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Abstract. There is considerable interest in techniques capable of iden-
tifying anomalies and unusual events in busy outdoor scenes, e.g. road
junctions. Many approaches achieve this by exploiting deviations in spa-
tial appearance from some expected norm accumulated by a model over
time. In this work we show that much can be gained from explicitly mod-
elling temporal aspects in detail. Specifically, many traffic junctions are
regulated by lights controlled by a timing device of considerable preci-
sion, and it is in these situations that we advocate a model which learns
periodic spatio-temporal patterns with a view to highlighting anomalous
events such as broken-down vehicles, traffic accidents, or pedestrians jay-
walking. More specifically, by estimating autocovariance of self-similarity,
used previously in the context gait recognition, we characterize a scene
by identifying a global fundamental period. As our model, we introduce a
spatio-temporal grid of histograms built in accordance with some chosen
feature. This model is then used to classify objects found in subsequent
test data. In particular we demonstrate the effect of such characteriza-
tion experimentally by monitoring the bounding box aspect ratio and
optical flow field of objects detected on a road traffic junction, enabling
our model to discriminate between people and cars sufficiently well to
provide useful warnings of adverse behaviour in real time.

1 Introduction

Currently countless people are deployed to watch and monitor CCTV screens in
the hope of identifying criminal activity, untoward behaviour, and serious but
non-malicious situations. A fundamental challenge to computer vision research
is to devise algorithms capable of isolating and displaying events of interest in a
clear, uncluttered way and with a relatively low false alarm rate. Considerable
research effort has produced systems which learn statistical scene content both
at the pixel level [1] and from a global perspective [2] with a view to segmenting
an image into the usual (background) and unusual (foreground). By relating
foreground object size, and possibly shape, to areas within the scene, it becomes
possible to identify people and vehicles in the ‘wrong’ place. However, generally
such models are oblivious to relative event timing.

In this paper, with specific reference to road traffic junctions, we wish to ex-
tend the definition of ‘unusual’ to the temporal domain such that the presence
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of an object is treated explicitly in a spatio-temporal context rather than mod-
elled as a deviation from an accumulated distribution. This approach is aimed
specifically at modelling scenarios in which periodic behaviour is present. For
example, it should be possible to identify a pedestrian trying to cross a road at
a time when cars are moving through the junction, namely this calls for a model
possessing a certain temporal context awareness.

1.1 Related Work

Considerable work has been published on the biological aspects of perceptual
grouping. In terms of the human visual system this amounts to forming rela-
tionships between objects in an image. But such grouping also occurs in the
temporal dimension, whereby our attention is drawn to objects whose appear-
ances change together, and those whose appearance changes cyclically or peri-
odically. At this point it is important to make the distinction between these two
types of variation: Cyclic motion implies events in a certain sequence, whereas
Periodic motion involves events associated strictly with a constant time interval.

Within the field of biologically inspired computing, systems using networks
of Spiking RBF (Radial Basis Function) Neurons have been used in [3] to charac-
terize and identify spatio-temporal behaviour patterns. Such a neuron generates
a pulse of activity when the combination of its inputs reaches a critical thresh-
old. The network of connections from input neurons to output neurons contains
groups of parallel paths with varying synaptic delays whose relative weights are
learned in a Hebbian fashion such that the delay pattern eventually complements
(mirrors) the times between events in training data. By this mechanism, an out-
put neuron can ‘learn’ to fire when the appropriate events occur with correctly
matched time delays, since only under this condition will all spikes reach the
nucleus simultaneously, causing its threshold to be breached and hence firing.

This idea is applied to a practical vision system in [4], whereby relations be-
tween pixels in the Motion History Image (MHI) over a sequence are learned for
a simple shopkeeper/customer scenario. Abnormal behaviour is detected when
a customer takes an item of stock but leaves the shop without paying the shop-
keeper. Similarly using MHI, [5] discriminates between actions based on move-
ment of the human body by matching against various learned templates. But so
far, although these examples identify sequences of learned events occurring at
precise times, whereas overall the sequences themselves are asynchronous events
- they might happen only once, or repeatedly but at arbitrary times. A model
described in [6] forms relations between asynchronous but related scene events
by adding links between parallel Hidden Markov Models, making it ideal for
many situations where temporal invariance is paramount.

When it comes to periodic motion, [7] describes a method of modelling mov-
ing water, flames, and swaying trees as Temporal Textures. An Autoregressive
Model is proposed in which a new frame may be synthesized such that each pixel
is described by a weighted sum of previous versions of itself and its neighbours,
with an added Gaussian noise process. Similar to the Temporal Textures of [7],
[8] applies the Wold decomposition to the 1-D temporal signals derived from
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each image pixel giving rise to deterministic (periodic) and non-deterministic
(stochastic) components, permitting distinction between various human and an-
imal gaits, and other types of motion.

On an apparently unrelated problem, much is to be found in the literature
concerning gait characterization, modelling and identification. Generally these
methods work by analyzing the relative motion of linked body members, which
are of course all related by the same fundamental frequency. However, the par-
allel between this and modelling traffic at a road junction is surprisingly close.
Given extracted features, image areas may be likened to body limbs, sharing
fundamental frequency, but being of arbitrary phase and harmonic content.

Various forms of periodic human motion are characterized in [9] by track-
ing candidate objects and forming their ‘reference curves’. After evaluating a
dominant spectral component if it exists, an appropriate temporal scale may be
identified. This idea is developed in [10] which considers periodic self-similarity,
Fisher’s Test for periodicity and Time Frequency Analysis. The Recurrence Plot
described in [11] is a useful tool for visualizing the evolution of a process in
state-space, showing specifically when the state revisits a previous location.

Instead of using Fourier analysis directly, [12] employs Phase Locked Loops
(PLLs) to discriminate between different gaits, on the basis that it is more
efficient. Having identified some fundamental frequency for an object (person),
application of a PLL per pixel in the relevant area permits estimation of the
magnitude and relative phase of this fundamental component for each pixel in
the object. The idea is that the phase ‘signature’ for every object (person) will be
different. The technique is rendered scale and translation invariant by matching
these parameters as shapes in the complex plane using the Procrustes mean.

In this work we wish to construct an algorithm to characterize the periodicity
of a scene based on its temporal statistics rather than explicit object tracking
(therefore avoiding the catch-22 problem of determining appropriate scale vs.
saliency). Treating the recovered periodicity as a form of ‘temporal background’
we aim to discover anomalies in both space and time simultaneously in unseen
images. Expanding on a technique employing self-similarity [10], we describe
an algorithm for extracting the fundamental period from a video sequence of
a scene, and then use this to facilitate a spatio-temporal data-driven model
of scene activity. We show experiments in three traffic junctions scenes where
we demonstrate the effectiveness and simplicity of such a model in performing
anomaly detection.

2 Our Model

Given a video sequence Ix,y,t consisting of tmax frames each of size xmax × ymax

pixels in which (x, y) represents spatial pixel location, t the time index, and I the
colour triple {R, G, B}, we split the data into two parts, the first for training and
the second for evaluation. Obviously, the first image of the test sequence directly
follows the final image from the training sequence - a fact which becomes crucial
in ensuring the initialized model is synchronized with the test data. This also
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enables a natural way for bootstrapping a model from limited initial exposure to
the scene. A background model IB

x,y,t is evaluated from and maintained through
both the training and test data according to a method detailed in [13]. Our overall
algorithm is shown in Figure 1, and described in more detail in the following.

S Description

1 Derive a background model from training sequence
2 Extract chosen feature from training sequence
3 Quantize samples to a coarser spatio-temporal grid forming linear state data
4 Find dominant fundamental period Tfund for the scene using the linear state data
5 ‘Roll up’ Linear State Data using period Tfund starting from the end to form

average State Cycle estimate
6 Use State Cycle to classify previously unseen frames
7 Synthesize output from background and mis-matched areas in new frames

Fig. 1. Steps in our algorithm

2.1 Feature Selection

A feature which summarizes some local characteristic of the image sequence must
be chosen. For modelling the traffic junction we start with selecting the aspect
ratio of an object’s bounding box, anticipating that pedestrians will always be
taller than they are wide, and vehicles will rarely be so under the majority of
typical poses. In order to ensure symmetrical treatment of ratios greater and
less than unity, we further develop a Log Aspect Ratio (LAR) feature LARx,y

at position (x, y) by taking the natural logarithm and clipping to +/-1, resulting
in ratios from 1

e
to e

LARx,y = max

(

−1, min

(

1, loge

(

hx,y

wx,y

)))

(1)

where h and w are box height and width respectively. Bounding boxes are de-
termined after applying morphological operations to a foreground binary mask
Mfg

x,y,t removing shapes below a certain minimum pixel area. The binary mask

Mfg
x,y,t is derived from the difference between the current image and the current

background Dx,y,t according the the L1 (Manhattan) norm of the pixel vectors
in colour space

Mfg
x,y,t =

{

1 if Dx,y,t > τ
0 otherwise

(2)

where τ is a constant and

Dx,y,t =
∥

∥Ix,y,t − IB
x,y,t

∥

∥

1
(3)
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Thus for each frame of video It, a (potentially empty) list Lt of valid bounding
boxes Bt,m is produced governed by the above rules

Lt = {Bt,1, Bt,2, . . . Bt,m} (4)

where the mth bounding box is characterized by the quad

Bt,m = {x, y, w, h} (5)

in which (x, y) is the bounding box centre, and (w, h) are its size from which the
LAR is calculated. The maximum value of m is determined by the number of
objects detected in the current image. So the feature we have selected does not
exist at every pixel, rather it will exist wherever in the spatio-temporal volume
valid objects are detected. Figure 2(a) shows an example of accumulation of LAR
over time in the training data, showing how it discriminates between people and
vehicles. Meanwhile with a plot of the image y-axis against time, Figure 2(b)
illustrates the inherently periodic nature of activity on a road junction.

(a) (b)

Fig. 2. (a) Bounding Box centres accumulated over time at a road junction scene.
Colour represents aspect ratio: green samples have h > w (pedestrians), red samples
have h < w (vehicles). The ratio for vehicles becomes unreliable here in the far distance.
(b) Y-T cut (right) through the spatio-temporal volume showing periodic behaviour of
a road junction scene at the vertical yellow line (left).

2.2 Spatio-temporal Histogram

Thus far the training data is represented by a set of points in a 4-D space
(x, y, t, LAR). In order to facilitate comparison of feature occurrence within the
spatio-temporal volume, we seek to build a spatio-temporal set of histograms
over the feature space. Therefore we split the volume into a grid of hmax × vmax

equal sized square blocks of pixels spatially and nmax equal sized blocks of frames
temporally. At each spatio-temporal grid position, consisting of
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xmax

hmax

×
ymax

vmax

×
tmax

nmax

(6)

pixels we construct a histogram Hh,v,t of bmax equal width bins over feature
space. For LAR it is a bounded 1-D set

Hh,v,n(b) = {b1, b2, . . . bmax} (7)

where b = ⌊
bmax(LAR + 1)

2
+ 1⌋ (8)

such that the range of the LAR feature (−1 ≤ LAR ≤ +1) is mapped uniformly
onto bin number b, where 1 ≤ b ≤ bmax. The inherent loss of resolution in all
dimensions as a result of this down-sampling operation is countered by the ad-
vantage of being able to quantify the similarity between any two spatio-temporal
regions on the basis of the selected feature purely by comparing histograms. In
fact from this point on, the method becomes independent of the chosen feature
and thus offers a degree of generality and considerable scope for matching any
chosen feature(s).

2.3 The Sparsity Problem

It is quite possible that, given the relatively high dimensionality of the histogram
containing the bounding box data points, the density is insufficient to yield mean-
ingful distributions. One potential solution is to decrease the number of blocks
in the grid in the dimension(s) causing the deficiency. Alternatively a degree
of data smoothing may be applied, both over the bins within each histogram
and also between spatio-temporal histograms. It was found that experimental
results benefited from convolution of the former with a normalized 1-D Gaussian
filter, and of the latter with a 3-D Gaussian kernel having potentially different
variance in the spatial and temporal directions. Inevitably there will be some
regions which are poorly supported, and steps to mitigate the effects of this may
become necessary in later processing.

2.4 Fundamental Period Estimation

To derive an estimate of the fundamental period over which scene changes occur
is a non-trivial procedure, and as such it is dealt with separately in Section 3.
Suffice to say at this point that a scene may have a number of unrelated funda-
mental periods (including ‘none’) distributed over various regions (see Figure 3),
and optimally distinguishing them is a topic for future research. In this work we
consider applications like the traffic junction where it is assumed that there is a
single dominant effect, for which the period is Kfund blocks each of tmax/nmax

frames. Given a frame rate of F per second, the fundamental period is thus

Tfund =
Kfund

F

tmax

nmax

seconds. (9)
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Ideally the training data should be long enough to contain sufficient cycles of the
fundamental period that the latter can be distinguished adequately from noise.

Fig. 3. Relative fundamental period distribution of the scene in Figure 2(a) based
on per pixel temporal autocorrelation. Intensity representing period is given by the
first significant peak. Much of the junction area is the same shade, indicating shared
periodicity.

2.5 State Cycle and Model Initialization

We define the State Cycle Sk
h,v k = {1 . . .Kfund} of a grid location (h, v) to be

a temporal description of how the chosen feature varies throughout a single cycle
of its fundamental period of Kfund phases. Given that the array Hh,v,n contains
a number of cycles of this temporal description in succession, we wish to form an
‘average histogram’ Hfund of size hmax × vmax ×Kfund representing a summary
of the scene’s typical behaviour over the c most recent cycles of the fundamental
period, where c = ⌊ nmax

Kfund
⌋ cycles. Thus taking the c most recent groups of Kfund

blocks, the kth element of Hfund is the mean of the kth elements of the c groups

Hfund,h,v,k(b) =
1

c

c
∑

i=1

Hh,v,nmax−iKfund+k (b) (10)

where k={1, 2, . . . Kfund}. Normalization of Hfund over b yields an estimate of
feature probability Pfund which is then our spatio-temporal model of the scene

Pfund,h,v,k(b) =
Hfund,h,v,k(b)

∑bmax

b=1
Hfund,h,v,k(b)

(11)

Assuming that continuous test sequence (e.g. real-time video streamed data)
directly follows the initial training sequence, then the state counter k, initialized
to 1, may be updated every tmax

nmax
frames according to the relation k = mod

(k, Kfund) + 1 in order to keep track of the learned periodic scene behaviour.

2.6 Output Synthesis

The objective is to provide an output sequence from our algorithm showing
only objects in the ‘wrong place’ at the ‘wrong time’. For a query test frame



8 D. Russell and S. Gong

Iquery appearing subsequent to model initialization, the foreground mask Mfg

is obtained as in equation (2), and valid object bounding boxes Bt,m derived
as in (5). For each candidate bounding box, the LAR is evaluated from width
and height using equation (1) and b is given by (8). Values for h and v are
calculated using h = x×hmax

xmax
and v = y×vmax

ymax
. Thus the estimated probability of

that particular aspect ratio bounding box at that position is given by the model,
and may be compared with a threshold α in order to give a binary decision r as
to whether the object is sufficiently rare to be displayed

r =

{

1 if Pfund,h,v,k(b) < α
0 otherwise

(12)

On the basis of r being true, for each object in Iquery, a matting mask Mmatt is
used to re-insert pixels according to the bounding box dimensions from the new
frame Iquery into the background IB for all objects determined to be anomalous
with respect to the current model. The background with insertions forms the
output image from the algorithm.

3 Determining the Fundamental Period

The method described in the previous section relies totally on obtaining a robust
estimate of the fundamental period of a region or the whole image area using the
3-D spatio-temporal grid of histograms Hh,v,n defined in (7). We seek to find the
most common lag between instances of temporal self-similarity at times n1 and
n2 over all possible combinations of n1 and n2. As a measure of the similarity
between any two histograms, we utilize the general definition of the symmetric
Kullback-Leibler Divergence (KLD) between distributions P1 and P2 given by

DKL(P1, P2) =
∑

i

(P1,i log2 (
P1,i

P2,i

) + P2,i log2 (
P2,i

P1,i

)) bits (13)

Thus over an arbitrary spatial region R in our grid, we define the ‘average
Dissimilarity matrix’ S between two temporal planes at times n1 and n2 as

Sn1,n2
=

1

‖R‖

∑

v,h∈R

DKL(Pn1
(v, h), Pn2

(v, h)) (14)

which after simplification yields

Sn1,n2
=

1

‖R‖

∑

v,h∈R

bmax
∑

i=1

(Pn1,i − Pn2,i) log2

(

Pn1,i

Pn2,i

)

(15)

An example of the symmetric Divergence relative to a single time is illustrated
in Figure 4(a), and between all combinations of times as matrix S in Figure
4(b). Because it is the coincidence of minima in S that we are interested in, we
subtract its mean to form S′

S′(i, j) = S(i, j) −
1

imaxjmax

∑

i,j

S(i, j) (16)
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and construct the normalized 2-D autocovariance matrix A at all possible lags
(di, dj) in both directions

A(di, dj) =

∑

i,j S′(i, j) S′(i + di, j + dj)
√

∑

i,j S′(i, j)2 �

∑

i,j S′(i + di, j + dj)2
(17)

(a) (b)

Fig. 4. (a) Temporal KL Divergence at a single grid position (corresponding to 50
on the x-axis) relative to all other temporal grid positions. Naturally the divergence
is zero with respect to itself. (b) Average ‘Divergence’ matrix between histograms at
temporal grid positions n1, n2 for all combinations of n1 and n2. Using the Symmetric
Kullback-Leibler formula, divergence is summed over all spatial grid positions of the
scene, as well as over the histogram bins (equation (15)).

As shown in Figure 5(b), matrix A exhibits a regular structure of peaks spaced
at the dominant period if it exists. The fundamental interval Kfund is identified
by exploratory element-wise multiplication of A with a regular matrix of peaks
generated by column vector g(d) as shown in Figure 5(a), whereby varying the
pitch d yields a peak in the overall temporal scene power observed

Kfund = argmax
d

(g(d)T A g(d)) (18)

for dmin ≤ d ≤ dmax and binary vector g such that

gi(d) = δ((i − nmax) mod d) where 1 ≤ i ≤ 2nmax − 1 (19)

Figure 6(a) shows how the scene’s signal power peaks at a given value of d.

For our application the region R represents the entire scene, but this tech-
nique could equally well work with subsets of the scene, be they rectangular or
square blocks, or even arbitrary shapes. A yet more elaborate scheme for ana-
lyzing the autocovariance matrix A is described in [10], in particular explaining
that a diagonal equivalent of the matrix in Figure 5(a) is necessary to detect pe-
riodicity in scenes in which self-similarity of appearance peaks more than once
per cycle (e.g. a swinging pendulum).
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(a) (b)

Fig. 5. (a) Lattice for distance d = 15 generated by g(d)g(d)T . Multiplying such a
lattice by the autocovariance matrix in (b) for a range of d identifies the fundamental
period. (b) Autocovariance of the Divergence matrix in Figure 4(b), showing the strong
lattice structure corresponding to a dominant fundamental in the video sequence.

(a) (b)

Fig. 6. (a) Relative spectral power of the scene in Figure 2(a) for values of d between
4 and 50. Note the fundamental at d = 15, giving a period of 15 × 7.5s = 112.5s

corresponding to the cycle time of the junction signals. (b) Timing diagram showing
correct synchronization of model throughout test sequence. Top: Pixels from closest
green traffic light in scene. Middle: Consensus of light over cycles in training data.
Bottom: Internal state counter. Note consistent phase relationship between all three.

4 Experiment

For our experiments we chose three busy city-centre road junctions controlled by
traffic lights. Each dataset was made up of 30000 frames of 720×576 pixel colour
video at a frame rate of 25Hz, yielding sequences of 20 minutes duration. The
data was spatially down-sampled to 360×288 pixels to ease computational load.
The short-term background model was obtained as described using the method
described in [13], based on blocks of 20 frames taken at 12 second intervals.
The L1 norm of the background-subtracted data was thresholded at a value of
30 given an intensity range of 0-255 per colour channel, and after morphological
clean-up, identified object areas were thresholded to reject those below 70 pixels.
The Log Aspect Ratio feature range of +1 to -1 was split into 5 histogram bins,
and spatio-temporal histogram grid was 8 × 8 pixels wide spatially, and 180
frames deep temporally, giving h = 45, v = 36, and n = 167. For each sequence,
we utilized the entire spatio-temporal matrix to estimate the global fundamental
period Kfund for the scene using the method described in Section 3. We then
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allowed c = 5 cycles of this fundamental period to be used for training data,
leaving the remainder for testing. Figure 6(b) illustrates how the state counter
is correctly and consistently aligned with junction activity throughout the test
sequence, as measured by the actual brightness of pixels representing the green
traffic light at the bottom of the scene.

The results for Scenarios 1,2 and 3 are shown in Figures 7, 8, and 9. Figures 7
and 8 show 3 rows of 5 images, with each row representing an example frame from
the algorithm output. The left-most image is the original unprocessed frame,
whilst the second image is the short-term ‘static’ background which we have
labelled as ‘Layer 0’. The objects detected to be anomalous according to our
model are shown inserted into the static background and labelled as ‘Layer 2’ -
the foreground. Similarly, the original image with the background inserted where
the object was detected, is shown labelled as ‘Layer 1’ - the dynamic background.

Finally in the right-hand column, for comparison purposes, we show the re-
sult of classification using a non-temporal equivalent model derived from the
same training data. To achieve this, bin values of each histogram Ph,v,k(b) are
marginalized out over the time dimension to yield P ′

h,v(b). Overall, when analyz-
ing images, the algorithm achieves 3FPS throughput on a 2GHz PC, although
initially building the model carries a considerably higher computational cost.

5 Discussion

The results in Figures 7, 8 and 9 demonstrate how, in spite of a background
that is non-stationary, our algorithm has managed to split scene activity into 3
distinct layers. This has been achieved partly by being able to make reliable esti-
mates of true background amongst a busy scene, and partly by classifying objects
based on a spatio-temporal template learned from the scene during training.

What we term Layer 0 takes on the non-stationary background, permitting
detection of less persistently occurring objects such as people and vehicles. Hav-
ing thus obtained reference to the latter in isolation from the background, our
spatio-temporal model classifies them into Layer 1, objects of a suitable aspect
ratio for the part of state-space they occupy, and Layer 2, objects which con-
tradict the model. Within this framework, Layer 1 has taken on the role of a
‘dynamic background’ in relation to what might frequently be referred to as
‘foreground’ objects. Such a dynamic background has three dimensions, and a
match in all of them is required as well as an acceptable value for the feature
at those coordinates in order that the object is deemed acceptable as a dynamic
background item. Thus we claim that our spatio-temporal model has more dis-
criminative power than a spatial-only 2-D probabilistic model, which is oblivious
to time. By marginalizing out the time dimension, one effectively increases the
likelihood of an object at times in the cycle when it should be considered rare,
and reduces its likelihood at times when it should be considered common. The
overall unwanted result is thus a desensitization of the model.

The upshot of this situation is that with no temporal processing (termed
‘NTP’) too many unimportant objects are detected, whilst use of our scene-
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synchronized spatio-temporal model reveals far more salient detection amongst
‘higher layers’ of temporal change, associated with interesting and unexpected
spatio-temporal events. Furthermore, all this may be achieved without prior
knowledge of the size and location of potential triggering objects in the scene.

In particular, among the results are examples of our model detecting objects
of interest, whilst the model without temporal processing fails to highlight these,
but identifies less truly interesting objects instead. That this remains so, however
one decides to select the detection thresholds for the respective models, strongly
supports our claim that the temporal dimension is highly significant.

Original Static Bgnd Dynamic Bgnd Foreground No Temporal
Frame (Layer 0) (Layer 1) (Layer2) Processing

(a)

(b)

(c)

Fig. 7. Examples from Scenario 1 show how the algorithm discovers objects not match-
ing the learned spatio-temporal template, and thus splits the scene into 3 layers on the
basis of its dynamic behaviour. Layer 0 is the continuously updated ‘static’ background,
Layer 1 normal scene activity - the ‘dynamic background’, and Layer 2 carries ‘novel’
intrusions with respect to the training data. Some objects cannot be separated, regard-
less of threshold chosen. In (a) L2 correctly shows a car unusually pulling out onto the
main road, whereas with No Temporal Processing (NTP), this cannot be distinguished
from normal cars on the right. In (b) L2 spots the car over the waiting line, whereas
NTP sees only a passing pedestrian. In (c) L2 finds pedestrians waiting at the crossing,
whilst NTP wrongly highlights a car.

6 Conclusion and Further Work

We have demonstrated an algorithm capable of automatically learning the global
periodicity of scenes, such as that exhibited at junctions controlled by traffic
lights. The technique estimates a value for the global fundamental period, and
then builds a spatio-temporal model based on this estimate. It has been demon-
strated by experiment that the method can be more discriminating with regard
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to activity of a periodic scene than a model oblivious to repeating temporal
trends. As such, we draw the conclusion that the method described has suc-
cessfully decomposed the scene into separate layers on the basis of its dynamic
characteristics. Even using only a restricted feature set, the approach achieves
good results. However, as previously alluded to, the histograms defined could
readily represent a more diverse range of image features.

In its present form, the model described estimates the period once during
training. A practical realization would need to re-evaluate the fundamental pe-
riod continuously, in order to maintain both frequency and phase lock with
respect to current scene activity, especially since many scenes will not be quite
periodic in some way. Both short-term phase noise and longer-term frequency
drift problems may be soluble using the Phase Locked Loop approach detailed in
[12], whilst an on-line solution which augments the current model with additional
data as it becomes available would make for a truly adaptive system.

It is clear that many scenes will be composed of more than one harmonically
unrelated periodic component. Instead of seeking a single global fundamental,
the scene may be searched in a systematic fashion using the estimation technique
we have described on smaller regions. If somewhat optimal regions of common
periodicity could be found, the ‘rolling up’ of periodic training data implemented
here is equally applicable to different image areas, each with its own Kfund.
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Original Static Bgnd Dynamic Bgnd Foreground No Temporal
Frame (Layer 0) (Layer 1) (Layer2) Processing

(a)

(b)

(c)

Fig. 8. Examples from Scenario 2, an entirely different traffic junction. From behind,
cyclists tend to have an aspect ratio similar to people. Thus in (a) L2 singles out a
cyclist close to the pathway, which with No Temporal Processing (NTP), cannot be
separated. In (b) L2 has detected a different cyclist, again with the same profile as a
person, where there should not be people, whilst NTP sees only part of a car in normal
position. In (c) L2 observes a person on the wrong part of the crossing, inseparable
from vehicles on the junction with NTP.

Object Optical Flow New S-T model Reconstruction (L2) No Temporal Proc

Fig. 9. Scenario 3 with Optical Flow as the feature instead of shape ratio. Top: Spatio-
Temporal model correctly highlights errant vehicle crossing normal traffic from left.
Bottom: Spatial-only model (NTP) wrongly highlights normal traffic instead of van
jumping the red signal.


