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Abstract

Conditional random field (CRF) has been widely used for sequence labeling
and segmentation. However, CRF does not offer a straightforward approach
to classify whole sequences. On the other hand, hidden conditional random
field (HCRF) has been proposed for whole sequences classification by view-
ing the segment labels as hidden variables. But the objective function of
HCRF is non-convex because of its hidden variable structure. In this paper,
we propose a classification oriented CRF (COCRF) adapted from HCRF for
natural scene categorization by taking an image as an ordered set of local
patches. Our approach firstly assigns a topic label to each segment on the
training data by the probabilistic latent semantic analysis (PLSA) and train
a COCRF model given these topic labels. PLSA provides a higher level of
semantic grouping of image patches by considering their co-occurrence rela-
tionships while COCRF provides a probabilistic model for the spatial layout
structure of image patches. The combination of PLSA and COCRF can not
only classify but also interpret scene categories. We tested our approach on
two well-known datasets and demonstrated its advantage over existing ap-
proaches.

1 Introduction
This paper addresses the problem of natural scene categorization. Scene understanding
underlies many other problems in visual perception such as object recognition and en-
vironment navigation. Although scene categorization can be achieved at a glance by a
human, it poses great challenges to a computer vision system. Different instances of the
same category can vary a lot in their color distribution, texture patterns and more impor-
tantly, a scene category does not have a well-defined shape as an object category does.

Recent work in scene image classification focus on image classification based on an
intermediate level of features. They can be further divided into two categories. The first
relies on self-defining the intermediate features. Oliva and Torralba [7] proposed a set
of perceptual dimensions (naturalness, openness, roughness, expansion and ruggedness)
that represent the dominant spatial structure of a scene. Each of these dimensions can be
automatically extracted and scene images can then be classified in this low-dimensional
representation. Vogel and Schiele [9] used the occurring frequency of different concepts
(water, rock, etc) in an image as the intermediate features for scene image classification,



and they need manual labeling of each image patch in the training data. While manual
labeling can improve the semantic interpretation of images, it is still a luxury for a large
dataset and it can also be inconsistent in defining a common set of concepts [9]. The
second kind of approach is aimed to alleviate this burden of manual labeling and learn
the intermediate features automatically. This is achieved by making an analogy between
a document and an image and taking advantage of the existing document analysis ap-
proaches. For example, Fei-Fei and Perona [2] proposed a Bayesian hierarchical model
extended from latent dirichlet allocation (LDA) to learn natural scene categories. Bosch
et al. [1] achieved good performance in scene classification by combining probabilistic
latent semantic analysis (PLSA) [3] and a KNN classifier. A common point of these ap-
proaches is that they represent an image as a bag of orderless visual words. An exception
is the work done by Lazebnik et al. [6] where they proposed spatial pyramid matching for
scene image classification by partitioning an image into increasingly fine sub-regions and
taking each sub-region as a bag of visual words.

As a simple but discriminative enough representation, the bag of visual words has
shown its advantage in the above approaches. However, its assumption of an orderless
bag makes it inevitably sacrifice certain amount of discriminative capability. The order
statistics are actually quite helpful in our understanding of scenes. At least two cues
can be applied. The first is the spatial layout of the patches. For example, sky always
appear in the upper part of an image and ground almost always appear in the bottom part.
Lazebnik et al. [6] have demonstrated the advantage of this cues, but they did not do it
in a probabilistic model. The second cue is the spatial pairwise interaction between two
neighboring patches. For example, it is more likely to find a water patch as the neighbor as
a sand patch in a beach scene, while in a coast scene water patches are usually adjacent to
stone patches. None of the existing approaches have modeled both of these two relations
explicitly in a probabilistic model.

A good candidate for modeling a set of ordered local patches is the conditional ran-
dom field (CRF) [5]. For example, Kumar and Hebert [4] attempted to use a discriminant
random field to model contextual interaction between image patches. But their work was
for image region classification, instead of whole image classification. Generally speaking,
CRF is aimed for segment labeling and segmentation. It does not offer a straightforward
approach to classify whole sequences and requires the labeling of the segments in the
training data. Hidden conditional random field (HCRF) [8] was proposed for whole se-
quences classification by viewing the segment labels as hidden variables, but the hidden
variable structure makes the objective function of HCRF non-convex and only local opti-
mum can be achieved in training. In this paper, we proposed a combinational approach of
PLSA and a classification oriented CRF (COCRF) adapted from HCRF for natural scene
categorization by taking an image as an ordered set of image patches. COCRF takes the
advantage of automatic labels generated by PLSA and is capable of reaching a global op-
timum in the training stage. The motivations of PLSA here are not only that it can provide
labeling of the image patches, but also that it is complimentary to COCRF, i.e., PLSA can
discover the co-occurrence relationship between image patches, while COCRF can only
model spatial relation between patches. Thus our PLSA+COCRF model can take into
account both of these two factors. An obvious advantage of our approach is to provide a
probabilistic way to model both the spatial layout of image patches and their neighboring
interaction. We tested our approach on two scene image image datasets and show that it
outperforms existing approaches.



The rest of this paper is organized as follows. Section 2 describes the topic labeling
of image patch by PLSA. Section 3 introduces COCRF and focus on the features we have
deployed. Section 4 discusses the learning and inference of COCRF for classification.
We show some experimental results in section 5 and conclude in section 6.

2 Automatic Topic Labeling of Image Patches via PLSA
In our approach, an image is represented as a number of image patches. Each patch is
assigned a topic label automatically through PLSA [3]. PLSA can be summarized as
follows. Suppose we have a collection of text documents D={d}, a vocabulary W ={w}
and a number of topics S ={s}. Each document d is represented as a bag of words, i.e,
we keep only the counts n(d,w) which indicates the number of occurrence of word w
in document d. PLSA assumes that each word in a document is generated by a specific
topic. Given the topic distribution of a document, its word distribution is independent
from the document. More precisely, the probability of a word w in a document d is a
marginalization over topics, i.e.,

P(w|d) = ∑
s∈S

P(w|s)P(s|d) (1)

Given D and P(w|d), the parameters P(s|d) and P(w|s) can be estimated by an EM
algorithm [3]. To adapt PLSA to image data, we transform images into the bag of visual
words representation by the following procedures: (i) Partition each image into a number
of small patches. (ii) Learn a visual vocabulary on the descriptors of a subset of local
patches by k-means clustering. (iii) Assign a visual word to each local patch. After a
PLSA model is learned from the training images, we can obtain the topic labeling s of a
visual word w in a specific document d by the following equation

P(s|w,d) =
P(w|s)P(s|d)

P(w|d)
(2)

The ending results of PLSA is that each image patch has a topic label.

3 Classification Oriented Conditional Random Field
(COCRF)

Our final objective is to assign a scene category label to a given image. The training data
is {(y(k),x(k),s(k))}, where y(k) is the category label, x(k) = {xk
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image patches obtained by PLSA. k is the index of the training image. The graphical
structures of CRF, HCRF and COCRF are illustrated in Fig. 1. In these graphic models,
we have taken an image with four local patches (which we also refer to as segments) as
an example. The scene category label is denoted by variable y and s = {s1,s2,s3,s4} are
the topic labels of the image patches. The image observation is denoted by variables x =
{x1,x2,x3,x4}. The edges between nodes represent their inter-dependence. The shaded
nodes in HCRF indicate these nodes are hidden variables. In our model, we consider the
graphic structure of nodes s as a lattice with pairwise potentials. In a CRF model, we have
only the topic labels and the image observation. In HCRF we have an additional node y
but s is not observed. In COCRF we have the node y and all the nodes s are observed.
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Figure 1: Graphical models of conditional random field (CRF), hidden conditional ran-
dom field (HCRF) and classification oriented conditional random field (COCRF).

Following the definition of a CRF model, the conditional probability for the topic
labels s and the category label y given the observation x can be expressed as

P(y,s|x;θ) =
eψ(y,s,x;θ)

∑y′,s′ eψ(y′,s′,x;θ) (3)

where θ represents the parameters of the model. eψ(y,s,x;θ) is the potential function.
In COCRF, we consider three types of potential and we write the log potential function
ψ(y,s,x;θ) as the summation of three terms. Each term can be viewed as a different type
of features deployed for classification.

ψ(y,s,x;θ) = ψa(y,s,x;θ)︸ ︷︷ ︸
node appearance potential

+ψe(y,s,x;θ)︸ ︷︷ ︸
edge potential

+ ψs(y,s;θ)︸ ︷︷ ︸
node spatial potential

(4)

3.1 Appearance Potential
The appearance potential measures the compatibility between a topic label and its appear-
ance. This potential is a kind of low-level features and it is shared among different scene
categories.

ψa(y,s,x;θ) =
m

∑
j=1

φ(x, j) ·θ a(s j) (5)

where j is the index of a segment (patch) and m is the total number of segments. φ(x, j)∈
Rd is a feature extraction function which maps the observation at site j to a d-dimensional
feature vector. θ a(s j) is the appearance parameter vector corresponding to the segment
label s j ∈S .

Considering the diversity in appearance of each topic, we map the local observation
to a feature vector by a Gaussian Mixture Model (GMM). Suppose we have a set of
Gaussian components {g1,g2, . . . ,gd}, each of which has its own parameters of the mean
and variance. The feature extraction function is represented as,

φ(x, j) =
[
g1(x j),g2(x j), · · · ,gd(x j)

]t (6)

where x j is the appearance descriptor of segment j. To obtain the set of Gaussian com-
ponents {g1,g2, . . . ,gd}, we firstly collect a subset of local patches of each topic and fit a
GMM to each topic. The final set of Gaussian components are the combination of all the
Gaussian components for each topic.



3.2 Edge Potential
The edge potential models the interaction between neighboring patches. It is similar to
that in CRF but it is category dependent. This provides COCRF more discriminative
capability between different categories, as follows

ψe(y,s,x;θ) = ∑
( j,k)∈E

θ e(s j,sk,y) (7)

where θ e is symmetric with respect to s j and sk. E is the set of all the edge links between
the segment nodes depending on the 2-D lattice structure.

3.3 Spatial Layout Potential
Here we take an explicit approach by dividing the image area into 3× 3=9 sub-regions.
We examine the the spatial layout distribution of each topic on this 3×3 grid.

ψs(y,s;θ) =
m

∑
j

θ s(y,s j,η( j)) (8)

where η( j) ∈ {1,2, . . . ,9} denotes the deterministic mapping function of a site j into the
sub-region it sits in. It is worth noting that if θ s does not depend on the spatial location of
node j, this potential will degrade to the one as same as that in HCRF [8].

4 Learning
In the training process we learn the model parameter θ̂ by maximizing its log likelihood
on the training data. Assume the training data is i.i.d., θ̂ is obtained by,

θ̂ = argmax
θ

L (θ) = argmax
θ

n

∑
k=1

L k(θ) (9)

where L k(θ) is the log likelihood of the k-th sample and n is the total number of training
samples. Since s(k) is observed, we have

L k(θ)= logP(y(k),s(k)|x(k);θ)= log

(
eψ(y(k),s(k),x(k);θ)

∑y′,s′ eψ(y′,s′,x(k);θ)

)
= ψ(y(k),s(k),x(k);θ)−log ∑

y′,s′
eψ(y′,s′,x(k);θ)

(10)

This equation is different from that in HCRF [8], where the topic labels s(k) have to
be marginalized out because they are not observed. Unlike HCRF, L k(θ) is concave
because the first term is a linear function of θ and the second term is a log-sum-exp
which is convex. The optimization is based on the quasi-newton algorithm, so we need
the first-order derivatives of the log likelihood with respect to the model parameters θ .
For convenience, we reformulate ψ(y,s,x;θ) as a linear function of the model parameters
[5, 8], i.e.,

ψ(y,s,x;θ) = ∑
j

∑
l∈L1

θ 1
l f 1

l ( j,y,s j,x)+ ∑
( j,k)∈E

∑
l∈L2

θ 2
l f 2

l ( j,k,y,s j,sk,x) (11)



where θ 1
l is the clamped parameters of θ a and θ s. θ 2

l is the clamped parameters 1 of
θ e. f 1

l and f 2
l are the corresponding binary feature functions. The dependency of f 1 and

f 2 on site index j and k is for the general formulation. In our problem, we have only one
feature function for nodes and edges respectively, i.e., |L1| = |L2| = 1. We consider the
derivative with respect to the node potential parameters θ 1

l based on this formulation. For
simplicity, we omit the upper index k for a specific training sample so that (y,s,x) actually
refers to (y(k),s(k),x(k)). It can be derived that,

∂L k(θ)
∂θ 1

l
= ∑

j
f 1
l ( j,y,s j,x)− ∑

y′, j,a
P(y′,s j=a|x;θ) f 1

l ( j,y′,a,x) (12)

Similarly, the derivative with respect to the edge potential parameters θ 2
l can be writ-

ten as

∂L k(θ)
∂θ 2

l
= ∑

( j,k)∈E
f 2
l ( j,k,y,s j,sk,x)− ∑

y′, j,k,a,b
P(y′,s j=a,sk=b|x;θ) f 2

l ( j,k,y′,a,b,x) (13)

where,
P(s j=a,y|x;θ)=P(s j=a|y,x;θ)P(y|x;θ) (14)

P(s j=a,sk=b,y|x;θ)=P(s j=a,sk=b|y,x;θ)P(y|x;θ) (15)

By belief-propagation (BP) [10], we can calculate the two marginals in Eq. (14) and
Eq. (15). As a by-product, BP can also calculate the partition function,

Z(y,x;θ) = ∑
s

eψ(y,s,x;θ) (16)

so that we can calculate the marginal P(y|x;θ) as

P(y|x;θ) = ∑s eψ(y,s,x;θ)

∑y′,s′ eψ(y′,s′,x;θ) =
Z(y,x;θ)

∑y′ Z(y′,x;θ)
(17)

Given the observation x of a new image and the learned parameter vector θ̂ , we infer
its category label ŷ by maximizing the posterior probability. Since predicting the class
label ŷ is our ultimate goal, we marginalize out the topic labels s, giving out

ŷ = argmax
y ∑

s
P(y,s|x; θ̂) = argmax

y
P(y|x; θ̂) (18)

As noted in the above section, this can be efficiently calculated by BP.

5 Experiments

5.1 Datasets
We used two well known scene image datasets for our experiments: the Oliva and Torralba
[7] dataset which we referred to as the OT dataset, and the Vogel and Schiele [9] dataset,

1The whole set of parameter is represented by a vector and the vector again is divided into blocks. The
parameters in the same block can be updated together. Clamped means several parameters are put in the same
block, this is for the convenience of implementation.
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Figure 2: Sample images from the OT datasets.
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Figure 3: Sample images from the VS datasets.

referred to as the VS dataset. The OT dataset contains grayscale images of 8 scene cate-
gories. The category labels and the number of images of each category (in brackets) are:
coasts (360), forest (328), mountain (374), open country (410), highway (260), inside of
cities (308), tall buildings (356) and streets (292). All the images are in the same size as
250×250 pixels. The VS dataset contains 700 color images of 6 categories. The category
labels and the number of images (in brackets) are: coast (142), waterscape (111), forest
(103), field (131), mountain (179) and sky clouds (34). All the images in the VS dataset
have been resized to 250 pixel in the maximum dimension. In Fig. 2 and Fig. 3 we show
some sample images from these two datasets. Grayscale images are from the OT dataset
and color images are from the VS dataset. We are aware that there are other datasets with
more categories. The most complete set to our best knowledge is the 15 scene categories
proposed by Lazebnik et al. [6], of which the OT dataset is only a subset. We have not
chosen this one mainly because at this stage we have paid no effort on the speed of our
algorithm. Working on the OT subset, we can have a more comprehensive evaluation. It
is worth noting that although COCRF is computational more expensive compared to other
approaches, it provides a probabilistic model to interpret the scene categories which other
approaches cannot. The Bayesian approach by Fei-Fei and Perona [2] has this capability
but they can not interpret the spatial layout structures of scenes.

5.2 Implementation
In our implementation, we partition each image into patches of 18×18 pixels and over-
lapping by 9 pixels. The number of patches of each image varies from 700 to 961. For



Table 1: Classification results in percentage on the OT and VS datasets.
Performance on OT dataset

Method [1] [6] Task 1 Task 2 Task 3
Accuracy 86.65 86.85 82.3 87.13 90.2

Performance on VS dataset
Method [1] [9] Task 1 Task 2 Task 3

Accuracy 85.7 74.1 84.2 87.1 88.0

the grayscale images from OT dataset, we use SIFT descriptor as the feature vector for
each patch. For the color images from VS dataset, we concatenated SIFT descriptor with
another 6 dimensional color descriptor. The color descriptor represents the mean and vari-
ance of R,G and B. The visual vocabulary is generated by clustering a subset of 50000
image patches into 500 visual words on these two dataset respectively. PLSA is applied
to group these visual words into 8 topics for both OT and OS. In generating the Gaussian
components, the appearance of each topic is modeled by a mixture of 2 Gaussian com-
ponents. Thus the final local appearance feature vector is a 2×8=16 dimensional vector.
On the OT dataset, we take 100 images from each category for the training and the rest
images for test (the same setup as [2] and [6]). On the VS dataset, we take half of the
images from each category as training and the rest as testing (the setup as [1]). We have
done several experiments including: (1) In task 1, we train COCRF with node potential
but ignore the spatial location of each patch and edge potential. (2) In task 2, we train
COCRF with spatial layout potential but without edge potential. (3) In task 3, we train
COCRF with spatial layout potential and edge potential.

5.3 Results
Table 1 shows the classification results on the two datasets. The classification accuracy
is calculated as the average of the classification accuracy of each category. In the fol-
lowing discussion we focus on the OT dataset. Task 1 is equivalent to take the number
of occurrence of each topic in an image as the features and train a logistic classifier for
image classification. Compared to the result (86.65%) in [1], our result (82.3%) in task 1
is a little worse. This is because their approach takes more training samples and trains a
KNN as a non-linear classifier although the features are similar while ours is equivalent
to a linear classifier. In task 2 we consider the number of occurrence of each topic and
also the spatial layout of topics. This incorporation of spatial information of patches raise
the recognition rate to 87.13%. It is better than that of [1] and [6] (86.65%). In [6], they
also takes into account the spatial layout of each patches. Nevertheless, the result of their
approach listed in Table 1 is conservative because we have taken out the classification
accuracy of 8 categories from their 15 scene categories classification results. With less
categories, the classification performance is expected to be slightly better. The best per-
formance of of 90.2% is obtained in task 3. With 5 runs of task 3, each having a differnt
partition of training and testing set, the deviation is 0.4%. This shows that the combina-
tion of spatial layout of individual patch and the pairwise interaction between patches is
helpful for classification. The experimental results on the VS dataset shows the similar
behavior.

As mentioned before, a benefit of COCRF is that it can discover the spatial layout
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Figure 4: Spatial distribution of topics per category. Each column illustrates two scene
categories and the spatial distribution of a specific topic. The blue dots superimposed on
the images illustrated the location of those image patches labeled as the corresponding
topics. See text for explanation. (This figure is best viewed in color).

distribution of local patches and their pairwise interaction for a category. The ability of
probabilistic modeling can not be achieved by those approaches such as those of Bosch
et al. [1] and Lazebnik et al. [6]. In Fig. 4 we illustrate the learned 3×3 spatial layout
distribution of different topics in some categories. In this figure, we compare the spatial
layout distributions of a specific topic of two categories in each column. The first row
shows the two distribution probability maps of a certain topic for the two categories. For
example, in the first row and the first column, we show the spatial layout distribution of
topic 6 for a coast scene in the left and that for a mountain scene in the right. The second
and third rows in each column show an instantiation for each category respectively. The
blue dots superimposed on the images illustrated the location of those image patches
labeled as the corresponding topics. The fourth row is the text description explaining
which categories and which topic are compared. It is interesting to discover that topic 6
in the moutain scene has a special distribution (mass in left top and right top part of an
image) while the same topic in a coast scene is more evenly distributed in the top part of
an image. In Fig. 5, we show the pairwise interaction potential map between different
topics for four categories. The intensity of the cell in row i and column j represents the
probability of that topic i and topic j appear as neighbors to each other. Since in scene
images, it is very common that the same topic appears as neighbors, we have depressed
the pairwise interaction between two same topics (diagonal cells). This is to highlight
the pairwise interaction potential between different topics. From this figure we can find
that different categories can have very different pattern of pairwise interaction potential
between patches.

6 Conclusion
We have presented a classification oriented conditional random field (COCRF) for natu-
ral scene categorization. COCRF is adapted from HCRF and is a fully observed model
for classifying a whole sequence instead of labeling each segment of a sequence. Our
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Figure 5: Illustration of the pairwise interaction potential between topics for four cate-
gories. The intensity of the cell in row i and column j represents the probability of that
topic i and topic j appear as neighbors to each other.

approach is based on representing each image as an ordered set of local image patches.
The training of COCRF needs both the topic labels and category labels of the training
data. However, we do not need manual labeling of each segment. This is achieved by an
automatic segment labeling process based on PLSA. PLSA can provide a higher level of
semantic grouping of local patches by taking into account the co-occurrence relationship
between different patches. COCRF provides a discriminative probabilistic model of the
spatial layout of patches and their spatial pairwise interaction. Unlike HCRF, the objective
function of training a COCRF model is convex, so we can avoid the concerns about local
optimum and careful initialization. We have done experiments on two well-known scene
image datasets. Our results demonstrate that COCRF outperforms the existing approaches
for scene categorization.
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