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Abstract

Learning visual context is a critical step of dynamic scene
modelling. This paper addresses the problem of choosing
the most suitable probabilistic model selection criterionfor
learning visual context of a dynamic scene. A Completed
Likelihood Akaike’s Information Criterion (CL-AIC) is
formulated to estimate the optimal model order (complexity)
for a given visual scene. CL-AIC is designed to overcome
poor model selection by existing popular criteria when the
data sample size varies from very small to large. Extensive
experiments on learning visual context for dynamic scene
modelling are carried out to demonstrate the effectivenessof
CL-AIC, compared to that of BIC, AIC and ICL.

1 Introduction

The problem of dynamic scene understanding can be tackled
based on building models for various activities occurring in
the scene [3, 9, 12, 24, 16]. Learning scene-specific visual
context is a critical step of this model-based dynamic scene
understanding approach, which reduces the complexity of
activity models and makes them tractable given limited visual
observations. Visual context is scene specific. It is thus
defined differently according to the nature of different visual
tasks. For example, the visual context of a scene can be a
semantically meaningful decomposition of spatial regionsfor
human behaviour interpretation [16, 3], or a decompositionof
prototypic facial expressions for facial expression recognition
[22]. We consider the problem of learning visual context as
modelling the underlying structure of activity captured ina
dynamic scene. To this end, we model visual context using
mixture models based on automatic model order selection.

In this paper, we address the problem of choosing the
most appropriate probabilistic criteria for model selection
according to the nature of visual data. Existing probabilistic
model selection criteria can be classified into two categories:
(1) methods based on approximating the Bayesian Model
Selection criterion [17], such as Bayesian Information
Criterion (BIC) [20], Laplace Empirical Criterion (LEC)
[19], and the Integrated Completed Likelihood (ICL) [2];
(2) methods based on the information coding theory such
as the Minimum Message Length (MML) [8], Minimum
Description Length (MDL) [18], and Akaike’s Information
Criterion (AIC) [1]. The performance of various probabilistic

model selection criteria has been studied intensively in the
literature [19, 8, 2, 17, 4, 10], which motivated the derivation
of new criteria. In particular, a number of previous works
were focused on mixture models [19, 8, 2]. However, most
previous studies assume the sample sizes of data sets to be
sufficiently large in comparison to the number of model
parameters [19, 8, 2], except for a few works that focused
on linear autoregression models [4, 10]. This is convenient
due to the fact that the derivations of all existing probabilistic
model selection criteria involve approximations that can
only be accurate when the sample size is sufficiently large,
ideally approaching infinity. Existing criteria for mixture
models are also mostly based on known model kernels, e.g.
Gaussian. Realistically, visual data available for dynamic
scene modelling are always sparse, incomplete, noisy and with
unknown model kernels. Therefore, existing model selection
criteria based on previous studies may not be suitable for
learning visual context given the nature of visual observations
commonly available.

In the rest of the paper, we propose a novel probabilistic
model selection criterion to improve model estimation for data
sets with unknown distribution kernel functions and severe
overlapping among mixture components. Mixture models
are briefly described in Section 2. Bayesian Information
Criterion (BIC) is widely used for determining the model
order of a mixture model [16, 9, 24], which is identical in
formulation to Minimum Description Length (MDL). It is
shown by our experiments (see Sections 4 and 5) that BIC
tends to under-fit when the sample size is small and tends to
over-fit when the sample size is large. Integrated Completed
Likelihood (ICL) was proposed in [2] to solve this problem.
Nevertheless, ICL performs poorly when data belonging to
different mixture components are severely overlapped. We
argue that to overcome these problems with the existing
criteria, we need to optimiseexplicitly the explanation and
prediction functionalities of a mixture model through a model
selection criterion. To this end, we introduce in Section 3 a
Completed Likelihood AIC (CL-AIC) criterion, which aims
to give the optimal clustering of the given data set and best
predict unseen data. In Section 4, we analyse through synthetic
data experiments how the performance of CL-AIC are affected
by two factors: (1) the sample size, and (2) whether and
how the true kernel functions are different from the assumed
ones. Extensive experiments are also presented in Section 5
to demonstrate the effectiveness of CL-AIC on learning visual
context for dynamic scene understanding, compared to that of
BIC, AIC and ICL. A conclusion is drawn in Section 6.



2 Mixture Models

Suppose aD-dimensional random variabley follows a
K-component mixture distribution, the probability density
function of y can be written asp(y|θ) =

∑K

k=1 wkp(y|θk),
where wk is the mixing probability for thekth mixture
component with0 ≤ wk ≤ 1 and

∑K

k=1 wk = 1, θk is the
internal parameters describing thekth mixture component,
and θ = {θ1, . . . ,θK ;w1, . . . , wK} is a CK dimensional
vector describing the complete set of parameters for the
mixture model. Let us denoteN independent and identically
distributed samples ofy as Y = {y(1), ...,y(N)}. The
log-likelihood of observingY given aK-component mixture
model is

log p(Y|θ) =
N
∑

n=1

(

log
K
∑

k=1

wkp(y(n)|θk)

)

, (1)

where p(y(n)|θk) defines the model kernel for thek-th
component. In this paper, the model kernel functions for
different mixture components are assumed to have the same
form. If the number of mixture componentsK is known, the
Maximum Likelihood (ML) estimate of model parameters,
given byθ̂ = arg maxθ{log p(Y|θ)}, can be computed using
the EM algorithm [6]. Therefore the problem of estimating a
mixture model boils down to the estimation ofK, known as
the model order selection problem. AK-component mixture
model is thereafter denoted asMK .

3 Completed Likelihood Akaike’s Information Criterion
(CL-AIC)

Given a data setY, a mixture modelMK can be used for
three objectives: (1) estimating the unknown distributionthat
most likely generates the observed data, (2) clustering the
given data set, and (3) predicting unseen data. Objectives
(1) and (2) emphasise data explanation while objective (3) is
concerned with data prediction. Model selection criteria based
on approximating the Bayesian Model Selection criterion
[17], such as Bayesian Information Criterion (BIC) [20] and
Laplace Empirical Criterion (LEC) [19], choose the model that
maximisesp(Y|MK), the probability of observing a data set
Y given a candidate modelMK . They thus enforce mainly
objective (1). When the true distribution kernel functions are
very different from the assumed ones, all these criteria tend to
choose models with the number of components larger than the
true number of clusters in order to approximate approximate
the unknown distribution more accurately. To better balance
the explanation and prediction capabilities of a mixture model,
we derive a novel model selection criterion, referred as
CL-AIC. CL-AIC utilises Completed Likelihood (CL), which
makes explicit the clustering objective of a mixture model,and
follows a derivation procedure similar to that of AIC, which
chooses the model that best predict unseen data.

Let us first formulate Completed Likelihood (CL). The
complete data for aK-component mixture model is a

combination of the data set and the labels of each data sample:

Ȳ = {Y,Z} =
{

(y(1), z(1)), ..., (y(N), z(N))
}

,

where Z =
{

z(1), ..., z(n), ..., z(N)
}

, and z(n) =
{

z
(n)
1 , ..., z

(n)
K

}

is a binary label vector such thatz
(n)
k = 1

if y(n) belongs to thekth mixture component andz(n)
k = 0

otherwise.Z is normally unknown, and must be inferred from
Y. The completed log-likelihood of̄Y is:

CL(K) = log p(Y|θ) + log p(Z|Y,θ) (2)

=

N
∑

n=1

log

K
∑

k=1

wkp(y(n)|θk) +

N
∑

n=1

K
∑

k=1

z
(n)
k log p

(n)
k

wherep
(n)
k is the conditional probability ofy(n) belonging to

thekth component and can be computed as:

p
(n)
k =

wkp(y(n)|θk)
∑K

i=1 wip(y(n)|θi)
. (3)

In practice, the true parametersθ in Equation (3) is replaced
using the ML estimatêθ and the completed log-likelihood is
rewritten as:

CL(K) =

N
∑

n=1

log

K
∑

k=1

ŵkp(y(n)|θ̂k) +

N
∑

n=1

K
∑

k=1

ẑ
(n)
k log p̂

(n)
k

(4)
where

ẑ
(n)
k =

{

1 if arg maxj p̂
(n)
j = k

0 otherwise.
(5)

CL-AIC aims to choose the model that gives the best clustering
of the observed data and has the minimal divergence to the true
model, which thus best predicts unseen data. The divergence
between a candidate model and the true model is measured
using the Kullback-Leibler information [14]. Given a complete
data setȲ, we assume that̄Y is generated by the unknown
true modelM0 with model parameterθM0

. For any given
model MK and the Maximum Likelihood EstimatêθMK

,
the Kullback-Leibler divergence between the two models is
computed as

d(M0,MK) = E

[

log

(

p(Ȳ|M0,θM0
)

p(Ȳ|MK , θ̂MK
)

)]

. (6)

Ranking the candidate models according tod(M0,MK) is
equivalent to ranking them according toδ(M0,MK) =

E
[

−2 log p(Ȳ|MK , θ̂MK
)
]

. δ(M0,MK) cannot

be computed directly since the unknown true model
is required. However, it was noted by Akaike [1]
that −2 log p(Ȳ|MK , θ̂MK

) can serve as a biased
approximation of δ(M0,MK), and the bias adjustment

E
[

δ(M0,MK) + 2 log p(Ȳ|MK , θ̂MK
)
]

converges to2CK



when the number of data sample approaches infinity. Our
CL-AIC is thus derived as:

CL−AIC = − log p(Ȳ|MK , θ̂MK
) + CK . (7)

whereCK is the dimensionality of the parameter space. The
first term on the right hand side of (7) is the completed
likelihood given by Equation (4). We thus have:

CL−AIC = −

N
∑

n=1

log

K
∑

k=1

ŵkp(y(n)|θ̂k)

−
N
∑

n=1

K
∑

k=1

ẑ
(n)
k log p̂

(n)
k + CK . (8)

The first and third terms on the right hand side of Equation
(8) emphasise the prediction capability of the model, whilethe
second term, favouring well separated mixture components,
enforces the explanation capability of the model. This
formulation results in a number of important differences
compared to existing techniques:

1. Unlike previous probabilistic model selection criteria, CL-
AIC attempts to optimiseexplicitly the explanation and
prediction capabilities of a model. This makes CL-AIC
theoretically attractive. The effectiveness of CL-AIC in
practice is demonstrated through experiments in Sections
4 and 5.

2. Compared to a standard AIC, our CL-AIC has an extra
penalty term (the second term on the right hand side of
Equation (8)) which always assumes a positive value. This
extra penalty term makes CL-AIC in favour of smaller K
compared to AIC given the same data set. It has been
shown that AIC tends to over-fit by both theoretical [7, 13]
and experimental studies [21, 11]. The extra penalty term
in CL-AIC thus has the effect of rectifying the over-fitting
tendency of AIC.

3. Completed likelihood has been combined with BIC which
leads an Integrated Completed Likelihood (ICL) criterion
[2]. However, reported experiments in [2] indicated that
ICL performs poorly when data belonging to different
mixture components are severely overlapped. We suggest
this is caused by the factor that ICL is a combination of
two explanation oriented criteria without considering the
prediction capability of a mixture model. To that end, CL-
AIC integrates an explanation criterion and a prediction
criterion. It is thus theoretically better justified than ICL.

4 Experiments on Synthetic Data

In this section, we illustrate the effectiveness of our CL-
AIC, compared to that of existing popular model selection
criteria including AIC, BIC and ICL, using synthetic data.
Experiments on learning visual context of three different
real scenarios are presented in Section 5. The experiments

presented in this section aim to examine how the performance
of different criteria is affected by the following two factors: (1)
the sample size and (2) how different the true kernel functions
are from the assumed ones. To this end, Gaussian mixture
models were adopted while synthetic data sets were generated
using non-Gaussian kernels with sample size varying from
very small to large in comparison to the number of model
parameters. To simulate the real world data, data belonging
to different mixture components were severely overlapped.
Moreover, our synthetic data were unevenly distributed among
different mixture components.

Models with the number of componentsK varying from 1 to
Kmax, a number that is considered to be safely larger than
the unknown true numberKtrue, were evaluated. In our
experiments,Kmax was 10 unless otherwise specified. To
avoid being trapped at local maxima, the EM algorithm used
for estimating model parametersθ was randomly initialized for
20 times and the solution that yielded the largest observation
likelihood after 30 iterations were chosen. Each Gaussian
component was assumed to have full covariance. Different
model selection criteria were tested on the data sets with
sample sizes varying from25 to 1000 in increments of25. The
final model selection results are illustrated using the meanand
±1 standard deviation of the selected number of components
over 50 trials, with each trial having a different random number
seed.

We first consider a situation under which the assumed kernel
functions are different from the true one, but not by too
much. A data set was firstly generated according to a Gaussian
mixture distribution whose parameters are:

w1 = 0.05, w2 = 0.10, w3 = 0.20, w4 = 0.40, w5 = 0.25;
µ1 = [1.5, 6.0]T ,µ2 = [7.0, 1.0]T ,µ3 = [6.0, 4.0]T ,

µ4 = [7.0, 7.0]T ,µ5 = [3.0, 3.0]T ;Σ1 =

[

1.89 0.25
0.25 0.50

]

,

Σ2 =

[

0.72 0.14
0.14 0.34

]

,Σ3 =

[

0.99 0.04
0.04 0.65

]

,

Σ4 =

[

1.78 0.46
0.46 0.42

]

,Σ5 =

[

1.97 0.05
0.05 0.10

]

,

(9)
where wk, µk and Σk are the mixing probability, mean
vector and covariance matrix for thekth Gaussian component
respectively. The data were then perturbed with uniformly
distributed random noise. The noise had a range of[−0.5 0.5]
in each dimension of the data distribution space. The model
selection results are presented in Figure 1 and table 1.

BIC AIC ICL CL-AIC
100 0 10 0 48
725 88 64 82 100

Table 1: Percentage of correct model order selection (over 50
trials) by different criteria for synthetic Noisy Gaussiandata
with 100 and 725 samples respectively.
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Figure 1: Model selection results for synthetic Gaussian data
synthetic Gaussian data perturbed with uniformly distributed
random noise.

Figures 1(a) and (b) show how the performance of different
criteria were affected by the sample size of the data set. When
the data set was sampled extremely sparsely (e.g.N < 50),
all 5 criteria tend to over-fit. As the sample size increased,
the number of components determined by all the criteria
decreased. In particular, BIC, ICL, and CL-AIC all turned from
over-fitting to under-fitting before converging towards thetrue
component number, with the number of components selected
by CL-AIC being the closest to the true number 5. It is noted
that when the sample size is large (e.g.N > 500), BIC tended
to over-fit slightly. The over-fitting tendency of BIC when
the assumed kernels are different form the true ones was also
reported in [2]. Overall, AIC appears to favor larger numberof
components even when the sample size is large. It is also noted
that AIC exhibited large variations in the estimated model order
no matter what the sample size was, while other criteria had
smaller variation given larger sample sizes.

We then consider an extreme case where the true kernel
functions are completely different from the assumed ones. A
synthetic 2D data set were generated with data from each

BIC AIC ICL CL-AIC
100 4 2 8 10
600 86 4 94 100

Table 2: Percentage of correct model order selection (over 50
trials) by different criteria for synthetic uniform data with 100
and 600 samples respectively.
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Figure 2: Model selection results for synthetic data of uniform
distribution.

components following the uniform random distribution:

ur(y1, y2) =







1
(r2−r1)·(r4−r3)

if r1 ≤ y1 ≤ r2

& r3 ≤ y2 ≤ r4

0 otherwise,

wherer = [r1, r2, r3, r4] are the parameters of the distribution.
Our data set was generated using a 5-component uniform
mixture model. Its parameters are:

w1 = 0.05, w2 = 0.10, w3 = 0.20, w4 = 0.40, w5 = 0.25;
r1 = [−1.89, 4.07, 4.89, 7.94], r2 = [5.58, 8.42,−0.77, 2.77],
r3 = [4, 17, 7.83, 2.23, 5.77], r4 = [5.41, 8.59, 6.79, 7.21],
r5 = [−0.61, 6.61, 2.47, 3.53].



The model selection results are presented in Figure 2 and Table
2. It can be seen from Figure 2(b) that with a small sample
size (e.g. 50 < N < 200), BIC and ICL tended to under-
fit while AIC and CL-AIC tended to over-fit. As the sample
size increased, BIC slightly over-fitted and ICL slightly under-
fitted, while CL-AIC yielded the most accurate results. Again,
AIC exhibited large variations in the estimated model order
no matter what the sample size was, while other criteria had
smaller variation given larger sample sizes. It is also noted that
AIC suffered from severe over-fitting and failed to converge.

Our experiments show that CL-AIC outperforms BIC, AIC
and ICL when the true kernel functions are different from the
assumed ones and the sample size varies from small to large.
Our experiments also indicate that all criteria tend to over-
fit given extremely sparse data (e.g.N < 2CKtrue

where
CKtrue

is the number of parameters of the true model). Given
a very small sample size, none of the mixture components is
supported well by the data. Data samples belonging to the same
mixture component tend to be interpreted as being drawn from
different mixture components. This explains the over-fitting
tendency for all the model selection criteria. Our experiments
suggest that the more the true kernel functions differ from the
assumed ones, the more likely it is for BIC to over-fit and ICL
to under-fit even with large sample size. On the other hand, CL-
AIC utilises both the explanation and prediction capacities of a
mixture model. It is thus able to yields better model estimation
especially when the sample size is moderate or sufficiently
large.

5 Learning Visual Context

Experiments were conducted on learning visual context of
three different dynamic scene modelling problems. Gaussian
mixture models were adopted in our experiments while the
true model kernels were unknown and clearly non-Gaussian
by observation. The model estimation results were obtained
by following the same procedure as that of the synthetic
data experiments presented in the preceding section, unless
otherwise specified.

5.1 Learning Spatial Context

A tearoom scenario was captured at 8Hz over three different
days of changeable natural lighting, giving a total of 45 minutes
(22430 frames) of video data. Each image frame has a size of
320×240 pixels. The scene consists of a kitchenette on the top
right hand side of the view and two dining tables located on the
middle and left side of the view respectively (see Figure 3(a)).
Typical activities occurring in the kitchenette area included
people making tea or coffee at the work surface, and people
filling the kettle or washing up in the sink area. Other activities
taking place in the scene mainly involved people sitting or
standing around the two dining tables while drinking, talking
or doing the puzzle. In total 66 activities were captured, each
of them lasting between 100 and 650 frames. It is noted that the

same activities performed by different people can differ greatly.

(a) A typical scene (b) Motion trajectories (c) Inactivity points
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(f) Typical examples of the selected models

Figure 3: Model selection for learning spatial context. The
visual context of spatial regions in the tearoom scene included
“A”,“B”: standing spots around the left table, “C”,“D”: two
chairs around the left table, “E”,“F”: two chairs around the
right table, “G”: work surface, and “H”: sink area. They were
labelled in (f) only when estimated correctly.

In this tearoom scenario, the spatial context refers to
semantically meaningful spatial regions, especially inactivity
zones where people typically remain static or exhibit only
localised movements (e.g. sink area and chairs). The problem
of learning inactivity zones was tackled by performing
unsupervised clustering of the inactivity points detected
on motion trajectories. Firstly, a tracker based on blob
matching matrix [15] was employed which yielded temporally
discretised motion trajectories (see Figure 3(b)). The
established trajectories were then smoothed using an averaging



filter and the speed of each person tracked on the image plane
was estimated. Secondly, inactivity points on the motion
trajectories were detected when the speed of the tracked people
was below a threshold. This inactivity threshold was set to
the average speed of people walking slowly across the view.
A total of 962 inactivity points were detected over the 22430
frames (see Figure 3(c)). As can be seen in Figure 3(c)),
these inactivity points were mainly distributed around the
semantically meaningful inactivity zones, although they were
also caused by errors in the tracker and the fact that people can
exhibit inactivity anywhere in the scene.

BIC AIC ICL CL-AIC
144 4 14 2 24
960 34 8 12 58

Table 3: Percentage of correct model order selection (over 50
trials) by different criteria for learning spatial contextwith 144
and 960 samples respectively.

Finally, inactivity points were clustered using a Gaussian
Mixture Model with each of the learned mixture components
specifying one inactivity zone. The total number of mixture
components, corresponding to the total number of inactivity
zones, was determined using a model selection criterion.
Through observation of the captured video data, 8 inactivity
zones can be identified which correspond to the left side of the
work surface, the sink area, 4 of the chairs surrounding the
two dining tables, and 2 spots near the left dining table where
people stand while doing the puzzle. The correct number of
mixture components was thus set to 8. In our experiments, the
sample size of the data set varied from 24 to 962 in increments
of 24. The maximum number of componentsKmax was set
to 15. The model selection results are shown in Figure 3 and
Table 3. It can be seen that when the sample size was small
but not too small compared to the number of model parameters
(e.g. 100 < N < 250), all criteria tended to under-fit, with
CL-AIC outperforming the other three. As the sample size
increased, all criteria turned towards slightly over-fitting
except ICL, with the model orders selected by CL-AIC being
the closest to the true model order of 8. Examples of the
estimated models shown in Figure 3(f) demonstrate that each
estimated cluster corresponded to one inactivity zone whenthe
model order was selected correctly.

5.2 Learning Facial Expression Context

The visual task of modelling the dynamics of facial expressions
and performing robust recognition becomes easier if key facial
expression categories can be discovered and modelled. In this
experiment, we aim to learn this important visual context using
the shape of mouth. A face was modeled using the Active
Appearance Model (AMM) [5]. The face model was learned
using 1790 images sized320 × 240 pixels, capturing people
exhibiting different facial expression continously. Firstly, the
jaw outline and the shapes of eye, eyebrow and mouth were
manually labeled and represented using 74 landmarks during

(a) Example image frames with the corresponding mouth shapes extracted
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(b) Selected Model orders
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(c) Mean of the selected model orders
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(d) Typical examples of the selected models

Figure 4: Model selection for learning facial expression
categories. The visual context of facial expressions included
“A”: sad, “B”:smile, “C”:neutral, “D”:anger, “E”:grin,“F”:fear,
and “G”:surprise. They were labelled in (d) only when
estimated correctly.

training. Secondly, the trained model was employed to track
face and extract the shape of mouth (represented using 12
landmarks) from the test data which consisted of 613 image
frames. Both the training and test data included seven different
expression categories: neutral, smile, grin, sadness, fear, anger
and surprise. Some example test frames are shown in Figure
4(a). Thirdly, the mouth shape data extracted from the test
frames were projected onto a Mixture of Probabilistic Principal
Component Analysis (MPPCA) space [23] which was learned
using the mouth shape data labeled manually from the training



data. It was identified that only the second and third principal
components of the learned MPPCA sub-space corresponded
to facial expression changes. Facial expressions were thus
represented using a 2D feature vector comprising the second
and third MPPCA components of the mouth shape data.

BIC AIC ICL CL-AIC
150 6 14 8 24
390 4 6 4 40

Table 4: Percentage of correct model order selection (over 50
trials) by different criteria for learning facial expression context
with 150 and 390 samples respectively.

Finally, unsupervised clustering was performed using a
Gaussian Mixture Model in the 2D feature space with the
number of clusters automatically determined by a model
selection criterion. Ideally, each cluster corresponds toone
facial expression category and the right model order is 7. The
data set was composed of 613 2D feature vectors obtained from
the testing data set. Different model selection criteria were
tested with sample sizes varying from 30 to 600 in increments
of 30. The maximum number of componentsKmax was set
to 15. The model selection results are shown in Figure 4 and
Table 4. It can be seen that all criteria except AIC tended to
under-estimate the number of components when the sample
size was small but not too small (e.g.50 < N < 200) with
CL-AIC outperforming BIC, ICL and AIC. With an increasing
sample size, the models selected by BIC and CL-AIC turned
towards slightly over-fitting with CL-AIC performing better
than BIC, while those selected by ICL remained under-fitting.
It is also noted that AIC suffered from over-fitting whatever
the sample size was. Figure 4(d) shows that, when the model
order was selected as 7, each learned cluster corresponded
correctly to each of the 7 facial expression categories.

5.3 Learning Scene Event Context

A simulated ‘shopping scenario’ was captured at 25Hz, giving
a total of 19 minutes of video data. The video data was sampled
at 5 frames per second with a total number of 5699 frames of
images sized320× 240 pixels. Some typical scenes are shown
in Figure 5. The scene consists of a shopkeeper sat behind a
table on the right side of the view. A large number of drink
cans were laid out on a display table. Shoppers entered from
the left and either browsed without paying or took a can and
paid for it.

Interpreting the shopping behaviour requires not only the
understanding of the behaviour of shoppers and shopkeeper in
isolation, but also the interactions between them. Detecting
whether a drink can is taken by the shopper is also a key
element to shopping behaviour interpretation. To build such a
complex behaviour model, it is important to learn the visual
context which, in this case, corresponds to significant and
semantically meaningful scene changes characterised by the
location, shape and direction of the change. These significant

(a) Typical scene

(b) Examples of automatically detected events indicated with bounding boxes
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(c) Selected Model orders

0 200 400 600 800 1000 1200 1400 1600
1

2

3

4

5

6

7

8

9

10

Sample Size

S
el

ec
te

d 
M

od
el

 O
rd

er

BIC
AIC
ICL
CL−AIC

(d) Mean of the selected model orders
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(e) Typical examples of the selected models

Figure 5: Model selection for learning scene event context.
The estimated models are shown using the first 3 principal
component of the feature space. The visual context of
scene events in the shopping scene included “A”: shopkeeper
moving, “B”:can being taken, “C”:shopper entering/leaving,
“D”:shopper browsing, and “E”:shopper paying. They were
labelled in (e) only when estimated correctly.

scene changes, referred to as scene events, are detected and
clustered with the number of clusters being determined using
model selection criteria. It was observed and labeled manually
that there were largely 5 different types of scene events
captured in this scenario, caused by ‘shopper entering/leaving
the scene’, ‘shopper browsing’, ‘can being taken’, ‘shopper
paying’, and ‘shopkeeper moving’ respectively. Firstly, events
were automatically detected as groups of accumulated local



pixel changes occurred in the scene. An event was represented
by a group of pixels in the image plane (see Figure 5) and
defined as a 7D feature vector (see [24] for details). A total of
1642 scene events were detected from the 19 minutes of video.

BIC AIC ICL CL-AIC
232 4 2 2 32
1044 54 2 6 56

Table 5: Percentage of correct model order selection (over 50
trials) by different criteria for learning scene event context with
232 and 1044 samples respectively.

Secondly, unsupervised clustering was performed in the 7D
feature space. A Gaussian Mixture Model was adopted. Model
selection was conducted using a data set consisting of 1642
scene events. In our experiments, the sample size of the data
set varied from 58 to 1624 in increments of 58. The model
selection results are presented in Figures 5 and Table 5. Note
that in Figures 5(e) only the first 3 principal components of
the feature space are shown for visualisation. It can be seen
that when the sample size was small but not too small (e.g.
100 < N < 800), BIC and ICL tended to under-fit while
AIC and CL-AIC tended to over-fit. In comparison, CL-AIC
gave the best performance. As the sample size increased,
model orders selected BIC and CL-AIC were getting closer
to the true model order of 5 with CL-AIC performing slightly
better than BIC. In the meantime, ICL remained under-fitting
and AIC remained over-fitting. Examples of estimated models
shown in Figure 5(e) demonstrate that each estimated cluster
corresponded to one scene event class when the model order
was selected correctly.

6 Conclusion
Our experiments demonstrate the effectiveness of the proposed
CL-AIC on learning visual context. It is worth pointing out
that the noise inevitably contained in the visual data can be
distributed in a very complex manner. For instance, we notice
that the noise formed additional cluster in the spatial context
learning case, whereas the noise appeared to be distributed
randomly over the whole feature space in the scene event
context learning case. Due to the existence of noise, most
model selection criteria tend to over-fit even when sufficiently
large data samples are available.

In conclusion, a novel probabilistic model selection criterion
was proposed to improve existing model selection criteria for
variable data sample sizes. The effectiveness of CL-AIC
were demonstrated on learning visual context information for
dynamic scene modelling. Finally, it is worth pointing out
that CL-AIC can be readily extended to select models for data
generated by many other real world problems which have the
similar characteristics to the visual data.
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