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Computer vision-based gender classification is an interesting and challenging problem, and has
potential applications in visual surveillance and human-computer interaction systems. In this paper, we
investigate gender classification from human gaits in image sequences, a relatively understudied
problem. Moreover, we propose to fuse gait and face for improved gender discrimination. We exploit
canonical correlation analysis (CCA), a powerful tool that is well suited for relating two sets of
measurements, to fuse the two modalities at the feature level. Experiments demonstrate that our

multimodal gender recognition system achieves the superior recognition performance of 97.2% in large

data sets.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Gender classification is one of the most important visual tasks
for human beings, as many social interactions critically depend
on the correct gender perception. As visual surveillance and
human-computer interaction technologies evolves, computer
vision systems for gender classification will play an increasing
important role in our lives, e.g., collecting valuable demographic
information in a social environment.

As human faces provide important visual information for
gender perception, a very large number of psychophysical studies
has investigated gender classification from face perception [3,32].
Recently this problem has been considered more technically using
machine learning methods on large data sets [31,35]. However, in
the real-world unconstrained situations, due to the arbitrary
walking direction and continuously varying head pose, face
information sometimes is unreliable or unavailable. More cru-
cially, with people walking at a distance, face information cannot
be measured reliably at low resolution. In these situations, human
gait, or the style of walking, can provide important alternative
cues for gender classification, as gaits can be detected and
measured from arbitrary views and at a distance. Human walking
manners contain subtle, yet informative variations. Psychophysi-
cal studies [24,1,29] have shown that, even for point-light displays
(filmed by attaching small point-lights to the main joints of
human body in a homogeneously dark background), people can
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recognize the gender of walkers. However, given the ability of
humans to classify gender by the gaits, there have been few
computer vision systems developed for gender recognition from
gaits. Compared to facial gender classification, this problem is
relatively understudied, although more recently some studies
appeared [26,9]. However, there are some limitations in these
existing tentative attempts, for example, point-light display
from the aspect of biological motion, not visual features from
images, was considered in [9], and relatively small data sets were
used in [26].

In this paper, we investigate gender classification from human
gaits in image sequences using machine learning methods on
large data set. Considering each modality, face or gait, in isolation
has its inherent weakness and limitations, we further propose to
fuse gait and face for improved gender discrimination. We exploit
canonical correlation analysis (CCA), a powerful tool that is well
suited for relating two sets of signals, to fuse the two modalities at
the feature level. Experiments demonstrate that our multimodal
gender recognition system achieves the superior recognition
performance of 97.2%. We plot in Fig. 1 the flow chart of our
multimodal gender recognition system.

2. Previous work

Gender classification has been an active topic in psychological
and cognitive literatures [24,1,3,32]. Machine learning-based
computer vision methods have been proposed in recent years. In
this section, we briefly review and summarize the previous work
in visual gender classification.
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Fig. 1. The flow chart of our multimodal gender recognition system.

2.1. Learning gender from faces

Most of the existing work attempt to classify gender from
human faces. In the early 1990s various neural network
techniques were employed for gender classification from a frontal
face [12,4,37,15]. Golomb et al. [12] trained a fully connected two-
layer neural network, SEXNET, to identify gender from face
images. Brunelli and Poggio [4] developed HyperBF networks for
gender classification in which two competing networks, one for
male and the other for female, are trained using 16 geometric
features. Some of these techniques are appearance-based meth-
ods, that is, they learn the decision boundary between male and
female classes from training images without extracting any
geometrical features, while others are based on geometrical
features.

Recently Moghaddam and Yang [31] investigated non-linear
support vector machines (SVMs) for gender classification with
low-resolution thumbnail face, and demonstrated the superior
performance of SVMs to other classifiers. Graf and Wichmann [14]
investigated the influence of two popular dimensionality reduc-
tion, principal component analysis (PCA) and LLE, on SVMs
classification. Overall, PCA provides superior performance in
classification and allowing linear separability. Walawalkar et al.
[40] adopted SVMs for gender classification using audio and visual
cues. Costen et al. [5] considered a class of sparse regularization
functions to develop sparse classifiers for determining facial
gender. The sparse classification method aims to both select
optimal features and maximize the classification margin, in a
manner similar to SVMs. Jain and Huang [21] adopted ICA to
represent face images in low-dimensional subspace, and then
used linear discriminant analysis (LDA) to perform gender
recognition.

Shakhnarovich et al. [35] developed a real-time face detection
and demographic analysis (female/male and asian/non-asian)
system using Adaboost [39], which delivers slight better perfor-
mance than the non-linear SVMs [31] on unaligned faces from
real-world unconstrained video sequences. Recently Wu et al. [42]
presented a look up table (LUT) weak classifier-based Adaboost for
gender classification. Sun et al. [36] employed Genetic Algorithms
to select a subset of optimal features from the low-dimensional
PCA subspace by disregarding certain eigenvectors that encode
less gender information, reporting the best performance (95.3%)
using the SVM classifier on 400 images. Wichmann et al. [41]
investigated gender discrimination of human faces by combining
psychological experiments with machine learning methods. They
trained a set of linear classifiers, linear SVMs, relevance vector
machines (RVMs), LDA and prototype (prot) classifiers, in the PCA
subspace. The entire system acts as a linear classifier, allowing
them to visualizing the decision-image corresponding to the
normal vector of the separating hyperplanes of each classifier. A
psychological discrimination experiment demonstrates that the
female-to-maleness transition along the normal vector closely

mimicking human classification is faster than the transition along
any other direction. Their experiments also suggest that human
subjects base their gender classification strongly on the eye and
mouth regions of the face.

2.2. Learning gender from gaits

Gender recognition from point-light display of human walking
has received much attention in psychological field during the past
few decades. Kozlowski and Cutting [24] performed the first major
experiment with six walkers (three females and three males) of
approximately the same height and weight recorded at a sagittal
view. They demonstrated that human observers could classify the
gender of the walkers with average recognition rate of 63%, and
alterations such as varying the arm swing, changing the walking
speed, and occluding portions of the body do not significantly
influence recognition performance. Barclay et al. [1] carried out
further study by examining temporal and spatial factors. They
reported that successful gender recognition required exposure to
approximately two walking cycles, and the rendering speed has a
strong influence over recognition. The effect of inversion on the
point-lights was also investigated, and it is found that the gender
assignments were significantly reversed. They proposed a view-
based explanation based on the shoulder-hip ratio, in which men
tend to have broader shoulders and smaller hips than women.
Cutting et al. [6] supported the shoulder-hip concept and
proposed a related center-of-moment feature of the torso. The
shoulder-hip ratio and center-of-moment features [1,6] are
mainly based on the structural differences between male and
female walkers. However, there are certainly dynamic features of
movement that contributes to recognition. By setting structural
and dynamic features into confliction using a synthetic point-light
walker, Mather and Murdoch [29] found that shoulder sway was
an effective cue to gender at the frontal view. Although most of
the study were conducted using a side-view presentation of the
walkers to observers, the effect of view angle on gender
recognition performance were examined in [18,29,38].

Much of the previous studies has focused on the manual
identification of key features that enable the perceptual classifica-
tion between female and male walking styles. Features related to
speed, arm swing, shoulder-hip lengths, inversion, and body sway
have been examined. However, to date there is no conclusive
evidence as to which features actually drive the discrimination
process. It seems that gender information is not a matter of a
single feature, but rather involves multiple combined features.
Troje [38] recently treated the analysis of biological motion as a
linear pattern recognition problem, and presented a two-stage
PCA framework for recognizing gender. The first PCA decomposed
each walker’s data into its eigenspace, and a second PCA was
applied to all walker eigenspaces followed by a linear classifier. He
reported 92.5% recognition rates. Davis and Gao [9,10] more
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recently presented an approach for gender recognition of point-
light walkers using an expressive three-mode PCA model [7,8].
Their method first constructs a PCA representation of point-light
trajectories for a prototype female and male walker. A large
labeled set were are then used to automatically learn which
trajectories in the prototype PCA representation best express
the gender of the walkers. The non-expressive trajectories are
removed and the remaining trajectories are weighted to bias the
gender estimation method to produce the desired gender labels.
The aforementioned studies used point-light display from the
aspect of biological motion. Lee and Grimson [25,26] adopted
computer vision techniques to extract visual features of gaits from
image sequences for gender classification. For each scale-normal-
ized binary silhouette, they found the centroid and divided the
silhouette into seven parts roughly corresponding to head/
shoulder, arms/torso (front and back), thighs (front and back),
and calve/feet (front and back), and then extracted moment-based
features from each part to represent gait dynamics. Using SVMs as
classifiers, their approach achieved performance of 84.5% on a
small data set (10 women and 14 men). Recently Yoo et al. [43]
studied gender discrimination by gaits using a much larger
database (84 males and 16 females). They used a 2D stick figure
(with eight sticks and six joint angles) to represent human body
structure, which was extracted from body contour by determining
body points. Gait features based on motion parameters were
calculated from a sequence of stick figures, which were input into
SVM classifiers for gender recognition. Their system produced
average recognition performance of 96%. More recently, Li et al.
[27,28] investigated gait-based gender recognition by segmenting
human silhouettes into seven components, namely, head, arm,
trunk, thigh, front-leg, back-leg, and feet. By adopting averaged
gait images, the individual components and a number of
combinations of components were studied for gender classifica-
tion on a data set of 122 individuals (85 males and 37 females).
Their extensive experiments demonstrate that the trunk and
front-leg components are important for gender discrimination.

3. Gender recognition from gaits
3.1. Gait representation

Lee and Grimson [26] only considered dynamic features for
gender representation. In our work, we investigate structural
features and dynamic features of gaits for gender recognition, by
adopting gait energy image (GEI) [16], a recently proposed spatio-
temporal compact representation of gaits. GEI has been demon-
strated to be effective for representing gaits in the human
identification problem [16,45].

Using background substraction techniques, the walking sub-
jects can be extracted from the original image sequences to derive
binary silhouette image sequences. To make the gait representa-
tion insensitive to the distance between the camera and the
subject, we perform silhouette preprocessing procedure including
size normalization and horizontal alignment [16]. Some examples
of normalized and aligned silhouette images are shown in Fig. 2.
The entire human gait sequence can be divided into cycles as
human walking repeats at a stable frequency. We decide the gait

cycles by counting the number of foreground pixels in the bottom
half of the silhouette [33], and the two consecutive strides in the
variation of the number constitute a gait cycle.

Given the preprocessed binary silhouette image B;(x,y) at time
t in a sequence, the GEI is defined as follows:

1 N
Gx.y) =5 > Bix.y) (1)
t=1

where N is the number of frames in the complete cycle(s) of a
silhouette sequence, t is the frame number of the sequence, and x
and y are values in the 2D image coordinate (see Fig. 2 for an
example of GEI). GEI reflects shapes of silhouette and their
changes over the gait cycle, and it is not sensitive to incidental
silhouette errors in individual frames.

3.2. Gender classification: SVMs

A previous successful technique for gender classification is
SVM [31,26,40], so we adopt SVM classifiers here. SVM is an
optimal discriminant method based on the Bayesian learning
theory. For the cases where it is difficult to estimate the density
model in high-dimensional space, the discriminant approach is
preferable to the generative approach. SVM performs an implicit
mapping of data into a higher dimensional feature space, and then
finds a linear separating hyperplane with the maximal margin to
separate data in this higher dimensional space.

Given a training set of labeled examples {(x;,y,), i=1,...,1}
where x; € R" and y; € {1,—1}, a new test example x is classified by
the following function:

I
(o =sgn (Z YK (%, %) + b). 2)
i=1
where «; are Lagrange multipliers of a dual optimization problem
that describe the separating hyperplane, K(-,-) is a kernel function,
and b is the threshold parameter of the hyperplane. The training
sample x; with o; >0 is called the support vector, and SVM finds the
hyperplane that maximizes the distance between the support
vectors and the hyperplane. Given a non-linear mapping ¢ that
embeds the input data into the high-dimensional space, kernels
have the form of K(x;,xj) = (®(x;) - ¢(x;)). SVM allows domain-
specific selection of the kernel function. Though new kernels are
being proposed, the most commonly used kernel functions are the
linear, polynomial, and radial basis function (RBF) kernels.

4. Fusing gaits and faces for gender recognition

Each modality, gait or face, has its inherent weakness and
limitations. Fusing gait and face cues in image sequences is a
potential way to accomplish effective gender discrimination. In
this study, we further present a multimodal gender recognition
system by fusing gaits and faces.

Recently several attempts [34,22,45] have been made to
integrate face and gait cues for the human identification problem.
Shakhnarovich and Darrell [34] computed an image-based visual
hull from a set of monocular views which is used to render virtual
canonical views for frontal face recognition and side-view gait
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Fig. 2. Examples of normalized and aligned silhouette images. The rightmost image is the corresponding GEI.
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recognition. Zhou and Bhanu [45] more recently combined side
face and gait cues for human identification. All these existing
studies have focused on the decision-level fusion of face and gait,
while the feature-level fusion is understudied. This is mainly
because the two modalities may have incompatible feature sets
and the relationship between the different feature spaces is
unknown. Here we propose to fuse face and gait cues at the
feature level using CCA. Our motivation is that, as face and gait are
two sets of measurements for human gender, conceptually the
two modalities are correlated, and their relationship can be
established using CCA. CCA derives a semantic “gender” space, in
which the gait features and face features are compatible and can
be effectively fused.

4.1. Canonical correlation analysis

CCA is a statistical technique developed by Hotelling [19] for
measuring linear relationships between two multidimensional
variables. It finds pairs of base vectors (i.e., canonical factors) for
two variables such that the correlations between the projections
of the variables onto these canonical factors are mutually
maximized. Recently CCA has been applied to computer vision
and pattern recognition problems [2,30,17,23,11]. Borga [2]
adopted CCA to find corresponding points in stereo images.
Melzer et al. [30] applied CCA to model the relation between an
object’s poses with raw brightness images for appearance-based
3D pose estimation. Harsoon et al. [17] presented a method using
CCA to learn a semantic representation to web images and their
associated text.

Given two zero-mean random variables x e R™ and y € R", CCA
finds pairs of directions wy and wy, that maximize the correlation
between the projections x = wlx and y = wJT,y. The projections x
and y are called canonical variates. More formally, CCA maximizes
the function:

_ Ex1 ElwIxy'w,]
VERIEY?] \/ EWIXXTW,[E[Wlyy™w,]
Wy Gy Wy

- (3)

\ /WICXXWXW}nywy

where Cy € R™™ and C,, e R™" are the within-set covariance
matrices of X and y, respectively, while Cy, € R™" denotes their
between-sets covariance matrix. A number of at most k = min(m, n)
canonical factor pairs (w}'(,wj,), i=1,...,k can be obtained by

successively solving arg MaXy wi {9} subject to p(wﬁ(,wj():

p(w§,w§) =0forj=1,...,i—1, i.e, the next pair of (wy, wy) are
orthogonal to the previous ones. Apparently the canonical variates
x; and y; (corresponding to wi, and w;',) are uncorrelated with the
previous pairs x; and y;, j=1,...,i— 1.

The maximization problem can be solved by setting the
derivatives of Eq. (3), with respect to wy and wy, equal to zero,
resulting in the eigenvalue equations as

{ c;xl CXYC;Y] cnyx = pZWx 4)

e -1 2y
Cpy GG CyWy = p Wy

Matrix inversions need to be performed in Eq. (4), leading to
numerical instability if Cyx and Cy, are rank deficient. Alterna-
tively, w, and w,, can be obtained by computing principal angles,
as CCA is the statistical interpretation of principal angles between
two linear subspace [13] (see [23] for details).

Like PCA and LDA, CCA also reduces the dimensionality of the
original variables, since only a few factor pairs are normally
needed to represent the relevant information. However, they serve

different purposes: whilst PCA aims to minimize the reconstruc-
tion error, and LDA derives a discriminant function that max-
imizes between-class scatter and minimize within-class scatter,
CCA seeks directions for two sets of variables to maximize their
correlations.

4.2. Feature fusion of gait and face

Given G = {X|X € R™} and F = {y|y € R"}, where x and y are the
feature vectors extracted from gaits and faces, respectively, we
apply CCA to establish the relationship between x and y. Suppose
(wi,w;’,), i=1,...,k are the canonical factor pairs obtained, we
can use d (1<d<k) factor pairs to represent the correlation
information. With Wy = [w},....wd] and W, = [w],...,wd], we
project the original feature vectors as X' = W.x = [x1,...,x4]" and
y = W;y =[¥1,...,¥4)" in the lower dimensional correlation
space, where x; and y; are uncorrelated with the previous pairs
xjand y;, j=1,...,i— 1. We then combine the projected feature
vector X' and y’ to form the new feature vector as

X Wlx W, 0\"/x
= (v) = () - (0w ) (3)

This fused feature vector effectively represents the multimodal
information in a joint feature space for gender discrimination.

5. Experiments
5.1. Data

We carried out experiments on the CASIA Gait Database
(Dataset B) [44], currently one of the largest gait databases in
the gait-research community. The database consists of 124
subjects aged between 20 and 30 years, of which 93 were male
and 31 were female, and 123 were Asian and one was European.
Each subject first walked naturally along a straight line six times,
then put on his/her coat and walked twice, and finally walked
twice carrying a bag (knapsack, satchel, or handbag). Each subject
walked a total of 10 times in the scene (six normal + two with a
coat + two with a bag). Eleven cameras were uniformly set on the
left-hand side, with view angle interval of 18°, so 11 video
sequences from different views were captured simultaneously for
every walking scenario (see Fig. 3). There are a total of 13,640
(124 x 10 x 11) video sequences in the database, with 2-3 gait
cycles in each sequence. The frame size is 320-by-240 pixel, and
the frame rate is 25 fps.

In our experiments we used video sequences from two views for
gender recognition: frontal view for face cues and side view for gait
cues. We selected video sequences of 119 subjects (88 male and 31
female) that are suitable for gait and face analysis. In total 2380
(119 x 10 x 2) video sequences were used in our experiments.
Compared to the small data set (24 subjects) used in the previous
work [26], our study was performed on a much larger data set.

As the database was collected for human gait analysis, there
was no specific consideration of face data collection. Human faces
were captured in an unconstrained environment like real-world
surveillance scenario. The sequences contain facial expression
changes, head pose variations, hair and glasses presented in the
low-resolution faces. We first adopted a AdaBoost-based face
detector to detect face regions in each video sequence. Then, for
simplicity, we manually labeled the three points (two eyes and the
mouth) of the detected face with the best resolution in a
sequence, and normalized the face as a 30-by-22 pixel thumbnail
to represent the video sequence. That is, we extracted a face image
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Fig. 4. The extracted face images and GEIs of 20 subjects. (Top) Female; (Bottom) male.

for each video sequence. Video-based facial gender classification
is a subject of our future research. To derive gait data, we
computed the GEI for each video sequence. We show the
processed face images and GEIs of 20 subjects (10 female + 10
male) in Fig. 4, where the first row of GEIs are normal walking, and
the second row is carrying a bag, while the bottom row is with
wearing his/her coat.

5.2. Gender recognition from gaits

To evaluate the algorithms’ generalization ability, we adopted a
5-fold cross-validation test scheme in all recognition experiments.

That is, we divided the data set randomly into five groups with
roughly equal (female and male) subjects, and then used the data
from four groups for training and the left group for testing; the
process was repeated five times for each group in turn to be
tested. We report the average recognition rates (with the standard
deviation) here. In all experiments, we set the soft margin C value
of SVMs to infinity so that no training error was allowed.
Meanwhile, each training and testing vector was scaled to be
between —1 and 1. With regard to the hyperparameter selection of
polynomial and RBF kernels, as suggested in [20], we carried out
grid-search on the kernel parameters in the 5-fold cross-
validation. The parameter setting producing the best cross-
validation accuracy was picked. We used the SVM implementation
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Table 1
Experimental results of gait-based gender recognition

Classifier Recognition rates

Overall (%) Male (%) Female (%)
SVM (linear/polynomial) 942 +2.1 97.5+3.2 84.7+104
SVM (RBF) 93.6+23 96.8 £3.9 84.4+10.7
PCA + LDA 945+1.9 98.0+24 84.6 £ 9.6
Table 2
Experimental results of face-based gender recognition
Classifier Recognition rates

Overall (%) Male (%) Female (%)
SVM (linear/polynomial) 875+18 923+2.1 743 £103
SVM (RBF) 904 +1.8 96.0 +£2.1 746 £9.7
PCA + LDA 76.2+18 79.6 £3.5 66.2+7.7

in the publicly available machine learning library SPIDER! in our
experiments.

We report the results of gait-based gender recognition in
Table 1. It is observed that GEls-based SVMs produce high overall
recognition rates (93-94%), and the linear kernel and the
(1st degree) polynomial kernel provide the same performance,
slightly better than the RBF kernel. The number of support vectors
of SVMs with different kernels were 13-16% of the total number of
training samples. It is indicated that, for the GEl-based gait
representation, the linear decision surface is able to effectively
classify gender, although there are many variations in GEIs due to
wearing a coat or carrying a bag (as shown in Fig. 4). To verify this,
we further performed experiments with the linear subspace
method PCA + LDA, which has frequently been used for the
appearance-based object recognition. PCA reduces the dimension
of feature space, and LDA identifies the most discriminant
features. A nearest-neighbor classifier was used in our experi-
ments. The experimental results summarized in Table 1 show that
PCA + LDA achieves similar performance to the linear/polynomial
kernels. Therefore, GEI is an effective gait representation for
gender recognition, based on which the linear decision surface can
discriminate gender with high confidence. The performance of GEI
is also much better than that of dynamic features (84.5%) used in
[26].

5.3. Gender recognition from faces

Before fusing gait and face modalities, we first performed
gender recognition with faces, and report the results in Table 2. By
comparing Tables 1 and 2, we can see that recognition results
based on faces alone were consistently inferior to that based on
gaits, which indicates that it is hard to learn human gender from
low-resolution faces captured in unconstrained environments. For
face-based gender recognition, SVMs have a clear margin of
superiority over the linear subspace method PCA + LDA; the
polynomial kernel also achieved the same performance with
the linear kernel, but RBF kernel was found to perform best. The
results we obtained reinforce the findings reported in [31].
This indicates that the face data can be better gender classified
by the non-linear decision surfaces. The number of support

T http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html.

vectors of the linear/polynomial kernels were 23-24% of the total
number of training samples, while the RBF kernel employed
25-39%. The SVMs’ performance of 87-90% we obtained is inferior
to that reported in [31]. This is because our face data were
captured in an unconstrained real-world scenario, with the
presence of facial expression changes, head pose variations,
various hair styles and glasses, so it is more complex than the
face images of FERET database used in [31].

5.4. Gender recognition from gaits and faces

We then fused gait and face cues at the feature level using CCA.
Different numbers of CCA factor pairs can be used to project the
original gait and face feature vectors to a lower dimensional CCA
feature space, and the recognition performance varies with the
dimensionality of the projected CCA features. We first tested SVM
(linear) with the CCA features of different dimensions. We plot in
Fig. 5 the average recognition rates of SVM (linear) versus CCA
dimensionality reduction. It is observed that the projected CCA
features of gaits and faces with 90-dimension provide the best
performance. Hence we carried out subsequent experiments with
CCA features of 90-dimension.

To verify its effectiveness, we compared the presented CCA
feature fusion with another three feature fusion methods:
(1) direct feature fusion, that is, concatenating the original gait
and face feature vectors to derive a single feature vector; (2) PCA
feature fusion: the original gait and face feature vectors are first
projected to the PCA space, respectively, and then the PCA features
are concatenated to form the single feature vector. In our
experiments, all principle components were kept; (3) PCA + LDA
feature fusion: for each modality, the derived PCA features are
further projected to the discriminant LDA space; the LDA features
are then combined to derive the single feature vector. We report
the experimental results of different feature fusion schemes in
Table 3, where it shows the linear kernel also achieves the same
performance as the polynomial kernel. We also plot bar graphs of
the recognition performance in Fig. 6. We can see that the direct
feature fusion and PCA + LDA feature fusion outperform slightly
the single modality, while the PCA feature fusion provides the
performance that is better than that of face cues but inferior to
that of gait cues. In contrast, our proposed CCA feature fusion
consistently achieves the best recognition results, producing
considerable performance improvement over the single modality.
This is because CCA captures the relationship between the feature
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Fig. 5. Recognition rates of SVM (linear) versus dimensionality reduction of CCA.
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Table 3
Experimental results of gender recognition by fusing gaits and faces

Recognition rates

Feature dimension

Overall (%) Male (%) Female (%)
Direct fusion SVM (linear/polynomial) 95.6+1.7 983+24 88.0+8.6 4160
SVM (RBF) 945+18 97.4+3.1 86.3+8.5
CCA fusion SVM (linear/polynomial) 969+1.1 99.0+1.1 91.0+5.2 180
SVM (RBF) 97.2+0.8 99.0+1.3 92.0+4.6
PCA fusion SVM (linear/polynomial) 9234+09 946+19 85.6+6.9 1600
SVM (RBF) 92.5+13 958 +1.1 83.1+7.1
PCA + LDA SVM (linear/polynomial) 956+19 983+1.7 87.9+8.0 2
fusion SVM (RBF) 956+1.9 98.3+1.7 87.9+8.0
100 : T _ single modality is improved much by the CCA feature fusion (from
98 - =S::e | 74-84% to 91-92%) Whi.Ch is significant. .
- _ [ Direct Feature Fusion In the above experiments, the face images were manually
9 B —_— %gg:::ﬁ: i aligned. To investigate the effect of the misalignment of faces on
_ [C__]PCA+LDA Feature Fusion final fusion results, we further carried out experiments by taking
8 94 T T T the face images directly from the face detector. Due to the
§ 92 — — | unaligned face, the recognition performance of different fusion
p methods degrades to 85-91%, although the CCA feature fusion still
£ 90 1 provides the best performance.
c
[)]
g 88 -
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86 1 6. Conclusions
84 1 . . . . .
In this paper, we investigate an important but understudied
82 1 problem, gender classification from human gaits, which has
80 important applications in intelligent visual surveillance and
SVM SVM(RBF) human-computer interaction. Our extensive experiments demon-

(Linear/Polynomial)

Fig.~6. Gender recognition using different features.

sets in different modalities, and the fused CCA features effectively
represent information in each modality, removing noisy and
redundant data. More crucially, the CCA feature fusion bring
significant time and space benefit, for example, compared to
the high dimensionality (4160) in the direct feature fusion.
The compact 180-dimension CCA features reduce the memory
space by order 23. Another strength of the CCA feature fusion
is that it always produces the smallest standard deviation of
cross-validation, which demonstrate it is more robust than each
single modality and other feature fusion schemes. The perfor-
mance 97.2% that the CCA feature fusion-based SVM (RBF)
obtained is better than 96.6% reported in [31], and, to our
best knowledge, is the best gender recognition performance
reported so far in the published literature. A supplementary video
demonstration is available at http://www.dcs.gqmul.ac.uk/~cfshan/
research/gender.html.

We note that, in Tables 1-3, all the female recognition rates are
poorer than the male (with larger variance). In previous studies
[31,35], different classifiers also had higher error rates in
classifying females. This phenomenon is possibly because the
female gaits and faces have less prominent and distinct features,
for example, the female has much variation in their hair styles
and clothing. Another possible reason is the unbalance data set
(88 male and 31 female) in our experiments. An encouraging
observation is the female recognition performance based on each

strate that visual gender recognition from human gaits is very
effective. Considering each modality in isolation has its limita-
tions, we also propose a method to effectively fuse gait and face at
the feature level for improved gender discrimination. Experiments
demonstrate that our multimodal gender recognition system
achieves the superior recognition performance of 97.2% in large
data sets.
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