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Abstract. Illumination differences between disjoint cameras can have
a dramatic effect on the appearance of objects, thus increasing the dif-
ficulty of multi-camera object association. Although methods to model
these inter-camera illumination conditions exist, they often rely on static
illumination conditions and are unable to copewith unpredictable illu-
mination changes over time. In this paper we propose a novel method
for multi-camera object association based on adapting a learned inter-
camera illumination mapping function to new illumination conditions
over time without the need for a manual training stage using new fore-
ground objects. Comparative experiments are carried out using challeng-
ing data taken from a disjoint camera network. The results demonstrate
that the proposed method outperforms a number of existing methods
given changing illumination conditions.

1 Introduction

A typical video surveillance system employs a number of networked cameras,
many of which have disjoint views. One of the key problems of behaviour moni-
toring using a networked cameras is to track people across camera views, known
as the person re-identification problem. Specifically, to re-establish a match of
the same person over different camera views located at different physical sites,
one aims to track individuals either retrospectively or on the fly when they move
through different sites. Due to considerable changes in object orientation, pose
and lighting conditions between camera views, this task is non-trivial. Since real
world camera networks rarely have overlapping views, the key challenge for re-
identification is to establish object correspondence given these changes. Among
these conditions that vary across cameras, dealing with the lighting condition
change is particularly challenging. This is because light conditions at different
camera views can change over time in a unknown manner. While methods ex-
ist to address the problem of illumination change between camera views [1–3],
none of them consider the lighting condition changes over time. These changes
at each camera view result in additional changes across cameras not modelled by
existing techniques. (see examples in Figure 1). Our aim is therefore to enhance
multi-camera re-identification by modelling temporal illumination changes.

Simple appearance based methods currently exist to handle the lighting con-
dition changes between cameras. Cheng et al [3] cluster colours into a subset of
major colours, and to alleviate the effect of illumination changes, they employ a
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(a) Day 1 (b) Day 2

Fig. 1. Illumination condition can change over time especially when outdoor lighting
plays a part. In this case Day 1 was a dull cloudy day and Day 2 was sunny.

histogram equalisation technique. A more sophisticated method is to model the
illumination differences between each pair of camera views explicitly. Javed et al
[1] proposed a subspace based colour brightness transfer function (BTF). They
use probabilistic PCA to calculate the subspace of BTFs for a set of known cor-
respondences and compare the BTF of a test object pair against this subspace
to determine a correspondence. Prosser et al [4] also use a BTF-based approach
but accumulate training data before computing the BTF. This Cumulative BTF
(CBTF) enables sparse colour information to be preserved through the BTF
calculation process. Gilbert and Bowden [5] model inter-camera colour transfor-
mations using an incrementally updated transformation matrix. A similar model
was proposed in [2] without incremental learning. Instead, it employs a hardware
calibration phase to learn colour differences, which is impractical because many
real world systems do not offer the access to the hardware parameters.

The main shortcoming of the previous approaches is that they are trained
for a single constant lighting condition at each individual view. If the illumina-
tion at any one of the cameras changes over a period of time, the BTF based
approaches would require manual selection of a substantial set of corresponding
object observations in each camera to re-learn the brightness mapping under
the new conditions. It is therefore tedious, time-consuming, and above all is not
even possible when illumination condition changes are non-gradual. The his-
togram equalisation technique used by Cheng et al [3] assumes some arbitrary
a priori knowledge of a suitable colour mapping function which again would
need to be updated manually.Gilbert and Bowden’s incremental colour mapping
method [5] has the potential to cope with temporal illumination changes pro-
vided such changes are gradual. However, their method requires thousands of
object appearances to learn an accurate brightness mapping between camera
views, which are unlikely to be available especially when the lighting conditions
changes are non-gradual.

In this paper we propose a novel method for multi-camera people associa-
tion based on adapting cumulative brightness transfer function (CBTF) to new
illumination conditions without the need for a manual training stage using new
foreground objects. This method therefore can run in real time even given con-
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stantly changing lighting conditions. More specifically, by modelling the tempo-
ral changes in background illumination, the updated CBTF is estimated using
a combination of the original CBTF and the background illumination changes
at each camera. The proposed method is evaluated using challenging datasets
obtained from a real world CCTV camera network. The results demonstrate that
the adaptive CBTF estimation is accurate and the proposed method significantly
outperforms existing approaches.

2 Inferring Illumination Changes Over Time

Given a pair of camera views i and j and the CBTF cfij obtained using a
set of object correspondences, we aim to adaptively update the CBTF to any
change of illumination condition without collecting new object correspondences.
The new camera views under a different illumination condition is denoted as
i′ and j′, and the updated CBTF cfi′j′ . This is achieved through calculating a
colour mapping function for each of the two camera views over time, denoted
as fi′i and fj′j respectively. This enables us to convert object images under a
different illumination condition back to the illumination conditions under which
the original CBTF was learned. The approach is illustrated in Figure 2.

Fig. 2. Camera views i,j and i′,j′ under different illumination conditions. By modelling
the illumination change for each camera view (fi′i and fj′j) we are able to utilise the
original inter-camera cfij to infer the new inter-camera cfi′j′ without re-training.

2.1 Brightness Transfer Function

First let us formally define the multi-camera person re-identification problem.
A camera network has m cameras C1, ..., Cm all of which are assumed to have
non-overlapping views. We break down each view into entry/exit regions as il-
lumination varies between both inter- and intra-camera regions. Specifically, for
each of the camera views we define its set of n entry/exit regions as E1

C1
, ..., En

C1
.

We then simplify this by describing the global set of g entry/exit regions as
E1, ..., Eg. Next we define a set of k object observations in each entry/exit re-
gion Ei as {Oi,1, ..., Oi,k}. Using an existing single camera view tracking system
we can obtain these observations by taking a colour histogram of a target object
as the centre of its bounding box passes through an entry/exit region. In order to
solve the multi-camera re-identification problem we form a set of correspondence
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hypotheses Q where each Qj,b
i,a indicates a potential match between observations

Oi,a and Oj,b. We consider the solution space S as a set of all possible correspon-
dence hypotheses between Ei and Ej . Assuming that an object in Ei is seen no
more than once in Ej we aim to find the subset of S, s where each Qj,b

i,a ∈ s, if
and only if observations Oi,a and Oj,b are the same person. The solution of the
multi-camera re-identification problem is then defined as s ∈ S which maximises
an observation similarity measure:

s = arg max
s

∏

Qj,b
i,a
∈s

Similarity(Oi,a, Oj,b) (1)

where Similarity() is the similarity between Oj,b and Oi,a in the testing data.
A vital part of the re-identification process lies in the BTF. Javed et al [1]

suggested that a BTF fij( ) between cameras Ci and Cj can be constructed by
sampling values from a set of fixed increasing brightness levels Bi(1), ..., Bi(d),
and (Bj(1), ..., Bj(d)) = (fij(Bi(1)), ..., (fij(Bi(d))). In the case of a common
8-bit per channel image, d is set to 256. To establish such a mapping function
between views, a pair of known correspondence must be available. These corre-
spondences are represented as normalised histograms of RGB brightness values.
Computing a mapping function can be achieved as follows. It is assumed that
the percentage of pixels in an observation Oi with the brightness value less than
Bi is equal to the percentage of image points seen in Oj of brightness less than
or equal to Bj . Hi and Hj are then defined as cumulative histograms. More
specifically, for Hi each bin of brightness value B1, ..., Bm, ..., B256 in one of the
three colour channels is obtained from the colour histogram hi as follows:

Hi(Bm) =
m∑

k=1

Ii(Bk) (2)

where Ii(Bk) is the count of brightness value Bk in Oi. Each bin is then nor-
malised using the total number of pixels in Oi. Hi(Bi) represents the proportion
of Hi less than or equal to Bi, then Hi(Bi) = Hj(Bj) = Hj(fij(Bi)) and the
BTF mapping function can be defined as:

fij(Bi) = H−1
j (Hi(Bi)) (3)

with H−1 representing the inverted cumulative histogram. An example BTF and
the corresponding observation images can be seen in Figure 3.

In order to produce a more accurate transfer function, multiple BTFs can
be estimated. Prosser et al [4] show that mean BTF based methods rely on
having a consistent set of coloured individuals to accurately model the BTF and
that taking the mean of a set of BTFs actually removes vital colour information
that may only be contained in a small subset of the training data. Rather than
computing a BTF for each training pair they accumulate the brightness values of
the whole training set before the BTF computation. The cumulative histogram
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Fig. 3. (a) and (c) show a corresponding person in 2 camera views, (b) shows the BTF
converting between the two illumination conditions.

Ĥi of N training samples in camera view i can be computed from the brightness
values B1, ..., Bm, ..., B256 as:

Ĥi(Bm) =
m∑

k=1

N∑

L=1

IL(Bk). (4)

After obtaining this cumulative histogram using all the training image pairs, the
CBTF is computed as follows

cfij(Bi) = Ĥj
−1

(Ĥi(Bi)) (5)

This CBTF is used as the cfij from Figure 2 in the following section.

2.2 Modelling Temporal Illumination Changes

The first stage in modelling the illumination change is to derive a single median
background image from each of the two datasets collected under different illumi-
nation conditions. To do this we collect a set of background images, I1, ..., In, by
using a background/foreground subtraction technique to find images containing
minimal foreground regions. In our case we chose a set size of 20 images. From
this set of images we compute the median RGB values at each pixel location and
produce a median background image. The two median background images for
the two different illumination conditions are denoted as Mi(x, y) and Mi′(x, y).

In each of the median background images we extract regions of interest R
that corresponds to entry/exit regions of a camera. In our work these regions
are manually defined, however we are aware that work exists to extract these
automatically, such as [6, 7]. As the background of a scene may change over time
due to reasons other than illumination change, e.g. the movement of a static
object, we perform frame differencing to remove these areas so that they do not
pollute the final colour mapping. Let M̂i(x, y) denote a region of interest R after
frame differencing, we have:

∀x, y ∈ R, M̂i(x, y) =
{

Mi(x, y) if abs(Mi(x, y)−Mi′(x, y)) < σ
0 otherwise (6)
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where σ was typically between 30 and 50. An example of regions of interests
extracted from median background images of an entry/exit region of a camera
is shown in Figure 4.

Fig. 4. Corresponding regions of interest from the same entry/exit region of a camera
site on Day 1 and 2 respectively with pixels with large value changes removed. Those
removed pixels correspond to an LCD display, a chair, and some magazines, all of which
have been changed/moved over the two days.

From M̂i(x, y) and similarly calculated M̂i′(x, y) we can then estimate the
illumination change for each camera. To model the illumination changes we work
on the same principle as the brightness transfer function outlined in Section 2.1.
That is we assume that the percentage of pixels in background image Mi′(x, y)
with the brightness value less than Bi′ is equal to the percentage of image points
seen in Mi(x, y) of brightness less than or equal to Bi. And thus we use Equa-
tion (3) to compute fi′i and fj′j from Figure 2 as follows:

fi′i(Bi′) = H−1
i (Hi′(Bi′)) (7)

A similar approach was proposed by Grossberg et al[8], however their method
does not consider significant background changes between images. As this map-
ping may not contain one-to-one brightness mappings we use linear interpolation
to estimate unmapped regions. A sample illumination mapping can be seen in
Figure 5. The mapping between j′ and j is then calculated in the same way.

Once fi′i, fj′j and the inter-camera CBTF cfij have been calculated using
Equations (7) and (3) respectively objects can be mapped into the previous
illumination conditions and objects in view i can be mapped to view j for com-
parison. Specifically, in order to compare two observations Oi′,a and Oj′,b, their
colours are converted to the corresponding colours in Ei and Ej , i.e. Òi′,a(Bi′)
and Òj′,a(Bj′), using fi′i and fj′j respectively:

∀B′
i, Òi′,a(Bi′) = fi′i(Oi′,a(Bi′))∀B′

j , Òj′,b(Bj′) = fj′j(Oj′,b(Bj′)) (8)

Next Òi′,a(Bi′) must be converted to the illumination conditions of Ej , becoming
Ôi′,a(Bi), using the learned inter-camera CBTF:

∀Bi, Ôi′,a(Bi) = cfij(Òi′,a(Bi)) (9)
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Fig. 5. Background illumination BTF from the blue channel of Site 3. Note the values
on the x-axis (Day 2) corresponding to lower (darker) values on the y-axis (Day 1).

Òi′,a(Bi′) has now undergone transformation by a combination of fi′i and cfij

as depicted in Figure 2.
Note that we have assumed so far that the CBTF contains only one-to-one

colour relationships. However, in reality the mapping function obtained from the
training set often contains cases of many-to-one colour correspondences due to
incomplete ranges of colour values found in the training data. To address this
problem, a nearest neighbour smoothing function is employed to smooth out
the noisy peaks in the resulting histograms. Figure 6 shows an example of the
process of converting a potential observation pair for comparison.

Once both Oi,a and Oj,b are converted to the same illumination conditions
we can compare them directly using the Bhattacharya distance measure D() and
thus the similarity measure from Equation (1) can be defined as follows:

Similarity(Oi,a, Oj,b) = 1−D(Ôi,a, Òj,b) (10)

Note that in order to compare two colour objects, we must apply this process
to each of the three RGB channels. Thus the overall similarity measure becomes
the mean of the similarity values obtained in all three channels.

2.3 Automatic Model Updating
The CBTF updating process described above is triggered automatically by the
detection of an illumination change in each camera site. A background modelling
approach such as [9] can be deployed to construct an empty background from a
stack of frames containing foreground objects. From this automatically generated
empty background region we can calculate the brightness histograms for the
entry/exit region over a temporal sliding window. The brightness histograms
are then compared against the brightness histograms of the background region
from the previous period. Illumination change is detected when the difference
between the brightness histograms is larger than a threshold.

3 Experiments

Two sets of experiments were carried out using challenging datasets collected
from a distributed camera network. First, we compare the the proposed adaptive
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Fig. 6. Example of the conversion from the new illuminations (bottom row) to the
old (top row). From here the image from camera i is converted to the illumination
conditions of j for comparison using the similarity measure.

CBTF (A-CBTF) method against standard Bhattacharya distance and CBTF
colour transfer [4] without temporal illumination change modelling. Secondly, we
compare our method against current inter-camera colour compensation methods
[1, 10]. In each of these experiments, the BTFs and CBTFs for each colour chan-
nel were estimated from a set of training pairs with known correspondences from
Day 1 and tested using the observations in Day 2 which has different illumina-
tion conditions in each camera view (an example illumination change is shown in
Figure 7). In each set of results we show both rank 1 and rank 5 results indicat-
ing the presence of the correct match as the highest and top 5 highest similarity
scores respectively.
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(a) Day 1
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(b) Day 2

Fig. 7. Example RGB histograms of a single camera view on both days. Day 2 shows
significant change in global illumination.

Datasets: We obtained two sets of data from inside an office building observed
by three cameras. Example views are shown in Figure 8. The illumination condi-
tions and colour quality vary between each views. Camera 1 displays a corridor
scene where objects are periodically lit by spotlights causing darker regions in
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the bottom part of a person’s body. Camera 2 shows a shared space connecting
several offices with fairly dim illumination. Camera 3 is placed in a foyer region
where there is poor lighting in the back right region. Both datasets prove chal-
lenging as they contain sparse colour information and objects in similar clothing.
The illumination conditions also vary greatly between the two data sets. The first
data set, used for training the inter-camera CBTFs, was recorded on a cloudy af-
ternoon. The second data set, used for testing, was recorded on a much brighter
day. A single entry/exit region was determined in each camera to capture targets.
The training and testing data were obtained from the entry/exit regions marked
in yellow in Figure 8. In the training dataset, 15 individuals giving 45 entry/exit
transitions were observed, and 20 individuals with 56 entry/exit transitions, were
observed in the testing set.

(a) Site 1: Day 1 (b) Site 2: Day 1 (c) Site 3: Day 1

(d) Site 1: Day 2 (e) Site 2: Day 2 (f) Site 3: Day 2

Fig. 8. Sample frames from two days showing the differing lighting conditions between
days in addition to the inter-camera illumination changes. The yellow boxes show the
entry/exit zones.

Comparing Bhattacharya distance, CBTF, and Adaptive CBTF: Here
we demonstrate that temporal illumination change modelling improves on the
CBTF, which in turn is an improvement over Bhattacharya distance alone. Each
observation was decomposed into its RGB and component histograms at each
entry/exit region and compared against all other observations. For the Bhat-
tacharya distance experiment, no colour mapping is performed. For the CBTF
we use only the inter-camera CBTF learned from Day 1 (cfij) as an estimation of
the colour changes between views in Day 2 (cfi′j′). Figure 9 shows that the pro-
posed method achieved an approximately 15% improvement in overall matching
rate against Bhattacharya distance and CBTF. This validates our assumption
that changes in illumination can be approximated using a linear combination
of foreground and background changes. Example of object association results
obtained using the three methods are shown in Figure 11. Figures 9(a) and 9(b)
suggest that the improvement is significant for two camera pairs, whilst Fig-
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(a) (b)

(c) (d)

Fig. 9. Comparison of Bhattacharya distance, CBTF and A-CBTF with temporal il-
lumination change modelling.

ure 9(c) show the three methods give a similar result for camera sites 2 and
3. This is because incidentally the illumination conditions at Sites 2 and 3 are
similar, which causes the Bhattacharya distance result to be higher while the
minor inaccuracies in the CBTF-based methods cause a slightly lower result.
Comparison with alternative approaches: In this experiment, our adaptive
CBTF method is compared against other reported approaches. We have imple-
mented the BTF subspace approach [1] and the Major Colour Spectrum His-
togram (MCHR) approach [10], in which object colour histograms are equalised
before being decomposed into major colours. Note, as there is no assumed knowl-
edge of the relationship between cameras, our equalisation graph for the MCHR
was based on a standard linear equalisation, whilst the graph in [10] was non-
linear based on some rather arbitrary a priori knowledge. In addition, as the
number of frames in which an object is captured passing through our entry/exit
zones is low, the incremental MCHRs cannot be used. More critically though, as
our model is designed for online processing, we have excluded their batch-based
post matching integration part which cannot be performed online.

The results in Figure 10 show that the equalisation based MCHR does not
cope well with this challenging data set. Although slightly better, the BTF sub-
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(a) (b)

(c) (d)

Fig. 10. Comparitive results from the MHCR-based method, the BTF subspace
method and our adaptive CBTF method.

space approach suffers due to its inability to adapt to the difference between the
illumination conditions changes over time. Overall our approach outperforms the
two alternative methods by approximately 20% in rank 1 and 15% in rank 5.

4 Conclusions and Future Work

We have demonstrated that by modelling background illumination changes we
can infer new brightness mapping functions between cameras from the original
CBTF. In particular, by using background illumination we are able to estimate
the changes on the foreground objects without the need for manual association of
foreground objects each time these illumination conditions change, which would
be required by other approaches. The datasets used provide a challenging test
for object association due to the sparse colour information of the objects ob-
served. Although our method produces relatively low matching rates its ability
to adapt to new illumination conditions allows it to significantly outperform ex-
isting methods. In order to improve inter-object discrimination we plan to model
the colour distribution of individuals. This would help us distinguish between
objects with similar colour histograms but different colour layouts as can be seen
in Figures 11(g) and 11(j). Currently our matching algorithm uses a brute force
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. (a) and (b): the same individual appeared at entry/exit regions 1 and 2 re-
spectively.; (c): BTF(subspace) match; (d): MCHR match: (e): CBTF match (correct
one). (f) and (g): A much more challenging case from due to the presence of similar
coloured objects in the testing set. (h)-(j): all three methods found the wrong match.

approach to finding object correspondences. We also plan to incorporate tempo-
ral information [11] to reduce the number of initial correspondence hypotheses.
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