] T. Xiang, S. Gong, and D. Parkinson. Autonomous visual
events detection and classification without explicit object-
centred segmentation and tracking. BRIVC, pages 233-242,
2002.
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