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This paper presents a novel approach to automatic image annotation which combines global, regional, and
contextual features by an extended cross-media relevance model. Unlike typical image annotation methods
which use either global or regional features exclusively, as well as neglect the textual context information
among the annotated words, the proposed approach incorporates the three kinds of information which are
helpful to describe image semantics to annotate images by estimating their joint probability. Specifically,
we describe the global features as a distribution vector of visual topics and model the textual context as a
multinomial distribution. The global features provide the global distribution of visual topics over an image,
while the textual context relaxes the assumption of mutual independence among annotated words which
is commonly adopted in most existing methods. Both the global features and textual context are learned
by a probability latent semantic analysis approach from the training data. The experiments over 5k Corel
images have shown that combining these three kinds of information is beneficial in image annotation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the prevalence of digital imaging devices such as webcams,
phone cameras and digital cameras, image data accessible to users
are now explosively increased. An emerging issue is how to browse
and retrieve this daunting volume of data. A possible solution is
content based image retrieval, in which the query is usually given as
a sample image or descriptions of visual properties [1--3]. However,
such kind of query is not user-friendly enough, because inmany cases
a user's intent cannot be described only by an image or any low-
level visual properties. Another approach is to annotate images and
then retrieve these images by their associated textual keywords. If all
the images are annotated, image retrieval can be solved effectively
and efficiently by the well-developed techniques in text retrieval.
Automatic image annotation is a process to automatically generate
textual words to describe the content of a given image.

The research on automatic image annotation has proceeded along
two categories. The first category poses image annotation as a super-
vised classification problem. Specifically, each word is viewed as a
unique class. Binary classifiers for each class or a multiclass classifier
is trained independently to predict the annotations of new images
[4,5]. The second category represents the words and visual tokens in
each image as features in different modalities. Image annotation is
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then formalized by modeling the joint distribution of visual and tex-
tual features on the training data and predicting the missing textual
features for a new image. The works for modeling this joint distribu-
tion include translation language model [6], cross-media relevance
model (CMRM) [7], multiple Bernoulli relevance model (MBRM) [8],
hidden conditional random fields (HCRF) [9], semantic distance [10],
and so on.

Both of the above two categories have shown good performances
over different data sets. However, there still exist two challenging
problems. First, most existing algorithms have taken one of two ap-
proaches, using either regional features [6,7,9,11] or global features
[4,5,10] exclusively. In the approaches using global features [4,5,10],
a global feature vector is extracted from an image, such as color
histogram, color correlogram, edge direction histogram, and so on.
The global features are advantageous in classifying simple scene
categories such as "sunset,” "mountain,” "building,” etc. In the ap-
proaches using regional features [6,7,9,11], an image is segmented
into several regions and represented as a set of visual feature vectors,
each of which represents one homogenous region. The underlying
motivation of region-based image representation is that the ap-
pearance of many objects such as "cat,” "tiger,” and "plane” usually
appear at a small portion of image. If a satisfying segmentation could
be achieved, i.e., each object can be segmented as a homogenous and
distinctive region, then region-based representation would be very
meaningful. Since each of these two feature representations pro-
vides different kinds of information, they have their own advantages
in classifying some certain categories. On the other hand, there are
many situations where the annotation of images should be judged
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Fig. 1. The correspondence between semantics and feature representations. The semantic of an image is perceptually more relevant to: (a) global features, (b) regional
features, (c) global and regional feature together, and (d) unclear. The images and their annotations are from Corel 5000 date set.

Fig. 2. Approach to image annotation by the extended cross-media relevance model. The extension include: (1) the global, regional, and contextual features are combined
this extended model. (2) Instead of predicting the single word probability in CMRM, we first predict the context distribution and then predict the words distribution from
the context distributions.

based on the combination of global and regional features. For exam-
ple, the complex scene and events categories, e.g., "indoor_decorate,”
"ski,” and "surfing” are more suitable to be represented by both
global and regional features. Fig. 1 shows some sample images. In
addition, there exist some cases that it is not clear whether global
or regional features are more perceptually used for annotation. We
believe that the combination of these two types of features is bene-
ficial in annotating images with such as diversity of categories.

Second, conventional approaches treat each word separately
without considering the textual context relation. In other word,
annotating one word to an image is independent from annotating
another word to the same image. As a result, the textual context
relations among annotation words have been ignored. By textual
context, we refer to co-occurrence relationship among words. Such
kind of contextual knowledge is actually embedded in the manual
annotations, since human usually annotates an image with a set of

words with coherent semantic meaning as a whole entity rather
than annotates each word one by one. For example, in "outdoor”
images, if we have annotated "clouds,” then the a prior probability
of annotating "sky” would be higher than that of annotating "street”
before examining the detailed visual content of the image. We be-
lieve that mining such kind of textual contexts from the training
data is helpful for image annotations.

To address the above problems, we propose a novel extended
CMRM for automatic image annotation. Unlike the typical CMRM [7]
which only takes regional features to describe an image, the pro-
posed extended CMRM incorporates both regional and global fea-
tures, as well as textual context to annotate images by estimating
their joint probability. Specifically, we describe the global features
as a distribution vector of visual topics, and model the textual con-
text among annotated words as a multinomial distribution of words.
The global features provide the global distribution of visual topics
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over an image, while the textual context relaxes the assumption of
mutual independence among annotated words which is commonly
adopted in most existing approaches. Both the global features and
textual context are learned by a probability latent semantic analysis
(PLSA) [12] approach from the training data. We should point out
that Jin et al. [13] also proposed to model the textual contexts among
words as multinomial distributions of words. However, the learn-
ing of textual contexts in their approach is achieved simultaneously
in the learning of the joint distribution of visual words and textual
words by an expectation--maximization (EM) algorithm. In our ap-
proach, the learning of the textual contexts is independent from the
visual features. Moreover, Jin et al. [13] use only regional features,
while our approach considers both regional and global features. Al-
though Lisin et al. [14] also investigated combining local and global
features for object recognition, these two kinds of features are ac-
tually used independently. Furthermore, the context information is
not considered.

The framework is shown in Fig. 2. The images are represented
by global, regional, and contextual features (i.e., G, R, and C). An
extended CMRM model is learned from the training data based on
the three kinds of features. Given a new image I to be annotated,
we first compute the textual context P(C|I) of image I based on the
extended CMRM model, and then the textual context distribution is
fused with the words distribution obtain the annotation words w,
i.e., P(w|I).

The rest of this paper is organized as follows. Section 2 introduces
the original CMRM. In Section 3 we discuss how to learn textual con-
texts and visual topics, as well as how these three kinds of features
are integrated into an extended CMRM. Section 4 give experimental
results, followed by conclusion in Section 5.

2. Cross-media relevance model

The CMRM [7] is a non-parametric model for image annotation.
CMRM represents an image as a bag of regions and annotates a test
image I by estimating the joint probability of a word w and its visual
blobs, i.e.,

P(w, b1, . . . , bm) =
∑

J∈T
P(J)P(w, b1, . . . , bm|J) (1)

where (b1, . . . , bm) are the blobs of the test image I, J represents a
training image. P(J) is kept uniform over all images in T. CMRM
assumes that given an image, the events of observing a word w and
b1, . . . , bm are mutually independent, so that P(w, b1, . . . , bm|J) can be
simplified as

P(w, b1, . . . , bm|J) = P(w|J)
m∏

i=1

P(bi|J) (2)

where P(w|J) and P(b|J) are given by the following smoothed proba-
bilities:

P(w|J) = (1 − �)
#(w, J)

|J| + �
#(w,T)

|T| (3)

P(b|J) = (1 − �)
#(b, J)

|J| + �
#(b,T)

|T| (4)

where #(w, J) represents the number of occurrence of word w in
J, #(w,T) represents the number of occurrence of w in the whole
training set. |J| and |T| represent the number of aggregated blobs and
words for one image J and for the whole training setT respectively.
The notation of #(b, J) and #(b,T) are similar to #(w, J) and #(w,T).
� and � are two smooth parameters.

3. Extended CMRM

The conventional CMRM considers only one representation of im-
ages, i.e., a bag of blobs. To deal with images which are not suitable
to be represented as a bag of blobs, we need to consider other rep-
resentation as well. In this Section, we propose to use visual topics
as another representation. This new image representation is com-
bined with the visual blob representation. Moreover, from Eq. (1)
we know that CMRM annotates keywords individually without con-
sidering the joint distribution of different keywords. To remedy this
problem, we propose textual context to model the joint distribution
of different keywords. To annotate an image withmultiple keywords,
we first annotate the image with textual contexts and then compose
the keywords from the typical distribution of keywords under each
textual contexts.

3.1. Learning textual contexts from prior annotations

Put a simple way, textual context is the co-occurrence relation-
ship among different keywords. This relationship may come from
the habit in which people use a language, for example, "united” and
"nation.” It may also come from the correlation in semantic meaning
of different keywords, for example, "sky” and "clouds.” Generally, it
is hard to build a universal mathematical model for textual context.
Here we simplify a particular textual context as a multinomial distri-
bution of textual keywords. Specifically, we assume there are a lim-
ited number of textual contexts and the keyword distribution P(wi|J)
of an image J is governed by the hidden conditional distribution of
textual context. The learning textual contexts is based on the proba-
bilistic latent semantic analysis (PLSA) developed by Hofmann [12].
PLSA is proposed to automatically learn topics from text documents.
Suppose we are given a set of text documents D = {d1,d2, . . . ,dn},
each of which is represented by a term frequency vector, i.e.,

di = [n(di,w1),n(di,w2), . . . ,n(di,wm)] (5)

where n(di,wj) is the number of occurrence of word wj in document
di, and m is the vocabulary size. PLSA assumes that each word in
a document is generated by a specific hidden topic zk, where zk ∈
Z and Z is the vocabulary of hidden topics. Since zk is a hidden
variable, the conditional probability of a word wj given document di
is a marginalization over the topics, i.e.,

P(wj|di) =
K∑

k

P(wj|zk,di)P(zk|di) (6)

where K is the number of hidden topics, P(wj|zk,di) is the conditional
probability of a word wj given topic zk and the document di, P(zk|di)
is the conditional probability of topic zk given di. Furthermore, PLSA
assumes that the conditional probability of generating a word by a
specific topic is independent from the document, i.e.,

P(wj|zk, di) = P(wj|zk) (7)

Therefore, Eq. (6) can be simplified as

P(wj|di) =
K∑

k

P(wj|zk)P(zk|di) (8)

The model parameters P(wj|zk) and P(zk|di) can be learned by an
EM algorithm [12]. Given the learned model parameters and a new
document d, the topic distribution {P(zk|d)}Kk=1 of d can be estimated
by an EM algorithm similar to the training process [12].

To apply PLSA to the annotated words associated with the train-
ing images, we take each group of keywords annotated to a trainin
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Fig. 3. Illustration of three textual contexts. The three histogram plots show the words distribution of each textual contexts. The words under each plot are the three words
with largest probabilities under the corresponding textual context. (a) cat, tiger, Bengal; (b) food, market, Maui; (c) street, sign, writing.

Fig. 4. Illustration of two types of features: (a) original image; (b) regions by unsupervised segmentation and (d) global distribution of visual topics. The segmentation of
each image is independent of each other while the global distribution of visual topic is learned automatically from the whole set of training images. The patches in (c)
belonging to the same topic are indicated by the same color. Each patch corresponds to a region of 13 × 13 pixel.

image as a short text document and learn a number of hidden top-
ics from this collection of short text documents. We call these top-
ics, which are described by multinomial distributions of keywords,
as textual contexts. Fig. 3 shows three samples of textual contexts
learned from the training set of Corel images. We find that textual
context is able to group the words into different semantic meaning,
such as "tiger” and "Bengal.”

Specifically, the textual context will be used in the following
way. (1) From the training data, we extracted a number of tex-
tual contexts from the manual annotation on the training images.
(2) Given a test image, we "annotated” this image with textual
contexts, i.e., on a test image, the textual contexts were derived
from the visual features rather than from the pre-annotated key-
words. (3) Compose the keywords from the textual contexts distri-

bution on the test image. We will give more details in the following
sections.

3.2. Learning visual topics from images

Similar to learning topics from text documents, we can also learn
visual topics from a collection of images. The main point is repre-
senting an image as a bag of "words,” similar to the vector repre-
sentation of text documents. In details, we partition an image by a
regular grid and take it as an unordered set of image patches. Then
we extract a 128-D SIFT descriptor [15] and vector-quantize each
image patch by clustering a subset of patches from the training im-
ages, which has proved effective for object recognition [16]. We call
the set of cluster centers as visual vocabulary. We can then trans-
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Fig. 5. Illustration of two different visual topics. Visual topic can group patches
with different visual appearance by their co-occurrence relationship. For each visual
topic, we show the top five visual words with largest probabilities. The patches on
each line is some sample patches belonging to the corresponding visual words.

form an image into a bag of visual words by assigning a visual word
label to each image patch. Given this bag of visual words represen-
tation, it is then straightforward to apply PLSA to learn a set of visual
topics, each of which is characterized by a multinomial distribution
of visual words.

It is worth comparing visual topics to image regions. From the
probabilistic model of PLSA we can find that PLSA models an image
as an unordered set of image patches and a visual topic groups image
patches by co-occurrence relationship. The unorderness suggests that
the image patches grouped in a topic do not have spatial agglom-
eration property. The co-occurrence suggests that the image patches
grouped in a topic do not necessarily have visual consistency. This is
rather different from image regions obtained by image segmentation
since image segmentation groups pixels by its visual property and
spatial location. Fig. 4 illustrates the image regions and the global
distribution of visual topics of an image. In Fig. 5 we show some
sample patches in two different visual topics. Since the visual topics
and image regions by segmentation focus on different aspects of an
image, they are complementary to each other and a combination of
them is expected to achieve better performance.

3.3. Combining global, regional, and contextual features

Our method annotates a test image I by estimating the joint prob-
ability of a textual context c learned in Section 3.1, its visual blobs
(regions) R = (b1, . . . , bm) obtained by image segmentation, and the
visual topic distribution H(I) learned in Section 3.2, i.e.,

P(c,R,H(I)) =
∑

J∈T
P(J)P(c, b1, . . . , bm,H(I)|J) (9)

Comparing Eq. (9) with Eq. (1), there are two points of difference to
elaborate. First, the original CMRM in Eq. (1) annotates an image us-
ing only the regional features R=(b1, . . . , bm). However, our extended
model in Eq. (9) uses both the regional features R and the global fea-
tures H(I), which represent the global distribution of visual topics in
image I. This suggests our new model combines the global features
and regional features. Second, Eq. (1) predicts the probability of a
single wordw directly, while Eq. (9) predicts the probability of a tex-
tual context c. This indicates our model does not assume the mutual
independence between words given the image. Thus, the extended
CMRM incorporates the textual context from the training data.

We assume the mutual independence between a textual con-
text c, image blobs and the visual topic distribution, so that
P(c, b1, . . . , bm,H(I)|J) can be simplified as

P(c, b1, . . . , bm,H(I)|J) = P(c|J)P(H(I)|J)
m∏

i=1

P(bi|J)

P(b|J) is estimated as the same as that in Eq. (3). P(c|J) is readily
available after learning textual contexts on the manual annotations
as described in Section 3.1. P(H(I)|J) is defined as the Kullback--Leibler
divergence between the visual topic distribution of I and J, i.e.,

P(H(I)|J) = DKL(H(I)|H(J)) =
Q∑

i=1

P(qi|I) log P(qi|I)
P(qi|J) (10)

where DKL is the Kullback--Leibler divergence between two distri-
butions.

From the Bayesian theory, we know that,

P(c|I) = P(c, I)
P(I)

= P(c, b1, . . . , bm,H(I))
P(I)

(11)

Therefore, a normalization on P(c, b1, . . . , bm,H(I)) will give us the
conditional distribution of textual contexts P(c|I). The conditional
keyword distribution P(wj|I) of I is obtained by fusing the keyword
distribution of all the textual contexts, i.e.,

P(wj|I) =
S∑

i
P(wj|ci)P(ci|I) (12)

4. Experiments

To evaluate the performance of our approach, we test it on a 5460
Corel image data set, among which 3100 images is a subset of the
5000 Corel image data set [7] and another 2360 images are down-
loaded from Ref. [17]. We have not used the original 5000 image data
set [7] mainly because we do not have all the original images. Al-
though the blob features of the 5000 Corel image data set [7] can be

Table 1
The average precision, recall, and F1 values of Experiment I

Parameters Metric R R + C R + G R + C + G

Q = 80, S = 100 Precision 0.2317 0.2386 0.2642 0.2665
Recall 0.2786 0.2715 0.2782 0.2950
F1 0.2530 0.2540 0.2710 0.2800

Q = 100, S = 80 Precision 0.2264 0.2586 0.2577 0.2849
Recall 0.2866 0.2959 0.3238 0.3472
F1 0.2530 0.2760 0.2870 0.3130

Q = 100, S = 120 Precision 0.2447 0.2571 0.2669 0.2837
Recall 0.2619 0.2734 0.3104 0.3321
F1 0.2530 0.2650 0.2870 0.3060

In this experiment, some images have only one or two annotation words. Q repre-
sents the number of visual topics. S represents the number of textual contexts.
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downloaded from the Internet, we still have to use the original im-
ages extract the global features. The number of different keywords
on this data set is 393. Since the textual contexts represent the cor-
relation among keywords, they are only meaningful when there are

Table 2
The average precision, recall, and F1 values of Experiment II

Parameters Metric R R + C R + G R + C + G

Q = 80, S = 100 Precision 0.3027 0.3508 0.3472 0.3553
Recall 0.3486 0.3593 0.3673 0.3882
F1 0.3240 0.3550 0.3570 0.3710

Q = 100, S = 80 Precision 0.2881 0.3438 0.3623 0.3624
Recall 0.3702 0.3845 0.3780 0.4060
F1 0.3240 0.3630 0.3700 0.3830

Q = 100, S = 120 Precision 0.2938 0.3538 0.3471 0.3607
Recall 0.3611 0.3812 0.3961 0.3949
F1 0.3240 0.3670 0.3700 0.3770

In this experiment, all the images have at least three annotation words. Q represents
the number of visual topics. S represents the number of textual contexts.

Fig. 6. Sample images and the annotations by CMRM and the proposed approach.

multiple keywords in the annotations. In our 5460 Corel images,
there are a lot of images with only one keyword annotated. So we
exclude images with very few annotation keywords to fairly eval-
uate the influence of textual contexts. Thus we have designed two
experiments as follows.

• Experiment I: We partition the whole data set into a training set
and a test set, keeping the ratio between the training size and
testing size as 9/1. This is equivalent to 4914 training images
and 546 testing images. This experiment is to evaluate the per-
formance of incorporating global features.

• Experiment II: We select only images with more than three key-
words in their manual annotations. This is equivalent to 3192
training images and 355 test images. This experiment is to evalu-
ate the performance of incorporating textual contexts and global
features.

For the region features, we use the JSEG algorithm [18] to seg-
ment each image into 1--11 regions. Image regions with area less
than 1/25 of the whole image are discarded. In average there are five
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image regions per image. Each image region is represented by a 49-D
feature vector including 1-D relative region area, 9-D color moment
feature, 3-D shape descriptor and 36-D color correlogram feature
[19,20]. For the dense grid, we sample 13× 13 pixels image patches
without overlapping [16]. The average number of image patches per
image is around 550. The image regions are clustered into 500 image
blobs. Similarly, the SIFT descriptors of image patches are clustered
into 500 centers. We experiment with different number of visual
topics Q and different number of textual contexts S and compare the
performances of the following approaches.

(1) R: The original CMRM which annotates images using regional
features and without textual contexts. Its performance is not
affected by the number of visual topics and number of textual
contexts.

(2) R + C: The extended CMRM which annotates images using the
regional features with textual contexts. Its performance is not
affected by the number of visual topics.

(3) R + G: The extended CMRM which annotates images using re-
gional features and global features. Its performance is not af-
fected by the number of textual context.

(4) R+C+G: The final extended CMRM proposed in this paper which
annotates images by fusing global features and regional features
and incorporating textual contests.

For each method, we take the top five words as the final anno-
tation [5]. We evaluate the annotation performance by the average
precision, recall, and F1 values over all testing images. The F1 value
is derived from precision and recall values as in Eq. (13):

precision(w) = # of images correctly annotated with w
# of images automatically annotated with w

recall(w) = # of images correctly annotated with w
# of images manually annotated with w

F1(w) = 2 × precision(w) × recall(w)
precision(w) + recall(w)

(13)

The results of Experiment I are shown in Table 1. When choosing
the number of visual topics Q as 80 and the number of textual con-
texts S as 100, the results show that, compared to the original CMRM
(R), incorporating global features (R+G) improved the F1 value from
0.253 to 0.271. However, incorporating textual contexts only (R+C)
does not show much improvement (from 0.253 to 0.254). This is be-
cause in the Experiment I, many images have only one or two an-
notation words, making the textual contexts insignificant. The best
performance is achieved by incorporating both textual contexts and
global features (R + C + G), which improves the performance from
0.253 to 0.280. The other settings of Q and S show the similar behav-
ior. The results of Experiment II are shown in Table 2. For Q =80 and
S = 100, incorporating textual contexts only (R + C) improve the F1
value from 0.324 to 0.355. Compared to Experiment I, the improve-
ment is more significant. Incorporating global features only (R + G)
produce the similar improvement as (R + C). Again, the best perfor-
mance is achieved by incorporating both global features and textual
contexts (R+C+G), which improved the F1 value from 0.324 to 0.371.
In summary, incorporating both textual contexts and global features
can improve the annotation performance compared with the orig-
inal CMRM. The performance gain contributed by textual contexts
is more significant in Experiment II, because each image has more
than three keywords annotated.

Some test images with the annotations generated by the CMRM
and the proposed approach are shown in Fig. 6. It is observed that
the proposed approach can yield better annotations than CMRM,
especially when the test images are associated with multiple words.
The annotations from the proposed approach have better coherent

semantic due to the integration of textual context, global, and re-
gional appearances into CMRM.

5. Discussion

In this paper, we have proposed a method for automatic image
annotation which is extended from typical cross-media relevance
model. The proposed approach takes into account both the regional
features and the global features, as well as textual context. To obtain
a more representative global features, we learn a number of visual
topics from the training image set by the probabilistic latent seman-
tic analysis (PLSA). Moreover, PLSA is used to model the textual con-
texts between annotation words. We tested the proposed approach
on a 5460 Corel image data set. The experimental results on a 5460
Corel image data set show that, in the general case of annotating im-
ages with few words (i.e., less than five words), the combination of
the regional features and the global features can improve the anno-
tation performance. In the case of annotating images with multiple
words (at least three words), the incorporation of textual contexts
can significantly improve the annotation performance.

As we have mentioned in Fig. 1 that different features have dif-
ferent contributions to a specific word. In the future work, we will
aim to investigate the different influence of these three features for
image annotation, especially for specific categories. Furthermore, we
will exploit the correlations of words in a multilabel setting.
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