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Abstract

Existing person re-identification (Re-ID) methods mostly follow a centralised learn-
ing paradigm which shares all training data to a collection for model learning. This
paradigm is limited when data from different sources cannot be shared due to privacy
concerns. To resolve this problem, two recent works [32, 41] have introduced decen-
tralised (federated) Re-ID learning for constructing a globally generalised model (server)
without any direct access to local training data nor shared data across different source
domains (clients). However, these methods are poor on how to adapt the generalised
model to maximise its performance on individual client domain Re-ID tasks having dif-
ferent Re-ID label spaces, due to a lack of understanding of data heterogeneity across
domains. We call this poor ‘model personalisation’. In this work, we present a new
Selective Knowledge Aggregation approach to decentralised person Re-ID to optimise
the trade-off between model personalisation and generalisation. Specifically, we incor-
porate attentive normalisation into the normalisation layers in a deep ReID model and
propose to learn local normalisation layers specific to each domain, which are decoupled
from the global model aggregation in federated Re-ID learning. This helps to preserve
model personalisation knowledge on each local client domain and learn instance-specific
information. Further, we introduce a dual local normalisation mechanism to learn gener-
alised normalisation layers in each local model, which are then transmitted to the global
model for central aggregation. This facilitates selective knowledge aggregation on the
server to construct a global generalised model for out-of-the-box deployment on unseen
novel domains. Extensive experiments on eight person Re-ID datasets show that the
proposed approach to decentralised Re-ID significantly outperforms the state-of-the-art
decentralised methods on both seen client domains and unseen novel domains.

1 Introduction

Person re-identification (Re-ID) attempts to retrieve a person of interest from a set of gallery
images captured from non-overlapping camera views [10, 15, 34, 35, 36]. It plays an im-
portant role in a wide range of real-world applications, such as finding a missing person,
smart city management. Existing person Re-ID methods mostly follow a centralised learning
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paradigm which requires to collect all training data from different camera views or domains
together for model learning. Despite significant progress has been made, centralised Re-ID
learning ignores that person images contain a large amount of personal privacy information
which may not be allowed to be shared to a central data collection. This limits fundamen-
tally existing centralised learning based Re-ID in real-world applications with increasing
privacy-sensitive scenarios.

To solve this problem, two recent Re-ID works [32, 41] have applied federated learn-
ing [21] to person re-identification by constructing a global generalised model (server) with-
out access to local training data nor sharing data across different source domains (clients).
This privacy-preserving Re-ID learning paradigm is known as decentralised person Re-ID
[32]. More specifically, in decentralised person Re-ID, each local client trains its local
model using its own set of local training data without sharing data with other local clients,
whilst a central server generates a global model by aggregating local model weights (or local
model updates) without any direct access to training data. This decentralised person Re-ID
paradigm inherently protects source data privacy. Although latest decentralised Re-ID meth-
ods [32, 41] have shown encouraging performance, their focus is on how to learn a global
generalised model and they have ignored the need to understand data heterogeneity across
domains. As a result, they are sub-optimal when compared to local trained models for in-
dividual client domain Re-ID tasks having different Re-ID label spaces, i.e. showing poor
‘model personalisation’ on each local client domain.

In this work, we propose to optimise the trade-off between model personalisation and
generalisation in decentralised person Re-ID. We present a new Selective Knowledge Ag-
gregation (SKA) approach to facilitate feature extraction model learning in the iterative fed-
erated Re-ID learning paradigm [32, 41]. Specifically, we incorporate attentive normali-
sation [17] into the normalisation layers in a deep ReID model and propose to learn local
normalisation layers specific to each client. These local normalisation layers are decoupled
from the central server aggregation whilst the other layers in the feature extraction models
are iteratively updated between the clients and the server. Learning these local specific nor-
malisation layers helps to better represent model personalisation knowledge from instance-
specific information for tuning ‘downwards’ the server to each participating client domain.
Crucially, these local client specific normalisation layers cannot be aggregated ‘upwards’ to
the central server, because directly updating them iteratively to the central server, e.g. by
averaging as in existing decentralised Re-ID models, will degrade server generalisation to
unseen novel domains. To compensate this emission of direct upwards aggregation to the
central server, we introduce a dual local normalisation mechanism to additionally learn gen-
eralised normalisation layers in each local client, which are iteratively updated between the
clients and the server. This improves to construct a globally generalised model for better
out-of-the-box deployment on unseen novel domains.

The key contributions of this work are: We propose a new Selective Knowledge Aggre-
gation approach to optimise the trade-off between model personalisation and generalisation
in decentralised person Re-ID. To learn model personalisation knowledge from instance-
specific information per local client, we incorporate attentive normalisation into the normal-
isation layers in a deep Re-ID model so to learn local normalisation layers specific to each
client domain. To replace the direct global model aggregation in existing decentralised learn-
ing methods, we introduce a dual local normalisation mechanism which additionally learns
generalised normalisation layers in each local client domain for constructing a better global
generalised model for unseen novel domains.

Extensive experiments on eight person Re-ID datasets, including DukeMTMC-RelID [39],
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Market-1501 [37], CUHKO3-NP [14, 40], MSMT17 [30], VIPeR [4], iLIDS [38], GRID [20]
and PRID [7], show that the proposed SKA model significantly outperforms the state-of-the-
art decentralised methods on both seen client domains and unseen novel domains.

2 Related Work

Person Re-Identification (Re-ID) research has been very active in computer vision in recent
years. It aims to match a person of interest across non-overlapping camera views [10, 33,
34, 36]. Traditional person Re-ID methods [15, 35, 37] mainly follow a supervised learning
approach, which requires to collect all training data from different camera views in the target
domain for model training and usually shows poor generalisation to an unseen novel domain.
Recently, generalisable person Re-ID [2, 10, 25], which attempts to generalise a model with
data from different domains, has attracted increasing attention and shown promising perfor-
mance. For example, Song et al. [25] assemble data from multiple domains to optimise a
domain-invariant mapping network for out-of-the-box Re-ID deployment. Choi et al. [2]
propose to generalise batch-instance normalisation layers in a meta-learning pipeline for
learning a generalisable Re-ID model. However, these generalisable person Re-ID methods
require to collect training data from different domains together to learn a feature extraction
model for person matching. This largely ignores data privacy and is inherently limited in sit-
uations where data from different domains cannot be shared to a central data collection. To
resolve this problem, two recent works [32, 41] propose an iterative federated Re-ID learn-
ing paradigm to learn a global generalised model with the collaboration of local models but
without sharing local data. This decentralised person Re-ID paradigm can inherently pro-
tect local data privacy whilst generalising a Re-ID model for deployment. However, current
decentralised methods [32, 41] fail to consider how to adapt the generalised model to max-
imise the performance on individual domain Re-ID tasks. Our work focuses on decentralised
person Re-ID model learning from multiple domains without sharing local data across do-
mains so as to protect data privacy. But different from [32, 41], we propose to optimise the
trade-off between model personalisation and generalisation by learning local normalisation
layers specific to each domain and employ a dual local normalisation mechanism to facili-
tate aggregating a better global generalised model for both client domains and unseen novel
domains.

Federated Learning aims to learn a global model with the collaboration of multiple lo-
cal models. In the seminal paper [21], McMahan er al. introduce a FedAvg algorithm to
federated learning, which iteratively averages local model updates to construct a global
model. Inspired by the success of FedAvg, there have been many promising works [5, 12,
13, 16, 18, 19, 22, 24, 28, 29] that present more effective federated learning algorithms.
Due to non-IID (Independent and Identically Distributed) data distribution across clients, a
global generalised model usually shows poor personalisation performance to each specific
client. Recently, some works have introduced personalised federated learning [11, 26, 27]
which aims to improve model personalisation specific to each client with non-IID data across
clients. SCAFFOLD [11] estimates the update direction of the global model to further reg-
ularise the update direction of the local client, so as to improve local model personalisation.
PFedMe [26] employs Moreau envelopes as the regularised loss for local model optimisa-
tion to facilitate personalised model learning. Our work focuses on optimising the trade-off
between model personalisation and generalisation for decentralised person Re-ID. Differ-
ent from contemporary federated learning, our proposed SKA method incorporates attentive
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Figure 1: An overview of the Selective Knowledge Aggregation (SKA) method for decen-
tralised person Re-ID. In each training domain, a local client model is optimised to learn local
specific normalisation layers (layers in pink and green) for improving model personalisation,
whilst a local generalised model is optimised to learn local generalisable normalisation lay-
ers (layers in yellow) for improving model generalisation globally. On the central server, a
global generalised model is both aggregated centrally and then used to update client models
locally.

normalisation into the normalisation layers and optimises local normalisation layers in a Re-
ID model to explore model personalisation knowledge from instance-specific information.
Moreover, a dual local normalisation mechanism is introduced to optimise global model
generalisation to unseen novel domains.

3 Methodology

3.1 Overview

In this work, we study decentralised person Re-ID, where data from different domains
(clients) are private and the global model (server) can only aggregate local models to learn
generalised knowledge across domains. The aim of the proposed SKA method is to opti-
mise the trade-off between model personalisation and generalisation in decentralised person
Re-ID. Figure 1 shows an overview of the proposed SKA method.

Suppose there are N local client domains where each client contains a local non-shared
private dataset. As shown in Figure 1, each local client builds two local models concurrently:
A local specific model (the block in blue) and a local generalised model (the block in orange).
The local specific model learns local normalisation layers (layers in pink and green) specific
to each domain which are decoupled from the central aggregation whilst the other layers
(layers in grey) in this model are transmitted to the server for central aggregation. In par-
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allel, the local generalised model learns generalised normalisation layers (layers in yellow)
which are all transmitted to the server for central aggregation. These two local models are
trained simultaneously (for £ local epochs) using a cross-entropy loss. Afterwards, a selec-
tive aggregation is conducted and generates an aggregated local model. Next, on the central
server, a global generalised model is constructed with the collaboration of aggregated local
models and then is transmitted to each local client to further facilitate local model learning.
The local generalised models update all layers in the feature extraction network with the
global generalised model, whilst the local specific models retain local normalisation layers
but update other layers in the feature extraction network. Note, following [32, 41], local
domain-specific classifiers are decoupled from the global model aggregation. This differs
from the contemporary FedAvg [21] that aggregates all model components. After T global
iterations of federated Re-ID model learning, a global generalised feature model is learnt on
the server for out-of-the-box Re-ID deployments to unseen novel domains. Each local client
model with local specific normalisation layers can then be combined with this global model
for better model personalisation in Re-ID deployment to each client domain.

3.2 Learning Local Model Personalisation Knowledge

Existing decentralised person Re-ID works [32, 41] aggregate all layers of a feature represen-
tation network to construct a global generalised model and fail to tackle data heterogeneity
across clients (domains), resulting in sub-optimal performance on participating client do-
mains. To solve this problem, we propose to learn local ‘personalisation’ knowledge in each
client domain to maximise model performance per domain Re-ID tasks, and this local per-
sonalisation knowledge is encoded in local normalisation layers of a deep learning network.

Specifically, batch normalisation (BN) [9] layers in a deep network are prevailingly used
to normalise activations using data in a mini-batch which captures information about the
data distribution [16]. Recently, some works [1, 16, 23] have shown that learning domain-
specific batch normalisation (BN) [9] layers is beneficial to better tackle the domain shift
problem across domains. In the context of federated Re-ID model learning, person images
from different client domains are almost entirely in non-overlapping label spaces, which
exacerbates the domain shift problem. Thus, to preserve personalisation knowledge on each
participating client domain and resolve the domain shift problem, we decouple normalisation
layers in each local network from central aggregation and optimise local normalisation layers
specific to each client.

However, only optimising the vanilla BN layers for each client can lead to sub-optimal
performance because for each local client, although person images are from the same do-
main, there are usually notorious misalignment of person images caused by pose change,
imperfect detection, occlusion, significant variation in lighting. Thus, it is important to learn
instance-specific information on each client domain whilst tackling data heterogeneity. At-
tention modelling is an effective solution to address this problem. To learn instance-specific
channel-wise attention weights to re-calibrate features, the Squeeze-and-Excitation (SE) at-
tention unit [8] can be incorporated into a deep network model as follows:

BE=L.-BN(x)=(A-7)-2+A1-B (1)

where BN (x) = y(x;‘(‘x()x )) + B, u(x),o(x) are the mean and standard deviation computed
across batch size and spatial dimensions independently for each feature channel, £ is the

normalised feature, A is the learnt attentive weight, v, B are affine parameters. Since affine
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Algorithm 1 Decentralised Re-ID with Selective Knowledge Aggregation (SKA). The K
clients are indexed by k, NV indicates the dataset on client k, E is the number of local epochs,
the number of global iteration rounds is 7', 7 is the learning rate, w are the model weights,
where wyy, wy, and w; refer to model weights of a local specific model, a local generalised
model and a local aggregated model respectively. Steps 1-8 are the main process, while steps
10-15, 17-23 and 25-31 are functions.

1: initialize {w{ ;G Ho 16:
: for global round7=0to 7 — 1 do unction SELECTAGG(W

2: for global round 1 =0t0 7 —1d 17: function S AGGWE, | s Why 1 1)

3: for e%{ch clier]lct k=1toK do 18: for layer p in Wr+1 ,; do

4 z+1 159 Wit1,1g LocalUpdate(w; ;. w} lg) 19: if layer p is normalisation layer then

Wk . k
5 z+1 ; < SelectAgg(wy, | 15 Wis1ig) 20: Wittty S Wirligp
6: k 21: else
: Wil = K):k 1 Wit14 . k k
22 Wirtdp < Wirtisp

7 (W1 19 Wit s Moy ¢ SelectUpdate(w; 1) 23 return uk ;

8: return {wk, }X | wr ' L

9: - 24:

10: function LOCALUPDATE(WI o [ng) 25: function SELE.CTUPDATE(W,H)

11: for local epoch e=01to E — 1 do 26: for er‘}fh client k do

12: for mini-batch b C Ny do % ;"z+l|,zg Wit 4

13: wk K \v7/ : or layer p in w; | do
AR ’ s MVE Iv) 29: if p is NOT normalisation layer then
k p y

14: w «— w VLW, )
;jl.[g K g 30: f+14ls‘p S Witlp

15: return wy ;.. W r+1‘1g 31: return {Wt+l s H»l,lg}f:l

transform parameters in BN and the re-scaling parameters of the SE unit are both learning to
re-calibrate features, following [17], they can be further combined as M mixture components
of channel-wise affine transform:

M

AN =Y Ailn-£+Bi )

i=1

where A;, ¥;, B; are the i-th mixture integrated into a compact module and learnt simultane-
ously, so they can learn more shared instance-specific information. We therefore combine
some BN layers and attention modelling in a deep network for each local client model and
decouple them from global server aggregation. This approach to learning local model per-
sonalisation knowledge brings significant benefits to model performance (see Section 4.4).

3.3 Dual Local Normalisation for Global Generalisation Knowledge

Although decoupling normalisation layers from central aggregation helps to optimise local
personalisation knowledge, it will also lose some generalisable knowledge useful in con-
structing a better global model for unseen novel domains. A simple solution is to average
local specific normalisation layers at the end of model training, but this can lead to sub-
optimal global generalisation because local normalisation layers are not aggregated in the
iterative global model update. To compensate this degradation in the global model learn-
ing, we introduce a dual local normalisation mechanism to explicitly learn auxiliary local
generalised normalisation layers.

As shown in Figure 1, in addition to the local specific model, we optimise a local gen-
eralised model (with the same network architecture) to learn local generalised normalisation
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Test

Types Datasets Train ID  Train Img TestID  Query Img _ Gallery Tmg
Source Market1501 751 12936 750 3368 19732
client DukeMTMC 702 16522 702 2228 17661
domains CUHKO03-NP 767 7365 700 1400 5328
MSMT17 1041 30248 3060 11659 82161
Unseen YIPeR - - 316 316 316
novel iLIDS - - 60 60 60
domains GRID - - 125 125 900
PRID - - 100 100 649

Table 1: Statistics of eight person Re-ID benchmark datasets.

layers. Then, for each client, we use local generalised normalisation layers (layers in yellow
in Figure 1) from a local generalised model and other layers (layers in grey in Figure 1) from
a corresponding local specific model to construct a local aggregated model. The local ag-
gregated models from different clients are then transmitted to the server for iterative central
aggregation. This helps to alleviate the degradation problem because the generalised normal-
isation layers are iteratively updated between the client and the server and are not specific to
a certain client. As a result, the global model cumulates richer generalised knowledge from
local clients that can benefit significantly model performance on unseen novel domains (see
Table 3 in Section 4.3). Besides, since the dual local normalisation mechanism compensate
the degradation brought by learning local personalisation knowledge, it facilitates the pro-
posed SKA to make a trade-off between learning model personalisation and generalisation.
We summarise the model training process of the proposed SKA method in Algorithm 1.

4 Experiments

4.1 Datasets and Evaluation Protocol

Datasets: To evaluate the proposed SKA model, we used four large-scale person Re-ID
datasets Market1501 [37], DukeMTMC-RelD [39], CUHKO03-NP [14, 40] and MSMT17 [30]
as local client domains. Data on each client are only used for local model training without
sharing to other clients nor the server. Furthermore, we employed four smaller person Re-ID
datasets VIPeR [4], iLIDS [38], GRID [20] and PRID [7] as unseen novel domains to evalu-
ate the generalisation performance of the global model. Following [25, 32], we generated ten
random training/testing splits on each smaller dataset, and on each test split, one image of
each person identity was used as the query whilst the other images were used as the gallery.
Table 1 summarises the dataset statistics.

Evaluation Metrics: We used Rank-1 (R1) accuracy and mean Average Precision (mAP)
for Re-ID performance evaluation.

4.2 Implementation Details

Following [32, 41], we employed ResNet-50 [6] pretrained on ImageNet [3] as the feature
extraction network and used two fully-connected layers as feature vectors for classification.
We used attentive normalisation [17] (pretrained on ImageNet) to replace the second vanilla
batch normalisation layer on each bottleneck block. In each local client, we used SGD
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Method Source Duke Market1501 | CUHKO03-NP | MSMT17

mAP Rl | mAP Rl [ mAP Rl | mAP RI

local supervised 570 772 | 682 874 [ 392 432 | 288 60.0
FedAvg[21]+D AISTATS’17 | 509 708 [ 566 813 | 252 279 [ 259 550
FedProx[13]+D MLSys'20 | 53.5 720 | 59.7 845 | 278 308 | 28.1 577
FedPav[41] ACMMM’20 | 519 71.1 | 535 787 | 23.0 260 | 26.1 544
FedPav+AddData[41] | ACMMM™20 | 60.6 784 | 58.0 824 | 268 29.9 | 27.0 55.7
FedReID[32] AAAI21 | 521 680 | 60.1 802 | - - - 484
MOON [12]+D CVPR21 | 53.1 727 | 58.1 83.6 | 264 285 | 272 566
FedBN[16]+D ICLR21 628 80.0 | 73.1 904 | 409 453 | 354 676

””” SKA* | Ours [ 666 837 | 782 927 | 481 530 [ 429 738

Table 2: Comparisons of decentralised learning Re-ID on four source client domains. Note
that the conventional federated learning methods cannot be directly used for decentralised
Re-ID, so ‘+D’ means we implement them by decoupling domain-specific classifiers from
central aggregation. ‘FedPav+AddData’ means using additional central unlabelled data in
FedPav for knowledge distillation and weight adjustment. ‘FedAvg+D’ and ‘FedPav’ share
the same principle but with different hyper-parameters.

Method Source VIPeR iLIDS GRID PRID

mAP Rl mAP Rl mAP Rl mAP Rl
FedAvg[21]+D AISTATS’17 | 482 443 | 733 693 | 243 20.1 19.6 158
FedProx[13]+D MLSys’20 473 432 | 749 71.1 | 29.1 248 | 31.2 26.8
FedPav([41] ACMMM’20 | 495 449 | 728 68.8 | 255 21.7 | 37.0 319
FedPav+AddData[41] | ACMMM’20 | 49.6 453 | 73.1 69.0 | 28.7 242 | 344 285

FedRelD[32] AAAT21 - 46.2 - 69.7 - 24.2 - -
MOON [12]+D CVPR’21 49.1 451 | 73.7 69.7 | 28,0 240 | 335 292
FedBN[16]+D ICLR’21 479 435 | 723 682 | 252 212 | 31.1 265

77777 SKA" | Ours | 539 498 | 76.0 727 | 367 322 | 497 450

Table 3: Comparisons of decentralised learning Re-ID on four unseen novel domains.

optimiser with Nesterov momentum 0.9 and weight decay 5e-4 and set the learning rate to
0.01 for the feature extraction network and 0.1 for the classifier, which were decayed by
0.1 every 40 global epochs. We empirically set batch size to 32, maximum global iterations
T = 100, maximum local optimisation epoch E = 1. For fair comparison, all the reproduced
methods including local supervised baseline are based on ResNet-50 backbone following
same training process including optimiser, learning rate, global iteration rounds and local
epochs. All of the experiments are implemented in Python and PyTorch.

4.3 Comparisons with the State-of-the-Art Decentralised Methods

We compared the proposed SKA with two state-of-the-art decentralised person Re-ID meth-
ods, namely FedRelD [32] and FedPav [41], and four state-of-the-art federated learning
methods, namely FedAvg [21], FedProx[13], FedBN [16] and MOON [12]. Note that the
conventional federated learning methods cannot be directly used for decentralised person
Re-ID, so we implement them based on the federated Re-ID backbone model [41], where
domain-specific classifiers are not used for central aggregation. Table 2 gives results on
source client domains and Table 3 for results on unseen novel domains.

Table 2 shows that the proposed SKA has significantly better Re-ID performance than
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Seen domains Unseen domains
Components Duke Market VIPeR iLIDS
mAP Rl mAP Rl | mAP Rl | mAP Rl

Baseline 509 708 | 56.6 813 | 482 443 | 733 693
Baseline+AN 587 781 | 642 879 | 542 502 | 77.0 74.0
Baseline+LSN 6287 80.0" | 73.1% 904" | 479 435 | 723 682
Baseline+LSN+Dual 62.87  80.0" | 73.17 904" | 488 446 | 752 713
Baseline+LSN+AN 66.6% 83.7* | 78.2*% 92.7% | 51.8 478 | 73.1 69.3
Baseline+LSN+AN+Dual | 66.6% 83.7*% | 78.2% 92.7*% | 539 498 | 76.0 72.7

Table 4: Evaluating component effectiveness on seen source domains and unseen novel
domains. *,7 ‘Dual’ does not affect model personalisation on seen source domains as local
generalised normalisation layers are only learnt to construct the global generalised model.

all other models on individual client domains. Specifically, state-of-the-art decentralised Re-
ID methods (FedRelD [32] and FedPav [41]) perform slightly worse on average than the
baseline local supervised model which trains the backbone model on each local domain in
a conventional centralised learning way. In contrast, SKA significantly improves over the
baseline local supervised model by 5%~10% in R1 and 10+% in mAP on all test datasets.
Compared with the state-of-the-art federated learning methods (FedAvg [21], FedProx [13],
FedBN [16] and MOON [12]), SKA performs better than FedBN in R1 by 4.98% and mAP
by 5.9% on average, and significantly outperforms FedAvg in R1 by 17.05% and mAP by
19.3% on average. Table 3 also shows that the proposed SKA achieves notable generalisation
performance improvement on unseen novel domains by outperforming the second best model
inR1 by 3.6% (VIPeR), 1.6%(1LIDS), 7.4%(GRID), 13.1% (PRID) respectively, and in mAP
by 4.3% (VIPeR), 1.1%@GLIDS), 7.6%(GRID), 12.7% (PRID) respectively. These results
show a very clear superiority of the proposed SKA model over the state-of-the-art methods.
Besides, although centralised and decentralised methods are not directly comparable, the
proposed SKA method performs closely to some centralised generalisable Re-ID methods.
For example, compared with the state-of-the-art centralised SNR [10] method, on Duke,
SKA yields 66.6% vs. SNR yields 73.2% in terms of mAP; on VIPeR, SKA yields 53.9%
vs. SNR yields 55.1% in terms of mAP.

4.4 Ablation Studies

Component Effectiveness Evaluation. In Table 4, ‘Baseline’ means the federated Re-ID
learning baseline model [32, 41], ‘AN’ means incorporating Attentive Normalisation into
the vanilla BN layers in the feature extraction model, ‘LSN’ means local specific vanilla
BN normalisation, ‘Dual’ means the dual local normalisation mechanism. On unseen novel
domains, ‘Baseline+LSN’ and ‘Baseline+L.SN+AN’ are by averaging the normalisation lay-
ers at the end of model training to construct the global generalised model. Table 4 shows:
(1) LSN can significantly improve model personalisation performance on seen source do-
mains. However, it degrades clearly model generalisation performance on unseen novel do-
mains; (2) AN can improve model personalisation and generalisation performance on both
seen and unseen domains; (3) Learning local personalisation knowledge with LSN+AN in
SKA brings the best model personalisation performance on seen domains; (4) The dual local
normalisation mechanism can compensate the degradation brought by learning local per-
sonalisation knowledge, resulting in better global model generalisation. It improves ‘Base-
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Variants Duke Market Variants VIPeR iLIDS
SKA 83.7 92.7 SKA w/ Dual 49.8 72.7
SKA w/o LSN 78.1 87.9 SKA w/o Dual + Avg 47.8 69.3
SKA w/o AN 80.0 90.4 SKA w/o Dual + FeatConcat 47.2 71.8
SKA w/o AN + SE 82.0 91.2 SKA w/o Dual + RandImg 6.6 21.8
SKA w/o AN + CBAM | 80.5 91.1

Table 5: Evaluating variants of learning lo-  Table 6: Evaluating variants of dual local
cal personalisation knowledge (R1). normalisation (R1).

line+LSN’ by approximately 1% and 2% on VIPeR and iLIDS respectively, while improves
‘Baseline+L.SN+AN’ by approximately 2% on both VIPeR and iLIDS. And we can see that,
on unseen domains, ‘Baseline+LSN+AN+Dual’ performs closely to ‘Baseline+AN’ which
does not consider learning local personalisation knowledge, while on seen source domains,
‘Baseline+L.SN+AN+Dual’ performs significantly better than ‘Baseline+AN’. This further
verifies that ‘Dual’ can help SKA to optimise the trade-off between model personalisation
and generalisation.

Evaluating Variants of Learning Local Personalisation Knowledge. In Table 5, we tested
some variants of learning local personalisation knowledge. ‘SE’ means using the SE [8] unit
in the backbone model and ‘CBAM’ means using the CBAM [31] unit in the backbone
model. Table 5 shows that learning local specific normalisation and attentive knowledge
facilitates better model personalisation. Overall, SKA performs better than other variants.

Evaluating Variants of Dual Local Normalisation. In Table 6,we tested different strategies
to construct normalisation layers in the global generalised model. ‘Avg’ means averaging
local specific normalisation layers at the end of model training. ‘FeatConcat’ means using
each local specific normalisation layers to extract features and concatenating these features
for person matching. ‘RandImg’ means using ImageNet pretrained weights to re-initialise
normalisation layers. Table 6 shows that the proposed dual local normalisation mechanism
performs better than other variants for constructing a global generalised model.

5 Conclusions

In this work, we proposed a new Selective Knowledge Aggregation (SKA) approach to de-
centralised person Re-ID. The key idea is to learn local batch and attentive normalisation
layers specific to each domain for improving model personalisation in Re-ID on seen client
domains, and to use a dual local normalisation mechanism for improving model generali-
sation in Re-ID on unseen novel domains. Extensive experiments on eight person Re-ID
datasets show the superiority of the proposed SKA approach over the state-of-the-art decen-
tralised methods on both seen source client domains and unseen novel domains.
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