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Abstract

Contemporary domain generalization (DG) and multi-
source unsupervised domain adaptation (UDA) methods
mostly collect data from multiple domains together for joint
optimization. However, this centralized training paradigm
poses a threat to data privacy and is not applicable when
data are non-shared across domains. In this work, we
propose a new approach called Collaborative Optimiza-
tion and Aggregation (COPA), which aims at optimizing a
generalized target model for decentralized DG and UDA,
where data from different domains are non-shared and pri-
vate. Our base model consists of a domain-invariant fea-
ture extractor and an ensemble of domain-specific classi-
fiers. In an iterative learning process, we optimize a local
model for each domain, and then centrally aggregate lo-
cal feature extractors and assemble domain-specific classi-
fiers to construct a generalized global model, without shar-
ing data from different domains. To improve generaliza-
tion of feature extractors, we employ hybrid batch-instance
normalization and collaboration of frozen classifiers. For
better decentralized UDA, we further introduce a predic-
tion agreement mechanism to overcome local disparities to-
wards central model aggregation. Extensive experiments on
five DG and UDA benchmark datasets show that COPA is
capable of achieving comparable performance against the
state-of-the-art DG and UDA methods without the need for
centralized data collection in model training.

1. Introduction

Deep neural networks have advanced significantly over
the past decade and achieved promising performance for
many visual recognition tasks. However, due to the pres-
ence of data bias [33] between training and test data
(a.k.a. domain shift [28]), models elaborately optimized
with labeled training data from some source domains usu-
ally suffer from significant performance degradation on new
target domains. To resolve this problem, domain general-

ization (DG) [52, 40, 15] and unsupervised domain adap-
tation (UDA) [35, 38, 26] have been intensively studied,
which aim at generalizing models learned on source do-
mains to new target domains.

Traditionally, DG and UDA can use a single source do-
main for generalization learning by adversarial data aug-
mentation or domain alignment [37, 25]. But real-world
data are usually collected from different domains under dif-
ferent conditions (e.g., style and environment), so recent
studies focus more on multi-source DG [15] and UDA [26],
yielding better generalization performance. In this work,
we also focus on multi-source DG and UDA. Contemporary
multi-source DG [31, 47, 50] and UDA [2, 26, 51] share
the assumption that training data are collected from multi-
ple domains to jointly optimize a generalized model. While
DG focuses on direct deployment on unseen new target do-
mains, UDA utilizes unlabeled data from target domains to
further reduce domain discrepancy. However, this central-
ized model learning paradigm is not applicable when source
data from different domains cannot be shared for joint
training, due to either data privacy or storage/transmission
limitations. To address this problem, several recent stud-
ies [27, 7] resort to federated learning [21, 12] for devel-
oping decentralized UDA by federated adversarial train-
ing [27] or knowledge distillation [7]. However, these meth-
ods rely heavily on unlabeled target domain data for learn-
ing a global model and fail to resolve the more challenging
decentralized DG problem.

In this work, we study the problems of decentralized
DG and UDA, which aim at optimizing a generalized tar-
get model via decentralized learning with non-shared data
from multiple domains. To this end, we propose a new
approach called Collaborative OPtimization and Aggrega-
tion (COPA). Fig. 1 illustrates our approach. For decen-
tralized DG (steps I, 3 and 5): In each source domain
(step 1), we optimize a local model, which consists of
a domain-invariant feature extractor and an ensemble of
domain-specific classifiers, using non-shared and private lo-
cal training data. Next (step 3), we centrally aggregate lo-
cal feature extractors as a global domain-invariant feature
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Figure 1. An overview of the proposed Collaborative Optimization and Aggregation (COPA) approach to decentralized DG and UDA. In
decentralized DG, steps 1, 3 and 5 are iteratively performed, while in decentralized UDA, steps 1-5 are iteratively performed (with central
unlabeled data from a target domain). Note that source labeled data from different domains are non-shared and C only exists for UDA.

extractor and assemble domain-specific classifiers as an en-
semble of classifiers. Together they represent a generalized
global model which is then used to update local models to
facilitate the collaborative optimization (step 5). For decen-
tralized UDA (steps I-5): Given additional unlabeled train-
ing data from a target domain, we measure centrally the
prediction agreement among local models (step 2) to gen-
erate weights for model aggregation and pseudo labels for
model fine-tuning (step 4). This collaborative optimization
and aggregation process is iterative, and it allows us to learn
a generalized global model for both decentralized DG and
UDA without sharing local data across domains.

Contributions. We propose a new approach called Col-
laborative Optimization and Aggregation (COPA) to re-
solve both decentralized DG and UDA problems. This
differs from the conventional centralized DG and UDA
methods [31, 51, 26] that collect data from different do-
mains together for joint training. We optimize domain-
invariant feature extractors for central aggregation and
domain-specific classifiers for central ensembling. This
approach enables more selective knowledge disentangle-
ment between domain-invariant feature representations and
domain-specific classification information. This differs
from aggregating all parameters indiscriminately of local
models for constructing a global model [21, 27, 7]. For
better decentralized UDA, we further introduce a prediction
agreement mechanism to facilitate central model aggrega-
tion. We conduct extensive experiments on five DG and
UDA benchmark datasets and show that COPA decentral-
ized learning approach is capable of achieving comparable
performance against the state-of-the-art methods.

2. Related Work

Domain Generalization and Unsupervised Domain
Adaptation. Domain generalization (DG) aims to gen-

eralize a model learned on source domains to any un-
seen target domains. Prevailing approaches include learn-
ing domain-invariant representations by aligning source do-
main data distributions [16], optimizing domain-specific
normalization [31], synthesizing data to augment source do-
mains [50], employing episodic training to improve robust-
ness of a network against domain shift [15], efc. Unsuper-
vised domain adaptation (UDA) is closely related to DG but
with unlabeled target domain data to bridge the source and
target domains. One of the most popular approaches for
UDA is to reduce distribution divergence based on Maxi-
mum Mean Discrepancy (MMD) [3, 18]. Another promis-
ing approach is to use adversarial training [45, 34] for fea-
ture alignment across source and target domains. Since DG
and UDA are closely related, some studies [22, 51] also pro-
pose to develop a unified framework for both DG and UDA.
For example, Zhou et al. [51] employ domain adaptive en-
semble learning with consistency regularization to build a
unified framework (DAEL) for both DG and UDA.

Our approach (COPA) differs significantly from the con-
ventional centralized DG and UDA methods in that: (1)
COPA protects data privacy by decentralized learning with-
out sharing source data across domains, while most existing
methods use a centralized training paradigm without pri-
vacy concern; (2) COPA optimizes a local model in each
domain using non-shared training data and centrally aggre-
gates local models to construct a generalized global model,
instead of using a shared model for joint optimization with
collected data from different domains [31, 52, 44, 35]; (3)
COPA improves generalization of a domain-invariant fea-
ture extractor with hybrid batch-instance normalization lay-
ers [20] and collaboration of multiple classifiers, instead of
episodic training [15] or consistency regularization [51].

Federated Learning. Federated learning [21, 12, 39] is
a distributed learning paradigm for optimizing a central
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model with the collaboration of multiple local client models
without sharing local data, enabling decentralized learning
in a privacy-preserving way. FedAvg [21] is one of the most
popular methods to implement federated learning, which it-
eratively averages local model updates to construct a central
model. This method is simple but effective and can improve
communication efficiency. The proposed COPA shares the
principle of FedAvg, but: (1) Instead of aggregating all pa-
rameters of local models to construct a global model, we op-
timize domain-invariant feature extractors for more selec-
tive central aggregation and domain-specific classifiers for
central ensembling; (2) Source data in COPA are from dif-
ferent domains with domain shift, instead of different data
partitions from the same dataset.

Decentralized Learning from Multiple Domains. With
the awareness of data privacy, some recent works [27, 41, 7]
have studied decentralized learning from multiple domains
in visual recognition. In [27], a federated adversarial do-
main adaptation method with feature disentanglement is
proposed to resolve domain shift for decentralized UDA.
In [41], a federated person re-identification method is in-
troduced to optimize a generalizable embedding model by
knowledge distillation and model aggregation. In [7], a
knowledge distillation based federated learning method is
presented to decentralized UDA. Our approach differs from
these methods in that: (1) Instead of aggregating all pa-
rameters of local models [27, 7] or learning a generic cen-
tral feature embedding model [41], we optimize domain-
invariant feature extractors for central aggregation and
domain-specific classifiers for central ensembling, for better
disentanglement and selection of knowledge transfer among
different domains; (2) We improve generalization of feature
extractors with hybrid batch-instance normalization layers
and collaboration of domain-specific classifiers, instead of
knowledge distillation [41, 7]; (3) We introduce a prediction
agreement mechanism to facilitate collaborative model op-
timization for decentralized UDA, instead of only averaging
models to learn a generic global embedding model [41].

3. Methodology

Problem Statement. In this work, we aim to optimize
a generalized model with non-shared data from multi-
ple domains for decentralized DG and UDA. Given n
source domains ({X1,Y1}, ..., {X,,Y,}), where each do-
main {X;,Y;} contains N; labeled samples X; for K
classes and Y;={1, ..., K'}, we maintain separately source
data from each domain (local and non-shared) for local
model training. In decentralized DG, a generalized global
model is optimized without sharing local source data nor us-
ing any unlabeled data from target domains for fine-tuning.
In decentralized UDA, a global model also cannot access lo-
cal source data but has unlabeled samples X,, from a target

domain for central fine-tuning.

3.1. Approach Overview

We depict an overview of the proposed Collaborative
Optimization and Aggregation (COPA) in Fig. 1, where de-
centralized DG is accomplished with steps 1, 3 and 5, while
decentralized UDA is accomplished with steps 1-5. Specif-
ically, with {X;,Y;}?_,, we train local models { F;, C;} for
each domain (step 1), where F; and C; are the feature ex-
tractor and the classifier for the i-th domain. After training
local models for m local epochs, we aggregate parameters
of {F;}7_, centrally to construct a global domain-invariant
feature extractor F; and assemble {C; }7_, centrally to build
an ensemble of domain-specific classifiers (step 3), where
{F,{C;}_,} forms a global model. The global model
is then used to update local models to facilitate local op-
timization (step 5). This process is iteratively performed for
g global iterations (iterate steps 1, 3 and 5) to optimize a
generalized global model for deployment. In decentralized
UDA, with unlabeled data X, from a target domain, we
use additionally X, to measure the prediction agreement
among local models (step 2) to perform weighted aggre-
gation of {F;}?_; and to generate pseudo labels {Y,,} for
fine-tuning {F}, Cy} (step 4). Thus, the iterative learning
process for UDA consists of steps 1-5, resulting in a global
model {F, {C;}_,, C.}.

3.2. Local Model Collaborative Optimization

In each source domain, with labeled training
data {X;,Y;}, we use a cross-entropy loss L..(X;,Y;) to
optimize {F;, C;}, formulated as:

LulXiY) = 3

! wEX;,yeY;

gce(yvci(Fi(x)))a (l)

where f..(-,-) is a cross-entropy loss function. How-
ever, different from the conventional centralized training
paradigm, {X;,Y;}? , are non-shared across domains in
decentralized learning, so we cannot jointly optimize a
model with data from different domains. As a result, each
local model only learns domain-specific information. To al-
leviate this problem, we filter out domain-specific informa-
tion in F; with hybrid batch-instance normalization layers
and further improve the generalization of F; via collabora-

. . m
tion of frozen classifiers {Cj i1 i

Learning Domain-Invariant Representation. Instance
normalization has shown the effectiveness for filtering out
domain-specific information [24, 20, 31]. However, directly
using instance normalization in lieu of batch normalization
will lose useful statistic information learned by batch nor-
malization, resulting in significant performance degradation
in visual recognition [24]. In the light of this, we use hy-
brid batch-instance normalization layers [20, 31] to replace
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batch normalization layers in feature extractors. Specifi-
cally, we combine batch normalization with instance nor-
malization as:

i — h _l(wbgﬂbn -i; Wi;,uin) L8, @)

\/wbnabn + WinTin +e
where h, heRBXEXWxH gre activations (a 4D tensor with
batch size B, channel number E, width W and height H), v
and [ are affine parameters, e=1e—5 is for numerical stabil-
ity, ;v and o2 are means and variances (defined as Eq. (3)),
w and ' are ratios to weight the mixture of means and vari-
ances for batch normalization and instance normalization
(defined as Eq. (4)).
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where A and )\’ are learnable parameters. Note that different
from [31] which learns domain-specific hybrid normaliza-
tion layers for DG, we resolve domain shift (Eq. (2)) by
learning domain-invariant feature extractors for central ag-
gregation while encoding domain-specific information into
the assembled classifiers.

Collaboration of Frozen Classifiers. As each domain is
non-shared, we cannot use data from different domains to
jointly optimize a shared feature extractor. However, with
an ensemble of domain-specific classifiers, we can improve
generalization of a feature extractor F;; via encouraging F;
to generate domain-invariant representations for ‘new’ clas-
sifiers and ‘new’ data. Specifically, in our design, both the
global model and local models are using a multi-head ar-
chitecture. Thus, as shown in Fig. 1, when receiving up-
dates from a global model, a local model simultaneously
gets other domain-specific classifiers, i.e., a local model is
updated as {F;, C;, {C}}7_, ;. }, where {C}}7_, ;; are
frozen classifiers from other domains. Here, {C}}7_, ;
are frozen because we do not have data from other do-
mains to train these domain-specific classifiers, but since
they are ‘new’ to Fj, they can be used to encourage F; to
generate domain-invariant features. This shares the merit of
episodic training for DG [15] but in a decentralized training
paradigm instead of episodic training.

However, since F; is simultaneously optimized with a
domain-specific C;, directly putting the same feature repre-
sentations through C; and {C}}7_, ., will result in sub-

optimal performance. To address this problem, we use Ran-
dAugment [4] to augment input samples A(X;) and com-
pute a cross-entropy loss L., for each frozen classifier (sim-
ilar to Eq. (1)), while C; is still trained with X; under stan-
dard augmentation. Note that, different from directly en-
larging datasets with data augmentation and [51] that uses
RandAugment for optimization with consistency regular-
ization, we use RandAugment to generate ‘new’ samples
for F; and use the frozen {C}"_, ., to improve gener-
alization of domain-invariant F; with £, (see experiments
§ 4.3 for evaluation). Thus, the training objective of the i-th
local model is formulated as:

Li=Leo(Cs X, Yi)+ > LL(CHAX),Y:). (5

j=1,5#i
3.3. Global Model Optimization and Aggregation

After training local models for m local epochs, we per-
form central aggregation to learn a global model. In decen-
tralized DG, there are neither unlabeled data from target do-
mains nor centrally collected data from source domains, so
we do not fine-tune a global model. In decentralized UDA,
there are unlabeled data from a target domain for learning
prediction agreement and fine-tuning the model.

Decentralized DG without Unlabeled Target Data. A
simple way for central aggregation is averaging all parame-
ters of local models as FedAvg [21]. However, this uniform
aggregation approach impairs the optimization of domain-
invariant feature extractors and domain-specific classifiers.
To resolve this problem, as shown in Fig. 1 (step 3), we ag-
gregate model parameters {©; }7, of {F;}7_, to construct
a global domain-invariant feature extractor F; with model
parameter ©; (formulated as Eq. (6)) and assemble domain-
specific classifiers to create an ensemble {C;}?_,. Thus, a
global model is formulated as {F, {C;}7; }.

®t — Zar@i, (6)
=1

where «;€[0,1] are weights for aggregating F; and
Z:L a;=1. Setting ai:% indicates that local models are
equally important for central aggregation. Here, a white
noise [9] can be added to Eq. (6) to further protect pri-
vacy against attack. We then use a global model to re-
initialize each local model, which helps to indirectly incor-
porate knowledge from other domains into each local model
and to facilitate subsequent model aggregation. We iter-
atively optimize local models and a global model (Fig. 1
steps 1, 3 and 5).

Decentralized UDA with Unlabeled Target Data. As
shown in Fig. 1, in decentralized UDA, we add steps 2 and 4
to the iterative learning process to leverage unlabeled target
data for better aggregation and optimization. Specifically,
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when local models are collected, we use them to respec-
tively generate prediction p; for each sample = in X, as:

p() = ~(CFEE) + Y CUEE). O

J=Lj#i

This prediction is the sum of predictions of an ensemble,
so it is more reliable and can be used to generate pseudo
labels y for z. There are three ways to generate a pseudo la-
bel of = based on {p;(z)}: (1) use the most confident pre-
diction (maximum probability prediction) among {p;(z)}?;
(2) compute the mean of {p;(z)}? and use the maximum
probability prediction; (3) compute the maximum probabil-
ity prediction of each {p;(z)}? and use the most frequent
prediction. In practice, we only generate pseudo labels if the
maximum probability is larger than a threshold (e.g., 0.95).
Meanwhile, we count the number of prediction agreement
(Z;) for each local model: If a prediction of the i-th model
is consistent with a pseudo label y, then we add 1 to Z;,
which indicates a correct prediction of the i-th model. Af-
ter measuring prediction agreement with all samples in X,
we compute the aggregation weight «; as:

GZi = Zz
———, and Z;, = —f——.
Z?=1 ez’ Zj:l Zj
With Eq. (8), «; reflects the generalization of F; for a target
domain, which facilitates better aggregation in Eq. (6).

After central aggregation, we further use X, with pseudo
labels Y;, to fine-tune {F}, C;} with a cross-entropy loss,
where C} is a domain-specific classifier for the target do-
main. Similar to local model training, the frozen classifiers
{C}}I_, are also used to improve the generalization of F}
with augmented samples and cross-entropy losses. Thus,
the training objective £; for central fine-tuning is similar to
Eq. (5). Note that, compared with decentralized DG, both
local and global models in decentralized UDA have an ad-
ditional classifier C} to further facilitate model learning.

o; =

®)

Summary. With iteratively collaborative optimization and
aggregation between local models and the global model,
COPA accomplishes decentralized DG and UDA without
collecting source data together for joint training. We sum-
marize the training process of COPA for decentralized DG
in Algorithm 1 and for decentralized UDA in Algorithm 2.

4. Experiments

To evaluate the proposed COPA, we conduct extensive
experiments on five DG and UDA benchmark datasets.

4.1. Comparison with SOTAs on DG Benchmarks

Datasets. PACS [14] is a challenging DG dataset consists
of seven object categories from four domains (Art Painting,
Cartoon, Photo and Sketch) with large domain discrepancy.

Algorithm 1 The proposed COPA for decentralized DG.

Input: 7 source domains {X;,Y;} ,, n local models
{F;,C;, {C;-};L:Lj#};ﬁ;l, a global model {F}, {C;}1, }.
1: for G=1:g do /*Global iteration*/

2 for i=1:n do /*i-th local source domain*/

3 Update local model with global model (step 5)
4: for M=1:m do /*Local training (step 1)*/

5: Compute L. by C;(F;(X;))
6:

7

8

9

Compute L7, by Z?:l,j;éi C;‘ (Fi(A(X3)))
Train local model with £; (Eq. (5))

end for
: Construct F; by aggregation (Eq. (6)) (step 3)
10: Assemble {C;}7_, for classification
11: end for

Output: A generalized global model {F;, {C;}_;}.

Algorithm 2 The proposed COPA for decentralized UDA.
Input:

n source domains {X;,Y;}" ,, n local mod-

els {Fi,Ci,{C}}}_ ;.- Ci}i=y, a global model
{F,{Ci}_, C¢}, an unlabeled target domain X,,.
1: for G=1:g do /*Global iteration*/
2: for i=1:n do /*i-th local source domain*/
3 Update local model with global model (step 5)
4 for M=1:m do /*Local training (step 1)*/
5: Compute L. by C;(F;(X;))
6: Compute £, by 1", CL(F(A(X1)))
7 Train local model with £; (Eq. (5))
8 end for
9 Compute aggregation weight «; (Eq. (8)) (step 2)

10: Construct F; by aggregation (Eq. (6)) (step 3)
11: Assemble {C,}7_, for classification

12: Get pseudo labels of X,

13: Fine-tune global model with L; (step 4)

14: end for

Output: A generalized global model {F;, {C;}_,, C.}.

Office-Home [36] contains about 15,500 images in 65 cate-
gories of daily objects from four domains (Artistic, Clipart,
Product and Real-World). Digits-DG [50] consists of four
digit datasets (MNIST [13], MNIST-M [8], SVHN [23] and
SYN [8]) with different font style and background. Fol-
lowing previous DG works [50, 31, 51, 40, 15], we adopt
the leave-one-domain-out protocol for evaluation by select-
ing one domain as the unseen new domain for testing while
using the remaining domains as source domains for train-
ing. But different from the traditional centralized training
paradigm, in decentralized DG, each source domain is only
used for training a local model, neither mixing with other
domains for joint training nor sharing with a central model
for fine-tuning. This decentralized approach protects source
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Paradigm ‘ Method ‘art cat pho skt ‘ Avg

Backbone [51] | 77.0 75.9 96.0 69.2| 79.5
Epi-FCR [15] | 82.1 77.0 93.9 73.0| 81.5
JiGen [1] 794 753 96.0 71.4| 80.5
MASEF [6] 80.3 77.2 95.0 71.7| 81.0
DGER [47] 80.7 76.4 96.7 71.8| 81.4
DAEL [51] 84.6 744 95.6 78.9| 83.4
L2A-OT [50] | 83.3 78.2 96.2 73.6| 82.8
DDAIG [49] 84.2 78.1 953 74.7| 83.1
EISNet [40] 81.9 764 959 74.3| 82.2
DSON [31] 84.7 77.7 959 82.2| 85.1
MixStyle [52] | 84.1 78.8 96.1 75.9| 83.7
Decentralized | COPA (ours) 83.3 79.8 94.6 82.5| 85.1

Table 1. Comparison with state-of-the-art DG methods on PACS
using ResNet-18. Note that centralized methods and decentralized
methods are not direct competitors as they use different training
paradigms. We report leave-one-domain-out results on Art Paint-
ing (art), Cartoon (cat), Photo (pho) and Sketch (skt), and average
results of them.

Centralized
w/o privacy
concern

data privacy, although it may result in accuracy degradation.

Implementation Details. On PACS and Office-Home, fol-
lowing [50, 51, 31], we use ResNet-18 [11] pre-trained on
ImageNet as the backbone for the feature extractor and a
fully connected layer as the classifier. On PACS, we replace
all BN layers with hybrid batch-instance normalization lay-
ers in the feature extractor, while on Office-Home that has
less style variation across domains, we replace the first BN
layer and BN layers in the first BasicBlock. Parameters re-
lated to batch normalization are initialized with ImageNet
pre-trained weights. We use SGD as the optimizer with mo-
mentum 0.9 and weight decay 5e-4. The initial learning rate
is set to 0.002, decayed by a cosine annealing rule [19, 51]
every global iteration. We set batch size to 30, local epoch
m=1, global iteration g=40 and A(-) as RandAugment [4]
(with Cutout [5]). On Digits-DG, following [50, 49], we use
four 3x 3 convolution layers, each of which is followed by
ReLU and 2x2 max pooling, as the feature extractor and a
fully connected layer as the classifier. We insert a hybrid
batch-instance normalization layer after each convolution
layer. We use SGD with momentum as the optimizer and
set the initial learning rate to 0.05, decayed by 0.1 every
20 global iterations. Training batch size is 30, local epoch
m=1, global iteration g=50, and A(-) is RandAugment [4].
We report top-1 accuracy averaged over five runs.

Comparison with the State-of-the-Arts. As shown in Ta-
bles 1, 2 and 3, although the proposed COPA uses a de-
centralized training paradigm for privacy protection, it still
achieves comparable performance against the state-of-the-
art DG methods that use a centralized training paradigm
without privacy concern. Specifically, on PACS (Table 1),
COPA outperforms the centralized Backbone that collects
all source data for joint training and yields 85.1% average
overall accuracy which is on par with the state-of-the-art re-

Paradigm ‘ Method ‘an clp prd rel ‘Avg
Backbone [51] | 58.9 49.4 743 76.2| 64.7
CCSA [22] 59.9 499 74.1 75.7| 64.9
CrossGrad [32]| 584 494 739 75.8| 64.4
Centralized JiGen [1] 53.0 47.5 71.5 72.8| 61.2

DAEL [51] 59.4 55.1 74.0 75.7| 66.1
L2A-OT [50] | 60.6 50.1 74.8 77.0| 65.6
DDAIG [49] 59.2 523 74.6 76.0| 65.5
DSON [31] 594 457 71.8 747 62.9
MixStyle [52] | 58.7 53.4 742 759 65.5
Decentralized | COPA (ours) 59.4 55.1 74.8 75.0| 66.1

Table 2. Comparison with state-of-the-art DG methods on Office-
Home using ResNet-18. We report leave-one-domain-out results

on Artistic (art), Clipart (clp), Product (prd) and Real-World (rel),
and average results of them.

w/o privacy
concern

Paradigm ‘ Method ‘mt mm SV sy ‘Avg

Backbone [52] | 95.8 58.8 61.7 78.6| 73.7
CCSA [22] 952 582 65.5 79.1| 74.5
CrossGrad [32]| 96.7 61.1 65.3 80.2| 75.8
JiGen [1] 96.5 61.4 63.7 74.0| 73.9
L2A-OT [50] | 96.7 63.9 68.6 83.2| 78.1
DDAIG [49] 96.6 64.1 68.6 81.0| 77.6
MixStyle [52] | 96.5 63.5 64.7 81.2| 76.5
Decentralized | COPA (ours) | 97.0 66.5 71.6 90.7| 81.5

Table 3. Comparison with state-of-the-art DG methods on Digits-
DG using a convolutional backbone [50]. We report leave-one-
domain-out results on MNIST (mt), MNIST-M (mm), SVHN (sv)
and SYN (sy), and average results of them.

Centralized
w/o privacy
concern

sult. Similarly, on Office-Home (Table 2), COPA achieves
66.1% average overall accuracy, which is superior to the
backbone and is still comparable against the state-of-the-
art DG methods. On Digits-DG (Table 3), COPA signifi-
cantly outperforms both the backbone and the state-of-the-
arts, achieving the best 81.5% average overall accuracy.

4.2. Comparison with SOTAs on UDA Benchmarks

Datasets. Digit-Five [26] is a digit recognition bench-
mark for UDA, which contains five digit datasets, namely
MNIST [13], MNIST-M [8], SVHN [23], SYN [8] and
USPS. Office-Caltechl10 [10] consists of 2,533 images of
ten object categories from four domains, namely Amazon,
Caltech, DSLR and Webcam. Following previous UDA
methods [26, 51, 27], we select one domain as the target do-
main with unlabeled training data, while the other domains
are labeled source domains. In decentralized UDA, labeled
source domains are non-shared and private while the unla-
beled target domain is used for central optimization.

Implementation Details. On Digit-Five, following [26, 48,
51, 7], we use three convolutional layers and two fully con-
nected layers (each of which is followed by a BN layer)
as the feature extractor, and use a fully connected layer as
the classifier. We replace all 2-D BN layers with hybrid
batch-instance normalization layers. We set batch size to
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Paradigm‘ Method ‘ mt mm sv sy up ‘ Avg Component ‘ art cat pho skt ‘ Avg
Oracle [51] 99.5 954 923 98.7 99.2| 97.0 Backbone(sequential) 434 65.0 54.6 60.8| 55.9
. SourceOnly[51]| 99.1 68.1 84.6 89.9 97.2| 87.8 Backbone(centralized) [51] 77.0 75.9 96.0 69.2| 79.5
MDAN [46] 98.0 69.5 692 87.4 92.5]| 83.3 Backbone(decentralized w/ FedAvg[21]) | 76.2 73.8 92.6 68.9| 77.9
DCTN [43] 962 70.5 77.6 86.8 92.8| 84.8 Backbone(decentralized w/o Iter) 68.9 61.4 92.2 51.7| 68.6
2 £ | MCD [30] 99.2 80.7 81.9 954 98.3| 91.1 COPA 83.3 79.8 94.6 82.5| 85.1
g S | MPSDA[26] | 98.4 728 81.3 89.6 96.1| 87.7 COPA w/o HBIN 81.4 753 95.1 78.5| 82.6
15) S MME [29] 994 83.1 864 958 98.6| 92.7 COPA w/o CoFC 80.3 77.9 94.9 77.8| 82.7
g § DSBN [2] 972 71.6 779 88.7 96.1| 863 COPA w/o Iter 76.0 72.5 94.3 75.4| 79.6
© S | LICMSDA[38]| 99.0 85.6 832 93.0 98.3| 91.8 Table 6. Component effectiveness evaluation on PACS. ‘HBIN’:
CMSS [44] 99.0 75.3 88.4 93.7 97.7| 90.8 Hybrid batch-instance normalization layers. ‘CoFC’: Collabora-
: FD//SIEIA: 5% g?i z;g ggg gzz g?; ggz tion of frozen classifiers. ‘w/o Iter’: Without iterative optimization
e SHOT [17] 082 802 845 911 97.1| 902 and agﬁgregatlon, Le., tﬁalmng local models for mXx g epochs and
8-Y | KD3A[7] 992 87.3 85.6 89.4 98.5 92.0 centrally aggregating them once.
A COPA (ours) 99.4 89.8 91.0 97.5 99.2| 954

Table 4. Comparison with state-of-the-art UDA methods on Digit-
Five using a convolutional backbone [26]. We report results on
MNIST (mt), MNIST-M (mm), SVHN (sv), SYN (sy) and USPS
(up), and average results of them.

Paradigm] Method [A C D W J[Avyg
Oracle [7] 99.7 98.4 99.8 99.7| 99.4

) SourceOnly [26]| 86.1 87.8 98.3 99.0| 92.8

o = MDAN [46] 95.4 91.8 98.6 98.9| 96.1
= § DCTN [43] 92.7 90.2 99.0 99.4| 95.3
2 5 MCD [30] 92.1 91.5 99.1 99.5| 95.6
S 2 | MPSDA[26] | 945 922 992 99.5| 964
= § DSBN [2] 93.2 91.6 98.9 99.3] 95.8
3 a CMSS [44] 96.0 93.7 99.3 99.6| 97.2
SImpAl [35] 95.6 94.6 100 100 | 97.5

= FADA [27] 84.2 88.7 87.1 88.1| 87.1
‘E 3 SHOT [17] 96.4 96.2 98.5 99.7| 97.7
S5 | KD3A[7] 97.4 964 984 99.7| 97.9
A COPA (ours) 95.8 94.6 99.6 99.8| 97.5

Table 5. Comparison with state-of-the-art UDA methods on
Office-Caltech10 using ResNet-101. We report results on Ama-
zon (A), Caltech (C), DSLR (D) and Webcam (W), and average
results of them.

256, local epoch m=1 and global iteration g=30, and use
SGD with momentum as the optimizer. The initial learning
rate is set to 0.05 with a cosine annealing rule. On Office-
Caltech10, following [27, 35, 7], we use ResNet-101 [11] as
the feature extractor and a fully connected layer as the clas-
sifier. We use hybrid batch-instance normalization layers to
replace the first BN layer and BN layers in the first macro
block (initialized with ImageNet pre-trained weights). We
use batch size 30, local epoch m=1 and global iteration
g=40, and use SGD with momentum as the optimizer. The
initial learning rate is set to 0.002 with a cosine annealing
rule. We report top-1 accuracy averaged over five runs.

Comparison with the State-of-the-Arts. As shown in Ta-
bles 4 and 5, the performance of COPA is on par with the
state-of-the-art centralized and decentralized UDA meth-
ods. Specifically, on Digit-Five (Table 4), COPA signifi-

cantly outperforms the state-of-the-art decentralized UDA
methods and achieves 95.4% average overall accuracy
which is close to the best centralized UDA result (96.5%).
Since Office-Caltech10 is a small-sized benchmark with
only 2,533 images, most state-of-the-art methods achieve
close results (Table 5). COPA yields 97.5% average overall
accuracy which is comparable against the best centralized
result (97.5%) and decentralized result (97.9%). Although
CORPA is slightly inferior to SHOT [17] and KD3A [7], all
three methods yield over 97% average overall accuracy and
COPA achieves better results on DSLR and Webcam.

4.3. Further Analysis and Discussion

Component Effectiveness Analysis. As shown in Table 6,
COPA outperforms the centralized joint-training backbone
and the decentralized backbone that iteratively averages all
parameters of local models to construct a global model.
In local model optimization, without using hybrid batch-
instance normalization layers (COPA w/o HBIN) or the col-
laboration of frozen classifiers (COPA w/o CoFC), the aver-
age overall accuracies of COPA decrease by approximately
2% but are still better than both centralized and decentral-
ized backbone models. Besides, we also test the iterative
optimization and aggregation mechanism. In Table 6, with-
out iterative optimization, the performance of COPA de-
creases significantly but is still better than the backbone (de-
centralized). This further examines the effectiveness of the
components for learning domain-invariant representation.

Variants of CoFC component. In addition to the proposed
CoFC (Collaboration of Frozen Classifiers), we also evalu-
ate some variants, including: (1) without using CoFC, (2)
with CoFC but without using RandAugment, (3) without
using CoFC but using RandAugment to enlarge dataset and
(4) without using CoFC but using consistency regulariza-
tion with RandAugment [51]. From Fig. 2, we can see that
COPA w/o CoFC yields the worst result and its performance
can be improved using RandAug, CR and CoFC. Overall,
the proposed CoFC approach yields the best performance.
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85.5 (%)

84.5
83.5
82.5 .
81.5

COPA(CoFC) COPA(w/o COPA(CoFC) COPA(w/o COPA(w/o
CoFC) w/o RandAug CoFC) + CoFC) + CR
RandAug

Figure 2. Evaluating variants of the collaboration of frozen clas-
sifier mechanism on PACS (average overall accuracy). ‘CoFC’:
Collaboration of frozen classifiers. ‘COPA (w/o CoFC) + Ran-
dAugment’: Directly enlarge dataset using RandAugment without
CoFC. ‘COPA (w/o CoFC) + CR’: Use consistency regularization
with RandAugment as [51] for classifiers from other domains and
aggregate all learned classifiers for central aggregation.

85.5 (%)
80.5
75.5
70.5
65.5
60.5

COPA(HBIN) COPA only COPA only COPA(w/o  COPA(w/o COPA w/ SN
HBIN) + HBIN) +
IBN-a IBN-b

Figure 3. Evaluating variants of normalization in COPA on PACS
(average overall accuracy). ‘HBIN’: Hybrid batch-instance nor-
malization. ‘COPA only BN’: Without HBIN. ‘COPA only IN’:
Use IN layers to replace all BN layers. ‘COPA(w/o HBIN) + IBN-
a [24] and ‘COPA(w/o HBIN) + IBN-b [24]’: Use IBN to replace
HBIN. ‘COPA w/ SN’: Use SN [20] (HBIN + LayerNorm).

Variants of Normalization. As shown in Fig. 3, we eval-
uate some variants of learning domain-invariant represen-
tation with normalization layers. From Fig. 3, we can see
that: (1) COPA w/ HBIN performs closely with COPA w/
SN [20], but SN requires more layer normalization opera-
tions; (2) Using only IN in COPA leads to significant per-
formance degradation; (3) COPA w/ IBN [24] can also yield
competitive performance but is still inferior to COPA w/
HBIN.

Central Prediction Agreement Analysis. In Fig. 4, we
evaluate different central prediction agreement approaches
on Digit-Five for decentralized UDA. We can see that
COPA(mean) performs better than other approaches on
different datasets, except on MNIST where all compared
approaches perform closely. Overall, COPA with pre-
diction agreement weights is superior to COPA without
using prediction agreement weights, but on SVHN and
SYN, COPA(most) performs worse than COPA w/o agree
weights. We conjecture that on SVHN and SYN, most local
models provide incorrect predictions with low confidence
leading to performance degradation in COPA(most), which
is resolved when using mean or maximum predictions. By
default, we use COPA(mean) for decentralized UDA.

100 (%
95
920
85
80
mt mm sV sy up
#COPA (max) mCOPA (mean) mCOPA (most) = COPA w/o agreeW

Figure 4. Evaluation of different central prediction agreement
approaches on Digit-Five. ‘COPA w/o agreeW’: Without using
prediction agreement weights.

Component [ art cat pho skt [ Avg
COPA 83.3 79.8 94.6 82.5| 85.1
Ind-Ensemble 723 552 947 60.2| 70.6
Ind-ParamAvg 689 614 922 51.7| 68.6
DAEL [51] (centralized) | 84.6 74.4 95.6 78.9| 83.4

Table 7. Comparison with ensemble methods on PACS. ‘Ind-
Ensemble’: Independently train backbone models for each source
domain and use the logit ensemble as the prediction. ‘Ind-
ParamAvg’: Independently train backbone models for each source
domain and average model parameters as a global model.

Comparison with Ensemble. From Table 7, we can see
that COPA performs significantly better than two backbone
ensemble methods (Ind-Ensemble and Ind-ParamAvg).
When compared with the state-of-the-art centralized ensem-
ble method (DAEL [51]), COPA still achieves compara-
ble performance and yields better average overall accuracy
85.1% on PACS, even though COPA uses a decentralized
training paradigm to protect data privacy.

5. Conclusion

In this work, we introduce a new approach called Collab-
orative OPtimization and Aggregation (COPA) for decen-
tralized domain generalization (DG) and multi-source un-
supervised domain adaptation (UDA). The main idea is to
iteratively optimize local domain-invariant feature extrac-
tors and domain-specific classifiers using non-shared source
data for constructing a generalized global model. This al-
lows to accomplish decentralized DG and UDA without
sharing data across domains for privacy concern. Exten-
sive experiments on five DG and UDA benchmark datasets
demonstrate that COPA is competitive against the state-of-
the-art DG and UDA methods. One research direction for
future work is to reduce communication cost in the iterative
learning process using some compression techniques [42].
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