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ABSTRACT

Most existing person re-identification (ReID) methods as-
sume the availability of extensively labelled cross-view per-
son pairs and a closed-set scenario (i.e. all the probe people
exist in the gallery set). These two assumptions significantly
limit their usefulness and scalability in real-world applica-
tions, particularly with large scale camera networks. To
overcome the limitations, we introduce a more challenging
yet realistic ReID setting termed OneShot-OpenSet-ReID,
and propose a novel Regularised Kernel Subspace Learning
model for ReID under this setting. Our model differs sig-
nificantly from existing ReID methods due to its ability of
effectively learning cross-view identity-specific information
from unlabelled data alone, and its flexibility of naturally
accommodating pairwise labels if available.

Index Terms— Person Re-identification, Open-set Recog-
nition, Unsupervised Subspace Learning, Kernelisation

1. INTRODUCTION

For making sense of the huge quantity of video data pro-
duced by large scale surveillance camera networks in public
spaces, automatically identifying and re-identifying specific
people across non-overlapping cameras at different phys-
ical locations is essential. This task is known as person
re-identification (ReID). Person ReID by visual matching is
inherently challenging [1]. This is due to the great visual
similarity among different people, and significant appear-
ance variations of the same people across cameras caused
by the cross-view large disparity in viewpoint, illumination,
occlusion and background clutter.

To build an automated ReID system, most existing meth-
ods are fully supervised and require a large amount of exhaus-
tively labelled cross-view matching person pairs for model
training [2, 3, 4, 5, 6], which is impractically expensive and
not scalable. To reduce the labelling cost, alternative meth-
ods attempt to exploit unlabelled data for semi-supervised
learning [7, 8], or unsupervised learning [9, 10, 11, 12, 13].
However, the former still requires labelled cross-view pairs,
whereas the latter is unable to exploit cross-view identity
discriminative information and thus yields deficient ReID
performances. Moreover, most existing ReID methods above
assume a closed-set setting, i.e. probe population and gallery

population are the same, which makes them unsuitable for
real-world open-set applications.

Under an open-set setting, the search scope (probe set) can
be much larger than the target people (gallery set). For exam-
ple, even in a space of moderate size (e.g. an underground
station), there could easily be hundreds or even thousands of
people passing through within an hour. Moreover, not all tar-
get people necessarily appear in the probe camera view, due
to, e.g., the complex topology structure of the camera net-
work. To further compound the problem, there may be only a
single shot per person for target people due to low frame rates
of surveillance videos, thus offering insufficient data to learn
the appearance variations for each person.

The aim of this work is thus to design an intelligent
ReID system for re-identifying the target people on the watch
list (i.e. gallery set) from a large volume of video footages
without any cross-view manual labelling. We call person
ReID under this real-world setting the OneShot-OpenSet-
ReID (OS2ReID) problem. Such a problem setting raises
two requirements for ReID models: (1) to learn from unla-
belled data, the only source to obtain cross-view identity-
discriminative information; and (2) to perform matching
under an open-set assumption, i.e. the probe people are not
guaranteed to have a match in the small galley set which
contains a single shot for each person. The concept of open-
set ReID has started attracting attention recently [14, 15, 16].
Nevertheless, they all assume a fully pairwise labelled closed-
world training set and thus none is suitable for the proposed
OS2ReID problem.

The contributions of this work are: (I) We introduce
a new and more realistic unsupervised ReID setting called
OneShot-OpenSet-ReID (OS2ReID) which differs signifi-
cantly from the existing closed-set ReID settings and su-
pervised open-set ReID settings. (II) We propose a new
unsupervised subspace learning model (named as Regu-
larised Kernel Subspace Learning, or RKSL) specifically
suitable to the OS2ReID problem. Importantly, it is opti-
mised by a closed-form eigen-problem solution instead of
iterative approximations, making it suitable for large scale
and real-time applications. (III) We further extend our RKSL
model for semi-supervised learning, to accommodate any
labelled data if available. Extensive experiments on two
benchmark datasets VIPeR[17] and CUHK01[18] over five
existing models show the advantages of the RKSL model
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Fig. 1. Intuition of our cross-view constraint. The unlabelled cross-view
data (the left and right pairs) encode information on cross-view appearance
variations, e.g. changes in illumination and viewpoint respectively. This
subtle information is exploited effectively by the proposed RKSL model for
re-identifying the truly matched cross-view people (the middle pair).

over state-of-the-art methods.

2. METHODOLOGY

2.1. Problem Definition
We first define the newly introduced OneShot-OpenSet-ReID
(OS2ReID) problem. Suppose one only has unlabelled (in a
pairwise inter-camera sense) images of people, including a
one-shot watch list of target people G (gallery) from view X
and a larger pool of probe people P from view Y . Given
a probe image from P , the objective is to determine: (a)
whether it matches anyone in the gallery, and (b) if yes, which
one. We treat the above problem as an unsupervised subspace
learning task, and formulate a Regularised Kernel Subspace
Learning (RKSL) model aiming to learn a latent shared cross-
view subspace where data pairs of same identities are closer to
each other, and those of different identities are further-apart.
Specifically, we propose to mine two types of information
from unlabelled data described below.
Cross-view appearance variation: Such a variation is
caused by unknown changes in viewpoint and illumination
across camera networks, prohibiting truly matched target
images being correctly found. To model such variations,
we have the following observation: If a cross-view image
pair share very similar appearances, they often capture some
cross-view information w.r.t. viewing condition changes, re-
gardless of their identities (Fig. 1). By enforcing such pairs to
be closer in the shared subspace, the cross-view appearance
variation can be potentially learned.
Within-view appearance similarity: Similar appearances
of different people within the same camera view often con-
fuse ReID systems. To address this problem, we add another
model learning constraint by reinforcing two visually similar
people in the same camera view to be further away in the
common subspace, assuming that a person is uniquely repre-
sented by a single image, i.e. the one-shot ReID setting where
only one image is available for every person in the gallery set
without any explicit labelling for the images.

2.2. Model Formulation
In our subspace learning formulation, each data sample rep-
resented in a visual feature space F is projected to a subspace
P . The projection is realised by two projection vectors wx

and wy respectively, the model parameters to be learned.

/* Variables associated with view X (similar for view Y) */:
{x̆i}nu

i=1: Unlabelled data, with feature matrix X̆;
{x̄i}nl

i=1: Labelled data, with feature matrix X̄;
{x̂i}nx

i=1 = {x̆i}nu
i=1 ∪ {x̄i}

nl
i=1, and X̂ = [X̄; X̆];

Lx̂: Graph Laplacian matrix;
wx: Projection vectors (model parameters);
α: Kernelised projection vectors;

/* Variables across view X and Y */:
Sij : Similarity measure between x̆i and y̆j

/* Others */:
K: Kernel matrix on data, further clarified by subscript.

Fig. 2. Definition of notations.

Formally, with the two constraints described above we
formulate our objective function as follows:

ρ = max
wx,wy

w>
x (

∑
i,j Sij · x̆iy̆>

j )wy√
w>
x (Cx̂x̂ +Rx̂)wx w>

y Cŷŷwy
(1)

with Cx̂x̂ = X̂>X̂

Cŷŷ = Ŷ >Ŷ
(2) Rx̂ = −

γx

n2
x

X̂>Lx̂X̂ (3)

where Cx̂x̂ and Cŷŷ are within-view covariance matrices.
Other notations are given in Fig. 2. Note that in the OS2ReID
setting, X̂ = X̆ , and Ŷ = Y̆ since no cross-view labelled
data is available, i.e. X̄ = Ȳ = ∅.

In Eq. (1), the nominator B = w>
x (

∑
i,j Sij · x̆iy̆>

j )wy

enforces a cross-view unlabelled data pair {x̆i, y̆j} in P to
be closer in the projected space if their similarity Sij in F
is high. The value of Sij can be set by either learning or
non-learning based methods as detailed in Sec. 3. On the
other hand, Rx̂ in the denominator of Eq. (1) represents the
within-view similarity constraint, which regularises wx so
that within-view (X ) visually similar image data are pulled
apart in the subspace. Formally, we denoteAx̂ as a k-Nearest-
Neighbour (kNN) similarity graph on X̂ . Then we have:

w>
x X̂

>Lx̂X̂wx =
1

2

nx∑
i,j=1

(w>
x x̂i −w>

x x̂j)
2Aijx̂ (4)

where Lx̂ is the graph Laplacian [19] ofAx̂. By appending its
additive inverse onto the denominator of Eq. (1), we enforce
the adjacent samples in F to be more separated in P , and in
return make the projection wx more identity discriminative.

2.3. Accommodating Cross-View Pairwise Labels
To further extend our model flexibility, let us now consider
the situation where some labelled cross-view pairs are avail-
able. To that end, we introduce a third regularisation term to
represent pairwise labelled information by expanding Eq. (1):

ρ = max
wx,wy

w>
x (

∑nl
k x̄kȳ

>
k )wy + η ·w>

x (
∑
i,j Sij · x̆iy̆>

j )wy√
w>
x (Cx̂x̂ +Rx̂)wx w>

y (Cŷŷ +Rȳ)wy
(5)

where w>
x (

∑nl

k x̄kȳ
>
k )wy is the new regularisation term for

encoding the labelled cross-view data pairs. The coefficient η
is a balancing parameter for controlling the trade-off between
the hard labelled and soft unlabelled cross-view correspon-
dences. Note that we also introduce the regularisation term
Rȳ = − γy

n2
y
Ȳ >LȳȲ for the probe set data whose identities

are known to be different by available labels.



2.4. Kernelisation
Given complex variations in viewing condition across cam-
eras, the optimal subspace may not be obtainable by linear
projections. We thus further kernelise Eq. (5) by projecting
the data into a reproducing kernel Hilbert spaceH:

ρ = max
α,β

α>Kx̂x̄Kȳŷβ + η · α>(
∑
i,j Sij ·Kx̂x̆iKy̆j ŷ)β√

α>(K2
x̂x̂ +Rx̂)α β>(K2

ŷŷ +Rȳ)β
(6)

where α and β are the kernelised projection vectors for the
two views respectively, and the kernelisedRx̂ andRȳ are:

Rx̂ = εxKx̂x̂ −
γx

n2
x

Kx̂x̂Lx̂Kx̂x̂, Rȳ = εyKŷŷ −
γy

n2
y

KŷȳLȳKȳŷ

We use εxKx̂x̂ and εyKŷŷ to penalise the norms of the respec-
tive projection vectors, which is equivalent to Tikhonov regu-
larization. In this work, we set both εx and εy to the standard
value of 0.5, and utilised the exponential chi-square kernel
function. The optimisation of (6) can be performed through
a generalised eigen-problem similar to [20, 21] after a simple
Lagrangian transformation.
Person ReID: Our RKSL model can be applied to both the
proposed OS2ReID and the conventional closed-set ReID sce-
narios. Specifically, given the watch list (gallery set) G and
the probe set P , we first obtain their representations in the
projected space P by applying the proposed RKSL (Eq. (6),
with or without labels). Then, we directly use the projected
data points in P to perform ReID with cosine distance [22] as
the matching function.

3. EXPERIMENTS

Datasets: Two large benchmark datasets VIPeR [17] and
CUHK01 [18], were selected for the evaluation. The VIPeR
dataset contains a total of 632 people with one image per
person per view, whilst the CUHK01 dataset has 971 people
with two images per person per view.
Visual features: We applied the histogram-based image de-
scriptor introduced in [23]. The feature vector (5138 dimen-
sions) is a concatenation of colour, HOG [24], and LBP [25]
histograms extracted on horizontally segmented stripes.

3.1. OneShot-OpenSet ReID Evaluation

Under the OneShot-OpenSet (OS2ReID) setting, there is no
cross-view labelled data pair available.
Settings: For both datasets, we created gallery set G by ran-
domly selecting 120 people from one camera view, and the
probe set P by selecting half of the whole population (316 on
VIPeR and 486 on CUHK01) from the other view, with the
condition that 100 people exist in both G and P . For gallery
set G, only one-shot image per person is included. We evalu-
ated a total of 10 folds and reported their averaged results.
Competitors: We compared the proposed RKSL model
against five contemporary and state-of-the-art methods: (1)
L1-norm1: a basic distance metric. (2-4) Regularised Dictio-
nary Learning (RDL) [13], SDALF [9], SDC [11]: three most

1We found that L2-norm distance gave almost identical results.
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Fig. 3. Comparing Rank-1 scores over all FARs on VIPeR (left) and
CUHK01 (right) under the OneShot-OpenSet ReID setting

notable state-of-the-art unsupervised ReID models with code
provided by authors. (5) DASA [26]: a recent unsupervised
domain adaptation model. In ReID context, each person is
considered as a class, and each camera view as a domain.
Evaluation metric: We utilised the ROC curves of False
Accept Rate (FAR) versus Detection and Identification Rate
(DIR) for performance evaluation [14]. Note that DIR be-
comes the Cumulated Matching Characteristics used for the
conventional closed-world setting, when FAR = 100%.
Implementation details: We set γx/n2

x = 0.02 (Eq. (3)) em-
pirically. For computing Sij , we simply used the additive
inverse of the cross-view bipartite kNN graph with L2 dis-
tances, and normalised its values to a range [0, 1]. For both
cross/within-view kNN graphs, the value of k was set to 15.

Dataset VIPeR [17] CUHK01 [18]
FAR (%) 1 10 50 100 1 10 50 100

L1-norm 1.9 5.4 16.1 27.2 1.8 5.8 9.0 15.7
DASA [26] 0.6 4.7 13.5 27.0 1.8 6.3 15.8 30.8
SDALF [9] 0.7 4.5 16.6 26.9 0.2 1.2 8.0 21.7

SDC [11] 1.7 7.3 21.5 41.5 1.2 5.8 14.0 23.3
RDL [13] 0.1 6.0 21.3 26.3 2.5 11.0 18.3 24.7

RKSL (Ours) 4.9 15.1 36.7 42.9 7.5 20.2 32.0 36.0

Table 1. Comparing Rank-1 scores of different methods at varying FARs
under the OneShot-OpenSet-ReID setting

Comparative results: It is evident from Fig. 3 and Table
1 that the proposed RKSL model significantly outperforms
all the competitors on both datasets, especially with demand-
ing (small) FARs. Particularly, when compared to the second
best method (SDC on VIPeR and RDL on CUHK01) at FAR
= 10%, the Rank-1 score is doubled (from 7.3 to 15.1) on
VIPeR and tripled (from 11.0 to 20.2) on CUHK01 by RKSL.
This demonstrates the effectiveness of the proposed kernel
subspace learning model in extracting identity-sensitive in-
formation from the unlabelled data.

Existing state-of-the-art unsupervised ReID models,
RDL, SDC and SDALF, are shown to be less effective for
the new OS2ReID setting, compared to RKSL which is tai-
lored specifically for unsupervised open-set ReID. It can
also be observed that DASA is much inferior in matching
people across views, which suggests that it is difficult for
the unsupervised domain adaptation approach to solve this
OS2ReID problem where the intrinsic discriminative infor-
mation can be more subtle and more challenging to extract
than in the general object recognition/categorisation prob-
lem, especially when their assumption on the two domains
containing the same set of classes becomes invalid under the
proposed OS2ReID setting.
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Fig. 4. Comparing the CMC performances on VIPeR (left) and CUHK01
(right) under the semi-supervised ReID setting

3.2. Semi-Supervised ReID Evaluation

We also evaluated the ability the proposed RKSL model to ac-
commodate labelled data, by applying the RKSL model in the
conventional semi-supervised settings where some (sparse)
cross-view labelled pairs are available.
Settings: We adopted the same setting as in [8, 13]. Specifi-
cally, for both datasets, we equally split the whole dataset into
two partitions: one for training and the other for testing. One
third of the training partition are cross-view pairwise labelled.
Competitors: We compared our RKSL model with two most
resent semi-supervised methods, SSCDL [8] and RDL [13],
and five most contemporary fully-supervised models includ-
ing, RankSVM [27], KISSME [2], kLFDA [5], KCCA [23],
and XQDA [6]. The same visual feature was adopted for all
methods with author published codes, except SSCDL which
does not have code available so their reported results were
compared. We applied the exponential chi-square kernel in
kLFDA [5] and KCCA [23], the same as in RKSL.
Evaluation metric: The conventional Cumulated Matching
Characteristics (CMC) curves were utilised for quantitative
comparison between different methods.
Implementation details: We used cross-validation to deter-
mine the free parameters (η, γx, γy) for the proposed RKSL
model, as well as parameters of all the baseline methods. For
computing Sij , since some sparse labels are available, we thus
first used the labelled pairs to learn an initial subspace, and
then used the distance in this subspace to calculate the simi-
larity over unlabelled data and re-learned a final subspace.

Dataset VIPeR [17] CUHK01 [18]
Ranks (%) 1 5 10 20 1 5 10 20

RankSVM [27] 20.7 41.8 54.6 68.2 15.0 29.4 37.8 48.2
KISSME [2] 18.5 43.7 57.9 74.5 22.7 47.4 59.1 71.2

kLFDA [5] 27.5 56.0 69.6 82.6 38.3 63.7 73.5 82.2
KCCA [23] 24.6 56.2 71.7 85.6 32.6 60.8 72.6 83.2
XQDA [6] 30.0 57.5 70.9 83.5 29.3 49.0 57.9 68.0
RDL [13] 32.5 61.8 74.3 84.1 31.0 50.9 60.2 69.8

SSCDL [8] 25.6 53.7 68.1 83.6 - - - -
RKSL (Ours) 34.2 66.6 78.9 89.3 46.3 72.3 80.8 88.7

Table 2. Comparing some recognition rates of different methods on VIPeR
and CUHK01. The semi-supervised ReID setting.

Comparative results: From Table 2, it is observed that the
proposed RKSL model significantly outperforms all baseline
methods. Specifically, RKSL provides much better ReID ac-
curacy than the state-of-the-art models RDL and SSCDL, par-
ticularly on CUHK01. The plausible reason for the weak per-
formance of RDL [13] on the larger CUHK01 dataset is that,
the error propagation from the regularisation term is made

more severe during the iterative learning process due to many
visually-similar people. In contrast, we utilise available la-
bels to initialise the subspace learning for better exploiting
unlabelled data, i.e. obtaining more accurate cross-view sim-
ilarity measure, without any chance to mislead model learn-
ing. It is also observed that all fully-supervised models yield
much worse recognition results than RKSL. For example, on
VIPeR, our RKSL improves the Rank-1 score over RankSVM
by 13.51%, KISSME by 15.73%, kLFDA by 6.68%, KCCA
by 9.59%, and XQDA by 4.20%. Even larger improvements
are gained on CUHK01. The main reason for inferior perfor-
mance by these supervised methods is the limited availabil-
ity of labelled data and their inability of exploiting the large
quantity of unlabelled data. Whilst the proposed RKSL model
can effectively utilise both in a unified way, largely relaxing
the stringent assumption on labelled data amount and making
it flexible in coping with varying amounts of data annotation.
Effects of labelled data sparsity: For evaluating the per-
formance given different amount of data annotation, we fur-
ther conducted a set of experiments on VIPeR by comparing
RKSL with two state-of-art baselines, kLFDA [5] and KCCA
[23], when different numbers of labelled pairs are provided.
To this end, we changed the labelled data percentage from
10% to 100% and compared their performances on ranks 1,
5, 10. The results in Fig. 5 show that the accuracies achieved
by the proposed RKSL model are significantly better at all
three ranks, compared to the two baselines. The margins are
evidently larger when fewer labelled data are available, which
further suggests the effectiveness of our RKSL in exploiting
unlabelled data for person-discriminative subspace learning.
This further demonstrates the strength and flexibility of our
model under a large spectrum of settings.

Rank 10 
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Rank 1 

RKSL 

kLFDA 

KCCA 

Fig. 5. Semi-supervised matching on VIPeR (matching rate as a function
of labelled data percentage)

4. CONCLUSION
We have presented a new and more realistic person ReID
setting: OneShot-OpenSet-ReID (OS2ReID). To solve the
OS2ReID problem, a novel Regularised Kernel Subspace
Learning (RKSL) model is proposed. The model is unique
due to its capability of learning cross-view identity discrim-
inative information from unlabelled data. This makes RKSL
readily applicable and scalable to large scale open-set ReID
problems. Also, the RKSL model allows to effectively ex-
ploit pairwise labels when available. Extensive comparative
evaluations were conducted to validate the advantages of the
proposed model under both OS2ReID (no pairwise labels)
and conventional (with labels and closed-set) settings.
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