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Abstract

A block-based dynamic background modelling technique
featuring incremental update is presented, with the aim of
increasing the sensitivity of background detection by con-
sidering the local connectivity of pixels. An accumulative
model is maintained on-line by a heuristic algorithm to
build up a statistical representation of a dynamic scene from
a fixed camera view for foreground-background segmenta-
tion. The model is compared with a block-based technique
employing cooccurrence [3], and shown to be favourable in
terms of both performance and conceptual simplicity. Us-
ing predominantly simple integer operations, the algorithm
is highly amenable to direct implementation in hardware.

1 Introduction

The vast majority of computer vision applications employ
some type of background model as a first stage in order to
facilitate segmentation of an image sequence into interest-
ing foreground objects and typical background areas. The
distinction between the two is not absolute, but statistical
scene modelling permits a compromise which is evidently
useful in a variety of circumstances [2] [5] [4]. A note-
worthy application example is surveillance [11], in which
human operator attention may be directed towards unusual
events highlighting potentially threatening or otherwise im-
portant situations.
Models which support dynamic backgrounds are increas-

ingly prevalent, whereby stochastic or cyclic motion of ob-
jects is seamlessly assimilated into the background in or-
der to prevent needless clutter from burdening subsequent
higher levels of image interpretation.
By far the most popular techniques for achieving this are

based on per pixel models, which maintain a separate sta-
tistical model for each pixel in the image. In this case, such
a model is learned entirely from the history of its associated
pixel, and a measure of the probability of a new pixel value
from the same location being background is derived solely
from that model. The literature describing pixel-basedmod-

els is extensive [11] [1] [8], and it is immediately apparent
that this is currently the technique of choice as the front-end
of a large proportion of computer vision applications. Typ-
ically a mixture of Gaussians ( ∼ 10) is used to represent
multiple hypotheses regarding the value of a pixel [1], al-
though useful results have also been obtained using linear
prediction [10], and kernel estimators derived directly from
training data [13]. Conceptual simplicity and effectiveness
of the method are deemed to outweigh the heavy computa-
tional load associated with applying these techniques to an
image of realistic size.
At the other extreme, subspace analysis [4] considers the

connectivity of every image pixel with every other with a
view to building a constrained model representing the prin-
ciple axes of variation in the training data. Use of the low-
dimensional method [12] permits efficient eigendecomposi-
tion of a covariance matrix related linearly to the size of the
input vector (the number of image pixels) rather than to its
square. Subspace analysis for background modelling is less
widely covered in the literature, but has been used with suc-
cess [2]. An incremental version is detailed in [4], featuring
robust update whereby new image vectors are validated us-
ing the model itself as a prototype.
However, the erroneous detection rate can potentially be

quite high due to the intensity of a foreground pixel falling
by chance within the range of feature space defined to be
background. Similarly, a background pixel might sporadi-
cally assume a value which is not normally associated with
the background. In order to improve detection reliability
by exploiting the spatial correlation between pixels, one
could consider that supporting evidence from nearby pix-
els be used to corroborate the foreground-background clas-
sification for any given pixel. This may also be viewed as
the process of considering blocks of pixels simultaneously
when deciding whether they belong en masse to an area of
feature space designated as background.
Comparatively little is to be found in the literature re-

garding block-based background models, although reason-
able results have been achieved in a few notable cases. A
block-based method relying on texture is described in [6],
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whereby an image block is characterized as a weighted sum
of histograms derived from the Local Binary Pattern (LBP)
texture measure. One of the advantages of LBP is its in-
variance to absolute intensity and contrast. An applica-
tion using a block-based background is described in [5] in
which persons in an outdoor swimming pool are monitored
for safety reasons. Here, the refraction of randomly dis-
turbed water provides an excellent challenge for statistical
modelling. Operating in CIE L*a*b colourspace, an on-
line algorithm maintains a Moving Average (MA) value for
each block against which new images are measured using
the L1 norm. Validation by comparison with its 8 nearest
neighbours improves classification reliability in a way not
dissimilar to the cooccurrence method described below and
referenced in [3]. Relative intensity distribution among pix-
els in a block is characterized in [7] by introducing the Nor-
malized Vector Distance (NVD), essentially a measure of
angle between image vectors. A spatially modulated vari-
ant of this is claimed to overcome instability of the NVD at
low intensity levels by considering the relationship between
sub-blocks within a block. Introduction of the Temporal
NVD Cooccurrence Matrix (TNVDCM) permits classifica-
tion of all blocks into one of five categories according to
changes in the NVD throughout the training data, leading
to five different types of background subtraction algorithms.
In this way, periodic, static and random temporal behaviour
patterns may be optimally dealt with on a per block basis.
With a view to improving background detection reliabil-

ity by considering effects in adjacent image blocks, work
in [3] introduces the concept of cooccurrence. A set of
training images is split into square blocks and dimension-
ally reduced by Eigen Value Decomposition (EVD) to form
a database. A new image is similarly split and projected into
the eigenspaces on a block by block basis. The probability
(P1) of a block in the new image being background is cal-
culated by considering its proximity to the L nearest images
in the database, assuming an isotropic Gaussian distribution
among the L images (L � 15). Interpolation between the
values of any neighbouring block in the same L database
images permits an additional probability (P2) for the neigh-
bouring block to be calculated. Thus the overall probability
for a block can be gauged as some function of its own P1

and the eight P2 values derived from its nearest neighbours.
The intention herein is to define an adaptive heuristic

algorithm to perform background modelling using a block-
based approach. Functionality of the model will be demon-
strated utilising a challenging real-world outdoor image se-
quence. As a yardstick by which to gauge the algorithm’s
utility, it is compared against the cooccurrence algorithm
detailed in [3]. It should be noted at this point that whilst
the latter is concerned with the cooccurrence of adjacent
blocks, the focus of this paper is consideration of cooccur-
rence between the pixels within a block.

2 Efficient Block Matching

2.1 Problem Definition
The effectiveness of a background modelling algorithm is
determined by the level of reliability with which it man-
ages to distinguish between foreground and background
pixels. A crude algorithm is likely to make many mis-
classifications which ultimately have to be filtered or cor-
rected by higher level algorithms in the vision process, for
example the connected component algorithm [9]. Thus it is
of paramount importance to maximize the accuracy of the
background model.
The feature space of a pixel is generally either uni-

dimensional in the case of grey-scale images, or three-
dimensional for colour images. Although the space may
be divided into regions representing foreground and back-
ground, there are almost certain to be areas which may be-
long to either category. Increasing the dimensionality of a
pixel’s feature space helps to separate these areas of confu-
sion. However, it is difficult to imagine how to increase a
pixel’s dimensionality beyond 3 when constrained by con-
ventional camera equipment, and herein lies the limitation
of per-pixel backgroundmodels as typified by the Gaussian
Mixture technique.
A possible way forward is to consider a feature as con-

sisting of a group of pixels, perhaps a block. In this way, the
pattern of the pixel colours or intensities in a block is used
to discriminate between foreground and background.
The limiting case of this is when the connectivity be-

tween all pixels in an image is considered, and this is the
basis of modelling techniques relying on covariance matrix
decomposition and subspace analysis. Effective though this
may be, for large images and high frame rates, the com-
putational load becomes at the very least cumbersome, and
rather awkward to cast in the framework of a parallel pro-
cessing solution.

2.2 Algorithm Description
In this paper, the possibility of using small blocks of pix-
els in colour space as features is considered. The proposed
algorithm involves maintaining a fixed-size database of typ-
ical examples of each block, against which new examples of
the block may be validated. If a new block is distant from
all retained examples by more than a certain threshold, it is
deemed to be foreground in the current image. Such new
blocks may qualify to become part of the database them-
selves should close enough examples of them persistently
reoccur over a number of frames. Acceptance of new im-
age blocks is at the expense of examples which have not
occurred sufficiently frequently over more recent frames.
Thus, overall, parts of a scene which persist over time

are subsumed by the model, enabling them to be classified
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as background, while conversely, non-reoccurrence of ob-
jects causes them to eventually be lost by the model’s mem-
ory. Although hardly optimal in any sense, such behaviour
provides at least a first step towards a simple data-driven
block-based background model.
Images are considered divided into a grid of square

N×N pixel blocks, as shown in Figure 1. All processing is
carried out on a per-block basis, with no interaction between
adjacent blocks, thus no block level cooccurrence inference
is drawn.

Figure 1: Database and input image divided into blocks.
Note that all block stacks are manipulated independently
according to the algorithm in Figure 2.

A database D is maintained, containing d samples for
each block, which may be imagined as a stack numbered
from 1 (highest priority) at the top, to d (lowest priority) at
the bottom, as shown in Figure 2. All blocks are initialized
to zero before learning commences.
When a new image arrives, each block is rasterized and

then normalized to form a vector X which is subsequently
compared with all blocks in the top half of the stack using
Euclidean distance as the metric:

xu = min
j

√
(D(u,j) − Xu)T (D(u,j) − Xu)

j = {1 · · ·d/2}

where u iterates over all blocks in the image. The block
is judged background if the smallest distance is less than a
threshold TSu. This forms the block-wise binary segmen-
tation maskM for the current new image:

Mu =
{

0 if xu ≤ TSu

1 if xu > TSu

Using the same metric and mechanism, the new block is
then compared with all images in the stack {1 · · ·d}. If the
smallest distance is greater than a threshold TPu, the new
block is inserted at a point p in the stack, typically a quarter
of the way from the bottom (position d/4). All blocks
from p to d are moved down and that in the final position d

is discarded, as shown in Figure 3.

Figure 2: Operation of the stack for a single block in the
block matching algorithm.

If the block is sufficiently close (i.e. less than TPu) to its
nearest match in the stack, the new block is discarded and
that block to which it was closest is promoted up the stack
by m positions, where m = 1 in current considerations.
Image blocks at and below the new position in priority are
shifted down to make way for it.
The thresholds Tn = {TS, TP} are derived on a per

block basis by filtering a multiple βn of xu with a time-
constant TC:

Tnu,t = αTnu,t−1 + (1 − α)βnxu,t

where t represents the timestep and α = e
−1
T C . In this way,

the thresholds track the “chaos” experienced by a particular
block.
Overall, the effect is to promote blocks which keep reoc-

curring into the top half of the stack where they can be used
for segmentation, at the expense of those which appear less
often. However, new blocks must be persistent over a num-
ber of frames before becoming available as valid choices
for background, because of the chance that they represent
a foreground object. Also, potentially valid background
blocks should remain in the system for some time before
being discarded due to lack of sufficient recent occurrence.
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Figure 3: Flowchart for stack manipulation for one block.
Note that qu is the position in Du at which the best match
occurs. Ellipses indicate moves of a sequence of blocks.

Of course the division in the stack between blocks available
for segmentation and those not is arbitrarily positioned at
the halfway point for the sake of simplicity.
A consequence of block-based techniques in general is

the loss of resolution in the final segmentation mask. Al-
though this is directly dependent on block size, some reso-
lution can be regained by defining blocks to be overlapped.
As described in [3], resolution may be doubled along both
axes by this technique.

3 Experimental Results

For the experiments, continuously captured video footage
of a lively university courtyard scene was chosen. A chal-
lenging scene, it contains swaying trees, a periodically ac-
tive fountain and various people moving across the court-
yard in different directions, whilst in the distance, traffic
can be seen to pass along a main road. The colour images
are JPEG compressed from a resolution of 720×576, and
the test sequence has 2982 frames, lasting approximately 2
minutes at 25fps.

The proposed algorithm was applied to the sequence us-
ing an overall database size of d = 200. The block size was
8×8 pixels, creating a grid of 0×72 square blocks over the
image area. Time-constant TC = 500, βTS = 1.5, and
βTP = 2.
The algorithm was evaluated against the block-based

cooccurrence method presented in [3] using all the same
image and block size parameters, and 50 frames of training
data not subsequently used for testing. Thresholds in the
cooccurrence algorithm were set empirically to yield visi-
bly useful segmentation. In this situation, threshold values
chosen are almost always a compromise between clear seg-
mentation of wanted foreground, and accidental foreground
classification of objects that ought to be considered back-
ground.
The experimental results are shown in Figures 4 and 5

as a comparison between the performance of the two al-
gorithms. They clearly illustrate the superiority of Block
Matching when it comes to incorporating the trees into the
background model. Likewise the periodic fountain activity
is also quite well handled. For the segmentation of moving
people and traffic, the performance from both algorithms is
rather similar, as depicted in Figure 5.
Although not explicitly shown, the block matching algo-

rithm does also suffer from the effect of incorporating new
objects that become stationary in the scene rather too read-
ily. Persistence over a longer time period would be desir-
able, suggesting an increase in the ratio d/m, althoughm is
already 1. A more advanced algorithm for qualifying new
blocks is almost certainly required here.
In the case of the cooccurrence algorithm, the strange

patch of foreground on the building entry steps in both ex-
amples of Figure 4 is due to an object present in the training
data. This highlights the point that, unlike the block match-
ing algorithm, this version of the cooccurrence algorithm
does not learn incrementally.
Processing time was about 25 seconds per image for

both block matching and cooccurrence algorithms running
in MATLAB on a 1.8GHz desktop PC. The size of the im-
age database critically affects both algorithms, since much
of the computation time is spent evaluating the merit of the
match between a new image and each entry. The cooccur-
rence algorithm is also crucially affected by the dimension
of the eigenspace that each image block is projected into,
and also the number of nearest images L involved in the
local linear interpolation. In this case, the 64 dimensional
pixel block is reduced to an 8 dimensional eigenspace, and
the savings in storage and comparison time are quite sig-
nificant for this reason. On the other hand, the interpola-
tion, for which L = 10 here, involves matrix inversion of
an L×L matrix, and consequently represents a significant
speed penalty for the per block calculation.
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Figure 4: Comparison of Block Matching and Cooccurrence algorithms showing segmentation masks using two different
example frames from a test sequence. The Block Matching algorithm models the tree movements much more effectively,
leaving them mostly as background. The fountain activity was not covered in the Cooccurrence algorithm’s training data,
thus explaining why it is portrayed as foreground.
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Figure 5: Close up of frame 1066 highlighting the similarity in foreground segmentation performance for the two methods
for this type of content. Although the block matching algorithm does exhibit a slightly more connected segmentation, this
may just be due to choice of threshold. Given comparable segmentation accuracy, the key advantage of the block matching
algorithm is its efficiency, potentially 25 times faster than the elaborate cooccurrence model.
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4 Discussion

A new block-based incremental backgroundmodel has been
defined and evaluated against an existing block-based tech-
nique utilising cooccurrence. The various parameters of the
two systems were arranged such that processing time per
frame was roughly equal. The block matching algorithm re-
quires considerably more memory since it doesn’t have the
benefit of working in eigenspace. But by the same token, the
cooccurrence algorithm requires considerable floating point
calculation in order to maintain that eigenspace model.

The block matching algorithm, although in some sense
intensive, uses predominantly simple integer operations,
and thus lends itself well to direct implementation in hard-
ware. Given single-cycle pipelined multiply, add, subtract,
and memory access operations, it is conservatively esti-
mated that for the 0×72 block images used for the experi-
ment, a throughput of 25fps could be achieved with a clock
frequency of 800MHz and very modest silicon resources,
assuming a memory data bus width of 32 bits. Certainly the
stack search and manipulation operations render the block
matching approach heavily memory I/O bound. The block
normalization requires a division operation, and the thresh-
old update requires a square root, but there is only one each
of these per block per frame, and thus they are not seen as
limiting factors here.

By comparison, the more elaborate cooccurrence algo-
rithm requires extensive floating point arithmetic. If it is
assumed that a twenty-five fold speed increase might be
achievable by coding it efficiently in a fully compiled high-
level language such as C, rather thanMATLAB, still a frame
rate of only one per second could be achieved on a desktop
PC. Thus it seems clear that given the right hardware plat-
form, the block matching algorithm offers a speed advan-
tage of at least a factor of 25. A possible hardware scenario
might integrate the necessary devices, a programmable gate
array and synchronous DRAM, into a video capture card.
In this way, the host PC could be relieved of the burden of
the computationally expensive background modelling task,
perhaps to concentrate on higher cognitive processes.

Future research might benefit from considering a block-
based model incorporating some of the advantages of both
the block matching and cooccurrence algorithms. It is be-
lieved that there is an important future for cooccurrence
techniques in general, since after all, the newly described al-
gorithm is already really just considering the cooccurrence
of the pixels in a single block.
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