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Abstract

The task of discovering natural groupings of input patterns, or clustering, is an important aspect of machine learning and pattern analysis. In
this paper, we study the widely used spectral clustering algorithm which clusters data using eigenvectors of a similarity/affinity matrix derived
from a data set. In particular, we aim to solve two critical issues in spectral clustering: (1) how to automatically determine the number of
clusters, and (2) how to perform effective clustering given noisy and sparse data. An analysis of the characteristics of eigenspace is carried
out which shows that (a) not every eigenvectors of a data affinity matrix is informative and relevant for clustering; (b) eigenvector selection is
critical because using uninformative/irrelevant eigenvectors could lead to poor clustering results; and (c) the corresponding eigenvalues cannot
be used for relevant eigenvector selection given a realistic data set. Motivated by the analysis, a novel spectral clustering algorithm is proposed
which differs from previous approaches in that only informative/relevant eigenvectors are employed for determining the number of clusters
and performing clustering. The key element of the proposed algorithm is a simple but effective relevance learning method which measures the
relevance of an eigenvector according to how well it can separate the data set into different clusters. Our algorithm was evaluated using synthetic
data sets as well as real-world data sets generated from two challenging visual learning problems. The results demonstrated that our algorithm
is able to estimate the cluster number correctly and reveal natural grouping of the input data/patterns even given sparse and noisy data.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The task of discovering natural groupings of input patterns,
or clustering, is an important aspect of machine learning and
pattern analysis. Clustering techniques are more and more fre-
quently adopted by various research communities due to the
increasing need of modelling large amount of data. As an un-
supervised data analysis tool, clustering is desirable for mod-
elling large date sets because the tedious and often inconsistent
manual data labelling process can be avoided. The most pop-
ular clustering techniques are perhaps mixture models and K-
means which are based on estimating explicit models of data
distribution. Typically the distribution of a data set generated
by a real-world system is complex and of an unknown shape,
especially given the inevitable existence of noise. In this case,
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mixture models and K-means are expected to yield poor
results since an explicit estimation of data distribution is
difficult if even possible. Spectral clustering offers an attrac-
tive alternative which clusters data using eigenvectors of a
similarity/affinity matrix derived from the original data set. In
certain cases spectral clustering even becomes the only op-
tion. For instance, when different data points are represented
using feature vectors of variable lengths, mixture models or
K-means cannot be applied, while spectral clustering can still
be employed as long as a pair-wise similarity measure can be
defined for the data.

In spite of the extensive studies in the past on spectral clus-
tering [1–9], two critical issues remain largely unresolved: (1)
how to automatically determine the number of clusters, and
(2) how to perform effective clustering given noisy and sparse
data. Most previous work assumed that the number of clusters
is known or has been manually set [1,2,5]. Recently researchers
started to tackle the first issue, i.e. determining the cluster
number automatically. Smyth [4] proposed to use a Monte
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Fig. 1. Examples showing that not all eigenvectors are informative for spectral clustering. (a) shows a well-separated 2-D data set consisting of three clusters.
The affinity matrix (b) shows clear block structure. (c)–(e) show that the top 3 eigenvectors contain useful information about the natural grouping of the data.
For instance, a simple thresholding of the first eigenvector can separate one cluster from the other two. Comparatively, the fourth and fifth eigenvectors are
less informative. (i)–(p) show another example with a fair amount of overlapping between clusters. As expected, in this less ‘ideal’ case, the distributions of
eigenvector elements are less informative in general in that the gaps between elements corresponding to different clusters are more blurred. However, it is still
the case that some eigenvectors are more informative than others. Note that for better illustration we have ordered the points in (b)–(g) and (j)–(o) so that
points belonging to the same cluster appear consecutively. In all figures, the three clusters are indicated using different symbols in different colours.

Carlo cross validation approach to determine the number of
clusters for sequences modelled using hidden Markov models
(HMMs). This approach is computationally expensive and thus
not suitable for large data sets common to applications such as
image segmentation. Porikli and Haga [6] employed a valid-
ity score computed using the largest eigenvectors1 of a data
affinity matrix to determine the number of clusters for video-

1 The largest eigenvectors are eigenvectors whose corresponding eigen-
values are the largest in magnitude.

based activity classification. Zelnik-Manor and Perona [7]
proposed to determine the optimal cluster number through
minimising the cost of aligning the top eigenvectors with a
canonical coordinate system. The approaches in Refs. [6] and
[7] are similar in that both of them are based on analysing the
structures of the largest eigenvectors of a normalised data
affinity matrix. In particular, assuming a number Km that is
considered to be safely larger than the true number of clus-
ters Ktrue, the top Km eigenvectors were exploited in both
approaches to infer Ktrue. However, these approaches do not
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take into account the inevitable presence of noise in a realistic
data set, i.e. they fail to address explicitly the second issue.
They are thus error prone especially when the sample size
is small.

We argue that the key to solving the two above-mentioned
issues is to select the relevant eigenvectors which provide use-
ful information about the natural grouping of data. To justify
the need for eigenvector selection, we shall answer a couple of
fundamental questions in spectral clustering. First, does every
eigenvector provide useful information (therefore is needed)
for clustering? It has been shown analytically that in an ‘ideal’
case in which all points in different clusters are infinitely far
apart, the elements of the top Ktrue eigenvectors form clus-
ters with distinctive gaps between them which can be readily
used to separate data into different groups [5]. In other words,
all top Ktrue eigenvectors are equally informative. However,
theoretically it is not guaranteed that other top eigenvectors
are equally informative even in the ‘ideal’ case. Figs. 1(f) and
(g) suggest that, in a ‘close-to-ideal’ case, not all top eigen-
vectors are equally informative and useful for clustering. Now
let us look at a realistic case where there exist noise and a
fair amount of similarities between clusters. In this case, the
distribution of elements of an eigenvector is far more com-
plex. A general observation is that the gaps between clusters
in the elements of the top eigenvectors are blurred and some
eigenvectors, including those among the top Ktrue, are unin-
formative [5,8,9]. This is shown clearly in Fig. 1. Therefore,
the answer to the first question is ‘no’ especially given a re-
alistic data set. Second, is eigenvector selection necessary? It
seems intuitive to include those less informative eigenvectors
in the clustering process because, in principle, a clustering al-
gorithm is expected to perform better given more information
about the data grouping. However, in practice, the inclusion of
uninformative eigenvectors can degrade the clustering process
as demonstrated extensively later in the paper. This is hardly
surprising because in a general context of pattern analysis, the
importance of removing those noisy/uninformative features has
long been recognised [10,11]. The answer to the second ques-
tion is thus ‘yes’. Given the answers to the above two ques-
tions, it becomes natural to consider performing eigenvector
selection for spectral clustering. In this paper, we propose a
novel relevant eigenvector selection algorithm and demonstrate
that it indeed leads to more efficient and accurate estimation of
the number of clusters and better clustering results compared
to existing approaches. To our knowledge, this paper is the
first to use eigenvector selection to improve spectral clustering
results.

The rest of the paper is organised as follows. In Section 2,
we first define the spectral clustering problem. An efficient and
robust eigenvector selection algorithm is then introduced which
measures the relevance of each eigenvector according to how
well it can separate a data set into different clusters. Based on
the eigenvector selection result, only the relevant eigenvectors
will be used for a simultaneous cluster number estimation and
data clustering based on a Gaussian mixture model (GMM) and
the Bayesian information criterion (BIC). The effectiveness and
robustness of our approach is demonstrated first in Section 2

using synthetic data sets, then in Sections 3 and 4 on solving
two real-world visual pattern analysis problems. Specifically,
in Section 3, the problem of image segmentation using spec-
tral clustering is investigated. In Section 4, human behaviour
captured on CCTV footage in a secured entrance surveillance
scene is analysed for automated discovery of different types of
behaviour patterns based on spectral clustering. Both synthetic
and real data experiments presented in this paper show that our
approach outperforms the approaches proposed in Refs. [6,7].
The paper concludes in Section 5.

2. Spectral clustering with eigenvector relevance learning

Let us first formally define the spectral clustering problem.
Given a set of N data points/input patterns represented using
feature vectors

D = {f1, . . . , fn, . . . , fN }, (1)

we aim to discover the natural grouping of the input data. The
optimal number of groups/clusters Ko is automatically deter-
mined to best describe the underlying distribution of the data
set. We have Ko = Ktrue if it is estimated correctly. Note
that different feature vectors can be of different dimension-
alities. An N × N affinity matrix A = {Aij } can be formed
whose element Aij measures the affinity/similarity between
the ith and jth feature vectors. Note that A needs to be sym-
metric, i.e. Aij = Aji . The eigenvectors of A can be em-
ployed directly for clustering. However, it has been shown
in Refs. [1,2] that it is more desirable to perform clustering
based on the eigenvectors of the normalised affinity matrix Ā,
defined as

Ā = L− 1
2 AL− 1

2 , (2)

where L is an N × N diagonal matrix with Lii = ∑
jAij .

We assume that the number of clusters is between 1 and Km,
a number considered to be sufficiently larger than Ko. The
training data set is then represented in an eigenspace using the
Km largest eigenvectors of Ā, denoted as

De = {x1, . . . , xn, . . . , xN }, (3)

with the nth feature vector fn being represented as a Km di-
mensional vector xn = [e1n, . . . , ekn . . . , eKmn], where ekn is
the nth element of the kth largest eigenvector ek. Note that
now each feature vector in the new data set is of the same
dimensionality Km. The task of spectral clustering now is
to determine the number of clusters and then group the data
into different clusters using the new data representation in the
eigenspace.

As analysed earlier in the paper, intrinsically only a subset of
the Km largest eigenvectors are relevant for grouping Ko clus-
ters and it is important to first identify and remove those irrele-
vant/uninformative eigenvectors before performing clustering.
How do we measure the relevance of an eigenvector? An intu-
itive solution would be investigating the associated eigenvalue
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for each eigenvector. The analysis in Ref. [5] shows that in an
‘ideal’ case where different clusters are infinitely far apart, the
top Ktrue (relevant) eigenvectors have a corresponding eigen-
value of magnitude 1 and others do not. In this case, simply
selecting those eigenvectors would solve the problem. In fact,
estimation of the number of clusters also becomes trivial by
simply looking at the eigenvalues: it is equal to the number
of eigenvalues of magnitude 1. Indeed, eigenvalues are useful
when the data are clearly separated, i.e. close to the ‘ideal’ case.
This is illustrated in Fig. 1(h) which shows that both eigenvec-
tor selection and cluster number estimation can be solved based
purely on eigenvalues. However, given a ‘not-so-ideal’ data set
such as the one in Fig. 1(i), the eigenvalues are not useful as
all eigenvectors can assume high magnitude and higher eigen-
vectors do not necessarily mean higher relevance (see Figs. 1
(k)–(p)). Next, we propose a data-driven eigenvector selection
approach based on exploiting the structure of each eigenvector
with no assumption made about the distribution of the original
data set D. Specifically, we propose to measure the relevance

of an eigenvector according to how well it can separate a data
set into different clusters.

We denote the likelihood of the kth largest eigenvector ek
being relevant as Rek , with 0�Rek �1. We assume that the ele-
ments of ek, ekn can follow two different distributions, namely
unimodal and multimodal, depending on whether ek is relevant.
The probability density function (pdf) of ekn is thus formulated
as a mixture model of two components:

p(ekn|�ekn
) = (1 − Rek)p(ekn|�1

ekn
) + Rekp(ekn|�2

ekn
),

where �ekn
are the parameters describing the distribution,

p(ekn|�1
ekn

) is the pdf of ekn when ek is irrelevant/redundant

and p(ekn|�2
ekn

) otherwise. Rek acts as the weight or mixing
probability of the second mixture component. In our algorithm,
the distribution of ekn is assumed to be a single Gaussian
(unimodal) to reflect the fact that ek cannot be used for data
clustering when it is irrelevant:

p(ekn|�1
ekn

) = N(ekn|�k1, �k1),

where N(.|�, �) denotes a Gaussian of mean � and covari-
ance �2. We assume the second component of P(ek|�ek) as a
mixture of two Gaussians (multimodal) to reflect the fact that
ek can separate one cluster of data from the others when it is
relevant:

p(ekn|�2
ekn

)=wkN(ekn|�k2, �k2) + (1 − wk)N(ekn|�k3, �k3),

where wk is the weight of the first Gaussian in p(ekn|�2
ekn

).
There are two reasons for using a mixture of two Gaussians even

when ekn forms more than two clusters and/or the distribution
of each cluster is not Gaussian: (1) in these cases, a mixture of
two Gaussians (p(ekn|�2

ekn
)) still fits better to the data compared

to a single Gaussian (p(ekn|�1
ekn

)); (2) its simple form means
that only small number of parameters are needed to describe
p(ekn|�2

ekn
). This makes model learning possible even given

sparse data.
There are 8 parameters required for describing the distribu-

tion of ekn:

�ekn
= {Rek , �k1, �k2, �k3, �k1, �k2, �k3, wk}. (4)

The maximum likelihood (ML) estimate of �ekn
can be obtained

using the following algorithm. First, the parameters of the first
mixture component �1

ekn
are estimated as �k1 = (1/N)

∑N
n=1ekn

and �k1 = (1/N)
∑N

n=1(ekn − �k1)
2. The rest 6 parameters

are then estimated iteratively using expectation maximisation
(EM) [12]. Specifically, in the E-step, the posterior proba-
bility that each mixture component is responsible for ekn is
estimated as:

h1
kn = (1 − Rek)N(ekn|�k1, �k1)

(1 − Rek)N(ekn|�k1, �k1) + wkRekN(ekn|�k2, �k2) + (1 − wk)RekN(ekn|�k3, �k3)
,

h2
kn = wkRekN(ekn|�k2, �k2)

(1 − Rek)N(ekn|�k1, �k1) + wkRekN(ekn|�k2, �k2) + (1 − wk)RekN(ekn|�k3, �k3)
,

h3
kn = (1 − wk)RekN(ekn|�k3, �k3)

(1 − Rek)N(ekn|�k1, �k1) + wkRekN(ekn|�k2, �k2) + (1 − wk)RekN(ekn|�k3, �k3)
.

In the M-step, 6 distribution parameters are re-estimated as:

Rnew
ek

= 1 − 1

N

N∑
n=1

h1
kn, wnew

k = 1

Rnew
ek

N

N∑
n=1

h2
kn,

�new
k2 =

∑N
n=1h

2
knekn∑N

n=1h
2
kn

, �new
k3 =

∑N
n=1h

3
knekn∑N

n=1h
3
kn

,

�new
k2 =

∑N
n=1h

2
kn(ekn − �new

k2 )2

∑N
n=1h

2
kn

,

�new
k3 =

∑N
n=1h

3
kn(ekn − �new

k3 )2

∑N
n=1h

3
kn

.

Since the EM algorithm is essentially a local (greedy) search-
ing method, it could be sensitive to parameter initialisation es-
pecially given noisy and sparse data [12]. To overcome this
problem, the value of Rek is initialised as 0.5 and the values
of the other five parameters, namely �k2, �k3, �k2, �k3 and wk

are initialised randomly. The solution that yields the highest
p(ekn|�2

ekn
) over multiple random initialisations is chosen.

It is important to point out the following:

1. Although our relevance learning algorithm is based on esti-
mating the distribution of the elements of each eigenvector,
we are only interested in learning how likely the distribution
is unimodal or multimodal, which is reflected by the value
of Rek . In other words, among the 8 free parameters of the
eigenvector distribution (Eq. (4)), Rek is the only parame-
ter that we are after. This is why our algorithm works well
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Fig. 2. Synthetic eigenvectors and the estimated relevance measure Rek . The elements of each eigenvectors are composed of three uniformly distributed clusters.
The mean of the three clusters are m1, 0, and −m1, respectively. Obviously, the bigger the value of m1, the more distinctive three clusters are formed in the
distribution of the eigenvector and the more relevant the eigenvector is. (a) m1 = 0.0, Rek = 0.2992. (b) m1 = 0.2, Rek = 0.4479. (c) m1 = 0.4, Rek = 0.6913,
(d) m1 = 0.6, Rek = 0.7409. (e) m1 = 0.8, Rek = 0.8302. (f) m1 = 1.0, Rek = 1.0.

even when there are more than 2 clusters and/or the distri-
bution of each cluster is not Gaussian. This is demonstrated
by a simple example in Fig. 2 and more examples later in
the paper. In particular, Fig. 2 shows that when the distribu-
tions of eigenvector elements belonging to different clusters
are uniform and there are more than two clusters, the value
of Rek estimated using our algorithm can still accurately re-
flect how relevant/informative an eigenvector is. Note that
in the example shown in Fig. 2 synthetic eigenvectors are
examined so that we know exactly what the distribution of
the eigenvector elements is.

2. The distribution of ekn is modelled as a mixture of two
components with one of the mixture itself being a mixture
model. In addition, the two mixtures of the model have clear
semantic meanings: the first mixture corresponds to the uni-
modal mode of the data, the second mixture correspond to
the multimodal model. This makes the model clearly dif-
ferent from a mixture of three components. This difference
must be reflected by the model learning procedure, i.e. in-
stead of learning all 8 parameters simultaneously using EM
as one does for a standard 3-component mixture, the param-
eters are learned in two steps and only the second step is
based on the EM algorithm. Specifically, �ekn

(Eq. (4)) are
not estimated iteratively using a standard EM algorithm al-
though part of �ekn

, namely �2
ekn

, are. This is critical because

if all the 8 parameters are re-estimated in each iteration, the
distribution of ekn is essentially modelled as a mixture of
three Gaussians, and the estimated Rek would represent the
weight of two of the three Gaussians. This is very different
from what Rek is meant to represent, i.e. the likelihood of
ek being relevant for data clustering.

The estimated Rek provides a continuous-value measurement
of the relevance of ek. Since a ‘hard-decision’ is needed for
dimension reduction, we simply eliminate the kth eigenvector
ek among the Km candidate eigenvectors if

Rek < 0.5. (5)

The remaining relevant eigenvectors are then weighted using
Rek . This gives us a new data set denoted as

Dr = {y1, . . . , yn, . . . , yN }, (6)

where yn is a feature vector of dimensionality Kr which is the
number of selected relevant eigenvectors. We model the distri-
bution of Dr using a GMM for data clustering. BIC is then em-
ployed to select the optimal number of Gaussian components,
which corresponds to the optimal number of clusters Ko. Each
feature vector in the training data set is then labelled as one
of the Ko clusters using the learned GMM with Ko Gaussian
components. The complete algorithm is summarised in Fig. 3.
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Fig. 3. The proposed spectral clustering algorithm based on relevant eigenvector selection.

Let us first evaluate the effectiveness of our approach using a
synthetic data set. We consider a one-dimensional data set gen-
erated from 4 different 3-state HMMs (i.e. the hidden variable
at each time instance can assume 3 states). The parameters of an
HMM are denoted as {A, �, B}, where A is the transition ma-
trix representing the probabilities of transition between states,
� is a vector of the initial state probability, and B contains the
parameters of the emission density (in this case Gaussians with
a mean �i and variance �i for the ith state). The parameters of
the 4 HMMs are:

A1 =
⎡
⎢⎣

1/3 1/3 1/3

1 0 0

1/6 1/2 1/3

⎤
⎥⎦ , A2 =

⎡
⎢⎣

1/3 0 2/3

1/3 1/4 5/12

1/6 1/2 1/3

⎤
⎥⎦ ,

A3 =
⎡
⎢⎣

0 1/6 5/6

1/6 1/2 1/3

1/3 1/3 1/3

⎤
⎥⎦ , A4 =

⎡
⎢⎣

5/12 1/2 1/12

0 1/6 5/6

1/3 1/3 1/3

⎤
⎥⎦ ,

�1 = �2 = �3 = �4 =
⎡
⎢⎣

1/3

1/3

1/3

⎤
⎥⎦ ,

B1 = B2 = B3 = B4 =

⎧⎪⎨
⎪⎩

�1 = 1, �2
1 = 0.5

�2 = 3, �2
2 = 0.5

�3 = 5, �2
3 = 0.5

⎫⎪⎬
⎪⎭ . (7)

A training set of 80 sequences was generated which was com-
posed of 20 sequences randomly sampled from each HMM.
The lengths of these segments were set randomly ranging from
200 to 600. The data were then perturbed with uniformly dis-
tributed random noise with a range of [−0.5 0.5]. Given a pair
of sequences Si and Sj, the affinity between them is computed
as:

Aij = 1

2

{
1

Tj

log P(Sj|Hi) + 1

Ti

log P(Si|Hj)

}
, (8)

where Hi and Hj are the 3-state HMMs learned using Si and
Sj, respectively,2 P(Sj|Hi) is the likelihood of observing Sj

2 Please refer to Ref. [13] for the details on learning the parameters of
an HMM from data.

given Hi, P(Si|Hj) is the likelihood of observing Si given Hj,
and Ti and Tj are the lengths of Si and Sj, respectively.3

The proposed algorithm is used to determine the number of
clusters and discover the natural grouping of the data. The re-
sults are shown in Figs. 4 and 5. Km was set to 16 in the ex-
periment. It can be seen from Fig. 5 that the second, third, and
fourth eigenvectors contain strong information about the group-
ing of data while the largest eigenvector is much less informa-
tive. The rest eigenvectors contain virtually no information (see
Figs. 5(e) and (f)). Fig. 4(b) shows the eigenvalues of the largest
16 eigenvectors. Clearly, from these eigenvalues we cannot in-
fer that the second, third, and fourth eigenvectors are the most
informative ones. It can be seen form Fig. 4(c) that the pro-
posed relevance measure Rek accurately reflects the relevance
of each eigenvectors. By thresholding the relevance measure
(Eq. (5)), only e2, e3, and e4 are kept for clustering. Fig. 4(e)
shows that the 4 clusters are clearly separable in the eigenspace
spanning the top 3 most relevant eigenvectors. It is thus not
surprising that the number of clusters was determined correctly
as 4 using BIC on the relevant eigenvectors (see Fig. 4(d)).
The clustering result is illustrated using the re-ordered affinity
matrix in Fig. 4(f), which shows that all four clusters were dis-
covered accurately. We also estimated the number of clusters
using three alternative methods: (a) BIC using all 16 eigenvec-
tors; (b) Porikli and Haga’s validity score [6] (maximum score
correspond to the optimal number); and (c) Zelnik–Perona cost
function [7] (minimum cost correspond to the optimal num-
ber). Figs. 4(g)–(i) show that none of these methods was able
to yield an accurate estimate of the cluster number.

In the previous synthetic data experiment, the 4 clusters in the
data set have the same number of data points. It is interesting
to evaluate the performance of the proposed algorithm using
unevenly distributed data sets since a real-world data set is more
likely to be unevenly distributed across clusters. In the next
experiment, a data set was generated by the same 4 different 3-
state HMMs but with different clusters having different sizes.
In particular, the size of the largest cluster is 12 times bigger
than that of the smallest one. Each data point was perturbed

3 Note that there are other ways to compute the affinity between two
sequences modelled using DBNs [14,15]. However, we found through our
experiments that using different affinity measures makes little difference.
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Fig. 4. Clustering a synthetic data set using our spectral clustering algorithm. (a): the normalised affinity matrix constructed by modelling each sequence using
an HMM. The eigenvalues of the Km = 16 largest eigenvectors is shown in (b). (c): the learned relevance for the Km = 16 largest eigenvectors. The second,
third, and fourth largest eigenvectors were determined as being relevant using Eq. (5). (d) shows the BIC model selection results; the optimal cluster number
was determined as 4. (e): the 80 data sample plotted using the three relevant eigenvectors, i.e. e2, e3, and e4. Points corresponding to different classes are
colour coded in (e) according to the classification result. (f): the affinity matrix re-ordered according to the result of our clustering algorithm. (g)–(i) show
that the cluster number was estimated as 2, 5, and 3, respectively, using three alternative approaches.

by random noise with the identical uniform distribution as the
previous experiment. Fig. 6 shows that the cluster number was
correctly determined as 4 and all data points were grouped into
the right clusters. A data set of a more extreme distribution was
also clustered using our algorithm. In this experiment, the size
of the largest cluster is 54 times bigger than that of the smallest
one. Fig. 7 show that the number clusters was determined as

3. As a result, the smallest cluster was merged with another
cluster.

Note that in the experiments presented above the data syn-
thesised from the true models were perturbed using noise. In
a real-world application, there will also be outliers in the data,
i.e. the data generated by the unknown model are replaced by
noise. In order to examine the effect of outliers on the proposed
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Fig. 5. The distributions of the elements of some eigenvectors of the normalised affinity matrix shown in Fig. 4(a). Elements corresponding to different classes
are colour coded according to the classification result. For better illustration we have ordered the points so that points belonging to the same cluster appear
consecutively. In all figures, the four clusters are indicated using different colours.

Fig. 6. Clustering an unevenly distributed synthetic data set using our spectral clustering algorithm. The number of data points in each of the four clusters are
4, 8, 20, and 48, respectively. (a): the learned relevance for the Km = 16 largest eigenvectors. The first and second largest eigenvectors were determined as
being relevant using Eq. (5). (b) shows the BIC model selection results; the cluster number was determined correctly as 4. (c): the affinity matrix re-ordered
according to the result of our clustering algorithm. All four clusters were discovered correctly.

clustering algorithm, two more synthetic data experiments were
carried out. In the first experiment, 5% of the data points used in
Fig. 4 were replaced with uniformly distributed random noise
with a range of [0 6] (e.g. in a sequence of a length 400, 20 data
points were randomly chosen and replaced by noise). Fig. 8
indicates that the 5% outliers had little effect on clustering re-
sult. In particular, it was automatically determined that there

were 4 clusters. After clustering, only 1 data point was grouped
into the wrong cluster. In the second experiment, 20% of the
data points were substituted using noise. In this experiment,
the number of clusters was determined as 3 (see Fig. 8(b)).
Fig. 9(c) shows the clustering result. It was found that among
the three clusters, one cluster of 19 data points were all gen-
erated by one HMM. The other two clusters, sized 32 and
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Fig. 7. Clustering a synthetic data set with an extremely uneven distribution using our spectral clustering algorithm. The number of data points in each of
the four clusters are 1, 10, 15, and 54, respectively. (a): the learned relevance for the Km = 16 largest eigenvectors. The first and second largest eigenvectors
were determined as being relevant using Eq. (5). (b) shows the BIC model selection results; the cluster number was determined as 3. (c): the affinity matrix
re-ordered according to the result of our clustering algorithm. The two smallest clusters were merged together.

Fig. 8. Clustering a synthetic data set with 5% outliers using our spectral clustering algorithm. (a): the learned relevance for the Km = 16 largest eigenvectors.
The second and third largest eigenvectors were determined as being relevant using Eq. (5). (b) shows the BIC model selection results; the cluster number was
determined correctly as 4. (c): the affinity matrix re-ordered according to the result of our clustering algorithm.

Fig. 9. Clustering a synthetic data set with 20% outliers using our spectral clustering algorithm. (a): the learned relevance for the Km =16 largest eigenvectors.
The first, second, and fourth largest eigenvectors were determined as being relevant using Eq. (5). (b) shows the BIC model selection results; the cluster
number was determined as 3. (c): the affinity matrix re-ordered according to the result of our clustering algorithm.
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29, respectively, accounted for the other three HMMs in the
true model.

In summary, the experiments demonstrate that our spectral
clustering algorithm is able to deal with unevenly distributed
data sets as long as the size difference between clusters is not
too extreme. The algorithm is also shown to be robust to both
perturbed noise and outliers.

3. Image segmentation

Our eigenvector selection based spectral clustering algorithm
has been applied to image segmentation. A pixel-pixel pair-
wise affinity matrix A is constructed for an image based on
the intervening contours method introduced in Ref. [16]. First,
for the ith pixel on the image the magnitude of the orientation

Fig. 10. An example image shown in (a) is segmented as shown in (j). The corresponding eigenvalues of the top 20 eigenvectors are shown in (k). The learned
relevance for the 20 largest eigenvectors is shown in (l). (b)–(e) and (f)–(i) show the top 4 most relevant and irrelevant eigenvectors among the 20 largest
eigenvectors respectively. (m) and (n) show that Ko was estimated as 8 and 2 with and without relevant eigenvector selection, respectively, using BIC. (o) and
(p) show that Ko was estimated as 5 and 9 using the Porikli–Haga validity score and Zelnik–Perona cost function, respectively.

energy along the dominant orientation is computed as OE(i)

using oriented filter pairs. The local support area for the compu-
tation of OE(i) has a radius of 30. The value of OE(i) ranges
between 0 and infinity. A probability-like variable pcon is then
computed as

pcon = 1 − exp(−OE(i)/�).

The value of � is related to the noise level of the image. It is
set as 0.02 in this paper. The value of pcon is close to 1 when
the orientation energy is much greater than the noise level,
indicating the presence of a strong edge. Second, given any pair
of pixels in the image, the pixel affinity is computed as

Aij = 1 − max
x∈Mij

pcon(x),
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Fig. 11. Further examples of image segmentation. The segmentation results using the proposed algorithm and Zelnik-Manor and Perona’s self-tuning spectral
clustering algorithm are shown in the middle and bottom row, respectively. From left to right, the optimal number of segments Ko were determined as 7, 7,
5 using our algorithm. They were estimated as 4, 9, 4 using the self-tuning approach.

where Mij are those local maxima along the line connecting
pixels i and j. The dissimilarity between pixels i and j is high
(Aij is low) if the orientation energy along the line between
the two pixels is strong (i.e. the two pixels are on the different
sides of a strong edge). The cues of contour and texture dif-
ferences are exploited simultaneously in forming the affinity
matrix. The spectral clustering algorithm using such an affin-
ity matrix aims to partition an image into regions of coherent
brightness and texture. Note that colour information is not used
this formulation.

Fig. 10 illustrates in detail how our algorithm works for im-
age segmentation. Given the original image in Fig. 10(a), the
maximum number of segments was set to 20. The associated
eigenvalues are shown in Fig. 10(k). Note that all the top 20
eigenvectors have an eigenvalue of magnitude close to 1. Figs.
10(b)–(i) show the distributions of elements for a number of
the top 20 eigenvectors. It can be seen that some eigenvectors
contains strong information on the partition of coherent image
regions (e.g. e1, e2, e3, e5) while others are rather uninforma-
tive (e.g. e13, e14, e17, e20). Fig. 10(k) shows the learned rele-
vance for each of the largest 20 eigenvectors. After eigenvector
selection, 12 eigenvectors are kept for clustering. The number
of clusters/image segments was determined as 8 by using only
the relevant eigenvectors (see Fig. 10(m)). The segmentation
result in Fig. 10(j) indicates that the image is segmented into
meaningful coherent regions using our algorithm. In compar-
ison, both Porikli and Haga’s validity score and BIC without

eigenvector selection led to severe under-estimation of the num-
ber of image segments. Zelnik-Manor and Perona’s self-tuning
spectral clustering approach [7]4 yielded comparable results
to ours on this particular image (see Figs. 10(p) and (q)).

Our algorithm has been tested on a variety of natural images.
Figs. 11 and 12 show some segmentation results. Km was set
to 20 in all our experiments. Our results show that (1) regions
corresponding to objects or object parts are clearly separated
from each other, and (2) the optimal numbers of image seg-
ments estimated by our algorithm reflect the complexity of the
images accurately. We also estimated the number of images
segments without eigenvector selection based on BIC. The
estimated cluster numbers were either 2 or 3 for the images
presented in Figs. 11 and 12. This supports our argument that
selecting the relevant eigenvectors is critical for spectral clus-
tering. The proposed algorithm was also compared with the se
lf-tuning spectral clustering approach introduced in Ref. [7]. It
can been seen from Figs. 11 and 12 that in comparison, our ap-
proach led to more accurate estimation of the number of image
segments and better segmentation. In particular, in Figs. 11(a)
and (c) and Fig. 12(b), the self-tuning approach underestimated
the number of image segments. This resulted in regions from
different objects being grouped into a single segment. In the
examples shown in Fig. 11(b) and Figs. 12(a) and (b), although
the two approaches obtained similar numbers of clusters, the

4 Courtesy of L. Zelnik-Manor for providing the code.
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Fig. 12. Another set of examples of image segmentation. The segmentation results using the proposed algorithm and Zelnik-Manor and Perona’s self-tuning
spectral clustering algorithm are shown in the middle and bottom row, respectively. From left to right, the optimal number of segments Ko were determined
as 9, 4, 8 using our algorithm. They were estimated as 9, 2, 7 using the self-tuning approach.

segmentation results obtained using our algorithm are still
superior.

4. Video behaviour pattern clustering

Our spectral clustering algorithm has also been applied to
solve the video based behaviour profiling problem in automated
CCTV surveillance. Given 24/7 continuously recorded video or
online CCTV input, the goal of automatic behaviour profiling
is to learn a model that is capable of detecting unseen abnor-
mal behaviour patterns whilst recognising novel instances of
expected normal behaviour patterns. To achieve the goal, the
natural grouping of behaviour patterns captured in a training

data set is first discovered using the proposed spectral cluster-
ing algorithm. These groupings form behaviour classes. A be-
haviour model is then constructed based on the clustering result.
This model can be employed to detect abnormal behaviours
and recognise normal behaviours.

4.1. Behaviour pattern representation

A continuous surveillance video V is first segmented into N
segments V = {v1, . . . , vn, . . . , vN } so that each segment con-
tains approximately a single behaviour pattern. The nth video
segment vn consisting of Tn image frames is represented as
vn ={In1, . . . , Int , . . . , InT n}, where Int is the tth image frame.
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Fig. 13. Modelling a behaviour pattern Pn = {pn1, . . . , pnt , . . . , pnT n } where pnt = {p1
nt , . . . , p

k
nt , . . . , p

Ke
nt } using an HMM and a MOHMM. Observation

nodes are shown as shaded circles and hidden nodes as clear circles.

Depending on the nature of the video sequence to be processed,
various segmentation approaches can be adopted. Since we are
focusing on surveillance video, the most commonly used shot
change detection based segmentation approach is not appro-
priate. In a not-too-busy scenario, there are often non-activity
gaps between two consecutive behaviour patterns which can be
utilised for activity segmentation. In the case where obvious
non-activity gaps are not available, an on-line segmentation al-
gorithm proposed in Ref. [17] can be adopted. Alternatively,
the video can be simply sliced into overlapping segments with
a fixed time duration [18].

A discrete event based approach is then adopted for behaviour
representation [19,20]. Firstly, an adaptive Gaussian mixture
background model [21] is adopted to detect foreground pixels
which are modelled using pixel change history (PCH) [22].
Secondly, the foreground pixels in a vicinity are grouped into
a blob using the connected component method. Each blob with
its average PCH value greater than a threshold is then defined
as a scene-event. A detected scene-event is represented as a 7-
dimensional feature vector

f = [x̄, ȳ, w, h, Rf , Mpx, Mpy], (9)

where (x̄, ȳ) is the centroid of the blob, (w, h) is the blob di-
mension, Rf is the filling ratio of foreground pixels within the
bounding box associated with the blob, and (Mpx, Mpy) are
a pair of first order moments of the blob represented by PCH.
Among these features, (x̄, ȳ) are location features, (w, h) and
Rf are principally shape features but also contain some indi-
rect motion information, and (Mpx, Mpy) are motion features
capturing the direction of object motion.

Thirdly, classification is performed in the 7D scene-event
feature space using a GMM. The number of scene-event classes
Ke captured in the videos is determined by automatic model
order selection based on BIC [23]. The learned GMM is used
to classify each detected event into one of the Ke event classes.
Finally, the behaviour pattern captured in the nth video segment
vn is represented as a feature vector Pn, given as

Pn = [pn1, . . . , pnt , . . . , pnT n ], (10)

where Tn is the length of the nth video segment and the tth
element of Pn is a Ke dimensional variable:

pnt = [p1
nt , . . . , p

k
nt , . . . , p

Ke
nt ]. (11)

pnt corresponds to the tth image frame of vn where pk
nt is the

posterior probability that an event of the kth event class has
occurred in the frame given the learned GMM. If an event of
the kth class is detected in the tth image frame of vn, we have
0 < pk

nt �1; otherwise, we have pk
nt = 0. Note that multiple

events from different event classes can be detected simultane-
ously in a single frame.

4.2. Forming a behaviour pattern affinity matrix

Consider a training data set D = {P1, . . . , Pn, . . . , PN } con-
sisting of N behaviour patterns, where Pn is the nth behaviour
pattern feature vector as defined above. To cluster the data using
the proposed spectral clustering algorithm, a similarity mea-
sure between a pair of behaviour patterns needs to be defined.
Note that the feature vectors Pn can be of different lengths;
therefore dynamic warping is required before they can be com-
pared with. A definition of a distance/affinity metric among
these variable length feature vectors is not simply Euclidean
therefore requires a nontrivial string similarity measure.

We utilise dynamic Bayesian networks (DBNs) to provide a
dynamic representation of each behaviour pattern feature vec-
tor in order to both address the need for dynamic warping and
provide a string similarity metric. More specifically, each be-
haviour pattern in the training set is modelled using a DBN.
To measure the affinity between two behaviour patterns rep-
resented as Pi and Pj , two DBNs denoted as Bi and Bj are
trained on Pi and Pj , respectively, using the EM algorithm
[12,24]. Similar to the synthetic data case (see Section 2), the
affinity between Pi and Pj is then computed as:

Aij = 1

2

{
1

Tj

log P(Pj |Bi ) + 1

Ti

log P(Pi |Bj )

}
, (12)

where P(Pj |Bi ) is the likelihood of observing Pj given Bi ,
and Ti and Tj are the lengths of Pi and Pj , respectively.

DBNs of different topologies can be used. However, it is
worth pointing out that since a DBN needs to be learned for
every single behaviour pattern in the training data set which
could be short in duration, a DBN with less number of param-
eters is desirable. In this work, we employ a multi-observation
hidden Markov model (MOHMM) [19] shown in Fig. 13(b).
Compared to a standard HMM (see Fig. 13(a)), the obser-
vational space is factorised by assuming that each observed
feature (pk

nt ) is independent of each other. Consequently, the
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Fig. 14. Examples of behaviour patterns captured in a corridor entrance scene. (a)–(f) show image frames of commonly occurred behaviour patterns belonging
to the 6 behaviour classes listed in Table 1. (g) and (h) show examples of rare behaviour patterns captured in the scene. (g): one person entered the office
following another person without using an entry card. (h): two people left the corridor after a failed attempt to enter the door. The four classes of events
detected automatically, ‘entering/leaving the near end of the corridor’, ‘entering/leaving the entry-door’, ‘entering/leaving the side-doors’, and ‘in corridor with
the entry door closed’, are highlighted in the image frames using bounding boxes in blue, cyan, green and red, respectively.

number of parameters for describing an MOHMM is much
lower than that for an HMM (2KeNs +N2

s −1 for an MOHMM
and (K2

e +3Ke)Ns/2 +N2
s −1 for an HMM). Note that in this

paper, the number of hidden states for the MOHMM is set to
Ke, i.e. the number of event classes. This is reasonable because
the value of Ns should reflect the complexity of a behaviour
pattern, so should the value of Ke.

4.3. Constructing a behaviour model

Using our relevant eigenvector selection based spectral clus-
tering algorithm described in Section 2, the N behaviour pat-
terns in the training set are clustered into Ko behaviour pattern
classes. To build a model for the observed/expected behaviour,
we first model the kth behaviour class using an MOHMM Bk .
The parameters of Bk , �Bk

are estimated using all the patterns in
the training set that belong to the kth class. A behaviour model
M is then formulated as an mixture of the Ko MOHMMs. Given
an unseen behaviour pattern, represented as a behaviour pattern
feature vector P, the likelihood of observing P given M is

P(P|M) =
K∑

k=1

Nk

N
P(P|Bk), (13)

Table 1
Six classes of commonly occurred behaviour patterns in the entrance scene

C1 From the office area to the near end of the corridor
C2 From the near end of the corridor to the office area
C3 From the office area to the side-doors
C4 From the side-doors to the office area
C5 From the near end of the corridor to the side-doors
C6 From the side-doors to the near end of the corridor

where N is the total number of training behaviour patterns and
Nk is the number of patterns that belong to the kth behaviour
class.

Once the behaviour model is constructed, an unseen be-
haviour pattern is detected as abnormal if

P(P|M) < ThA, (14)

where ThA is a threshold. When an unseen behaviour pattern is
detected as normal, the normal behaviour model M can also be
used for recognising it as one of the K behaviour pattern classes
learned from the training set. More specifically, an unseen be-
haviour pattern is assigned to the k̂th behaviour class when

k̂ = arg max
k

{P(P|Bk)}. (15)
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Fig. 15. An example of behaviour pattern clustering. (c) shows that the top 6 largest eigenvectors were determined as relevant features for clustering. (d) and
(g) show the number of behaviour classes was determined as 6 and 2 using BIC with and without relevant eigenvector selection, respectively. (h) and (i) show
that using Porikli and Haga’s validity score and Zelnik-Manor and Perona’s cost function, the class number was estimated as 1 and 2, respectively.
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Fig. 16. The performance of abnormality detection and behaviour recognition for the corridor scene. (a): the mean and ±1 standard deviation of the ROC
curves for abnormality detection obtained over 20 trials. (b): confusion matrix for behaviour recognition. Each row represents the probabilities of that class
being confused with all the other classes averaged over 20 trials. The main diagonal of the matrix shows the fraction of patterns correctly recognised and is
as follows: [.68 .63 .72 .84 .92 .85 .85].

4.4. Experiments

Experiments were conducted on an entrance surveillance sce-
nario. A CCTV camera was mounted on the ceiling of an office
entry corridor, monitoring people entering and leaving the of-
fice area (see Fig. 14). The office area is secured by an entrance-
door which can only be opened by scanning an entry card on
the wall next to the door (see middle frame in Fig. 14(b)). Two
side-doors were also located at the right hand side of the cor-
ridor. People from both inside and outside the office area have
access to those two side-doors. Typical behaviours occurring
in the scene would be people entering or leaving either the of-
fice area or the side-doors, and walking towards the camera.
Each behaviour pattern would normally last a few seconds. For
this experiment, a data set was collected over 5 different days
consisting of 6 h of video totalling 432 000 frames captured at
20 Hz with 320 × 240 pixels per frame. This data set was then
segmented into sections separated by any motionless intervals
lasting for more than 30 frames. This resulted in 142 video seg-
ments of actual behaviour pattern instances. Each segment has
on average 121 frames with shortest 42 and longest 394.

Model training: A training set consisting of 80 video seg-
ments was randomly selected from the overall 142 segments
without any behaviour class labelling of the video segments.
The remaining 62 segments were used for testing the trained
model later. This model training exercise was repeated 20 times
and in each trial a different model was trained using a different
random training set. This is in order to avoid any bias in the ab-
normality detection and normal behaviour recognition results.

Discrete events were detected and classified using automatic
model order selection in clustering, resulting in four classes
of events corresponding to the common constituents of all be-
haviours in this scene: ‘entering/leaving the near end of the cor-
ridor’, ‘entering/leaving the entry-door’, ‘entering/leaving the
side-doors’, and ‘in corridor with the entry door closed’. Exam-
ples of detected events are shown in Fig. 14 using colour-coded

bounding boxes. It is noted that due to the narrow view nature
of the scene, differences between the four common events are
rather subtle and can be mis-identified based on local informa-
tion (space and time) alone, resulting in errors in event detec-
tion. The fact that these events are also common constituents
to different behaviour patterns means that local events treated
in isolation hold little discriminative information for behaviour
profiling.

The upper limit of the behaviour class number Km was set to
16 in the experiments. Over the 20 trials, on average 6 eigen-
vectors were automatically determined as being relevant for
clustering with smallest 4 and largest 9. The number of clusters
for each training set was determined automatically as 6 in every
trial. It is observed that each discovered data cluster mainly con-
tained samples corresponding to one of the 6 behaviour classes
listed in Table 1 (on average, 85% of the data samples in each
cluster belong to one of the 6 behaviour classes). In compar-
ison, all three alternative approaches, including BIC without
eigenvector selection, Porikli and Haga’s validity score, and
Zelnik-Manor and Perona’s cost function, tended to severely
underestimate the class number. Fig. 15 shows an example of
discovering behaviour classes using spectral clustering. Com-
pared to the synthetic data and image segmentation data, the be-
haviour pattern data are much more noisy and difficult to group.
This is reflected by the fact that the elements of the eigenvec-
tors show less information about the data grouping (see Figs.
15(j)–(o)). However, using only the relevant/informative eigen-
vectors, our algorithm can still discover the behaviour classes
correctly. Based on the clustering result, a normal behaviour
model was constructed as a mixture of MOHMMs as described
in Section 4.3.

Abnormality detection: To measure the performance of the
learned models on abnormality detection, each behaviour pat-
tern in the testing sets was manually labelled as normal if
there were similar patterns in the corresponding training sets
and abnormal otherwise. On average, there were 7 abnormal
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behaviour patterns in each testing set which consists of 62 be-
haviour patterns. The detection rate and false alarm rate of ab-
normality detection are shown in the form of an ROC curve.
Fig. 16(a) shows that high detection rate and low false alarm
rate have been achieved. ThA (see Eq. (14)) was set to −0.2 in
the rest results unless otherwise specified, which gave an ab-
normality detection rate of 85.4 ± 2.9% and false alarm rate
of 6.1 ± 3.1%.

Recognition of normal behaviours: To measure the perfor-
mance of behaviour recognition results, the normal behaviour
patterns in the testing sets were manually labelled into differ-
ent behaviour classes. A normal behaviour pattern was recog-
nised correctly if it was detected as normal and classified into
the right behaviour class. The behaviour recognition results are
illustrated as a confusion matrix shown in Fig. 16(b). Overall,
the recognition rates had a mean of 77.9% and standard devi-
ation of 4.8% for the 6 behaviour classes over 20 trials.

Our experiments show that given a challenging dynamic vi-
sual data clustering problem, the proposed clustering algorithm
is able to determine the correct number of clusters and groups
the data into behaviour classes accurately. In comparison, alter-
native approaches tend to severely under-estimate the number
of clusters (see Fig. 15). Our experiments also demonstrate that
our behaviour model constructed based on the clustering re-
sult can be used for successfully detecting abnormal behaviour
patterns and recognising normal ones.

5. Discussion and conclusion

In this paper, we analysed and demonstrated that: (1) not
every eigenvector of a data affinity matrix is informative and
relevant for clustering; (2) eigenvector selection is critical be-
cause using uninformative/irrelevant eigenvectors could lead
to poor clustering results; and (3) the corresponding eigenval-
ues cannot be used for relevant eigenvector selection given a
realistic data set. Motivated by the analysis, a novel spectral
clustering algorithm was proposed which differs from previous
approaches in that only informative/relevant eigenvectors are
employed for determining the number of clusters and perform-
ing clustering. The key element of the proposed algorithm is a
simple but effective relevance learning method which measures
the relevance of an eigenvector according to how well it can
separate the data set into different clusters. Our algorithm was
evaluated using synthetic data sets as well as real-world data
sets generated from two challenging visual learning problems.
The results demonstrated that our algorithm is able to estimate
the cluster number correctly and reveal natural grouping of the
input data/patterns even given sparse and noisy data.

It is interesting to note that eigen-decomposition of a similar-
ity matrix is similar to principal component analysis (PCA) in
the sense that both aim to reduce the dimensionality of the fea-
ture space for data representation. Each row of an affinity ma-
trix can be used for representing one data point. In doing so N

data points are represented in an N -dimensional feature space.
Although no information will be lost in this representation, the
clustering process will suffer from the ‘curse of dimensionality
problem’. After eigen-decomposition, if all N eigenvectors are

used for data representation, the same problem remains. There-
fore, all spectral clustering algorithms must perform eigenvec-
tor selection. However, the selection criteria used by previous
approaches are simple: either the largest Ktrue is selected if
Ktrue is known or the largest Km are selected where Km is
considered to be safely larger than the unknown Ktrue. In this
paper we have demonstrated that the previous criteria would
not work given realistic data. To solve the problem, we have
proposed a completely different criterion. Specifically eigen-
vector selection is performed based on measuring how infor-
mative/relevant each eigenvector is.

We chose different Km in different experiments presented in
the paper. As mentioned earlier, Km is a number considered to
be safely larger than the true model order Ktrue. Then a prob-
lem will arise: how to chose Km when you have no idea at all
on what the true model order is. Fortunately, there is a solu-
tion. As a rule of thumb, given N data points generated from a
model of Ck parameters, if N < 5Ck then there is no hope that
the data can be modelled or clustered properly. In our approach,
Ktrue clusters will be modelled using at least 3Ktrue − 1 pa-
rameters (when only one eigenvector is relevant and modelled
by a Gaussian mixture model). Therefore Km = N/5 would
be a reasonable choice for a number that is safely larger than
Ktrue. Otherwise, the data set will be too sparse to cluster. In
our video behaviour pattern clustering experiment, we know
nothing about how many different classes of behaviour patterns
there could be, so we used Km=N/5. In the case of image seg-
mentation, N is in the order of 100 000; so using that equation
is inappropriate. However we often know roughly how many
regions there will be in an image in a normal case. We therefore
chose Km = 20 in the image segmentation experiments.

It is noted in our experiments that following an identical pro-
cedure using BIC but without eigenvector selection will lead to
an underestimation of the number of clusters. It is not surpris-
ing as BIC is known to have the tendency of underestimating
the model complexity given sparse and/or noisy data [25,26].
In particular, in a high-dimensional eigenspace spanned by the
top Km eigenvectors, the GMM used for modelling data dis-
tribution in the eigenspace would suffers from the ‘curse of
dimensionality’ problem, therefore can only be learned poorly.
This contributes to the underestimation of cluster numbers. This
problem will remain even if the data set is free of noise and the
clusters are well-separated. The approaches proposed in Refs.
[6] and [7] are less likely to suffer from the same problem be-
cause no explicit model fitting is involved. However, they are
still sensitive to the presence of noise since all noise-corrupted
eigenvectors are used without discrimination. This is why their
performance on clustering real-world data is inferior to that of
our algorithm.

It is worth pointing out that the distribution of the elements
of an eigenvector depends on the data distribution in the orig-
inal feature space. The latter will also affect the way noise is
propagated in the eigenspace. Since the data distribution in the
original feature space is unknown and often difficult to be ex-
pressed in an analytical form, an analysis of eigenspace dis-
tribution and error propagation is nontrivial. Our eigenvector
selection algorithm is essentially a data-driven approach which
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is independent of the data distribution in the original feature
space. This is one of desirable characteristic of the algorithm.

In this paper, the BIC was used with GMM to estimate
the number of clusters. Numerous alternative model selection
criteria exist for a GMM although BIC is arguably the most
commonly used one [26,27]. The ongoing work includes in-
vestigating the effect of employing different model selection
criteria on the performance of our algorithm.
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