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Abstract
We extract relevant and informative audio-visual features using
multiple multi-class Support Vector Machines with probabilistic
outputs, and demonstrate the approach in a noisy audio-visual
speech reading scenario. We first extract visual spatio-temporal
features and audio cepstral coefficients from pronounced digit se-
quences. Two classifiers are then trained on a single modality to
obtain confidence factors that are used to select the most appropri-
ate fusion strategy. A final classifier is trained on the joint audio-
visual feature space and used to recognize digits. We demonstrate
the proposed approach on a standard database and compare it with
alternative methods. The evaluation shows that the proposed ap-
proach outperforms the alternatives both in terms of recognition
accuracy and in terms of robustness.

1 Introduction
Robust and accurate audio-visual automatic speech reading (AV-
ASR) algorithms have to address three major problems, namely
feature extraction, feature fusion, and recognition. Feature ex-
traction is the process of selecting low-level perceptual informa-
tion (lip movements, colour difference). Effective feature fusion
leads to a robust integration of two (possibly) degraded or incom-
plete signal modalities. Recognition classifies the input signals
into two or more semantic labels (words).

As in real-world environments audio and visual cues are likely
to be degraded, it becomes essential to extract discriminative fea-
tures, which provide robust information about the input signals.
Traditional speech reading systems use video to assist low signal-
to-noise ratio audio recognition. When signals are degraded, it
becomes difficult to decide on which cue to rely. To that end,
knowing the level of confidence of each signal and fusing them
accordingly is an important feature of a classifier. An analysis
of the entropy or of the tonality of the visual and audio cues can
offer prior knowledge of this confidence. However, this confi-
dence is highly dependent of the nature of the noise. To overcome
this problem, the use of machine learning is desirable to provide
a confidence factor for each modality. Most machine learning
problems are modeled using the generative probabilistic distribu-
tion because it provides prior domain specific knowledge in terms
of structure and parameter over the joint space of variables. For
example, Bayesian networks [1] and Bayesian statistics [2] pro-
vide a rich and flexible language for specifying this knowledge
and subsequently refining it with data and observations. Recently,
discriminative learning algorithms, such as Logistic Regression,
Conditional Random Field or Support Vector Machine adjust a
possibly non-distributional model to data optimizing for a spe-

cific task, such as classification or prediction. This typically leads
to superior performance, which can be obtained by avoiding gen-
erative modelling and focusing on the given task.

Generative approaches produce a probability density model
over all variables in a system and manipulate it to compute classi-
fication and regression functions. Discriminative approaches pro-
vide a direct attempt to compute the input-to-output mappings for
classification and regression and modelling of the underlying dis-
tributions. In AV-ASR, hidden Markov Models (HMM), multi-
stream HMM [3] or coupled HMM approaches [1] are the meth-
ods of choice due to their probabilistic treatment of acoustic co-
efficients and the Markov assumptions necessary for time varying
signals.

However, the extraction of accurate information is a chal-
lenge for lip reading as the size of the region of interest (mouth)
and small perturbations resulting from lip movements necessitate
a high dimensional feature space, which makes the generative
model usually very hard to learn. Due to the difficulty to train
such models with high dimensional spaces, in this paper we adopt
a mixture of Support Vector Machines (SVM). We extract confi-
dence factors from two single-modality classifiers and use those
values to select the appropriate fusion strategy. Usually, the out-
comes of SVMs are distances in a metric space, which have no
simple interpretation and no calibration. To overcome this prob-
lem, we use SVMs with probabilistic outputs. We use two single
modality classifiers to obtain confidence factors, which are gener-
ated from the probabilistic outputs. The latter are produced from
a parametric form of a sigmoid, fitted using maximum likelihood
estimation [4]. Then the confidence factors are used to select the
relevant fusion strategy. The integration is performed using kernel
Canonical Correlation Analysis. Finally, recognition is performed
by a joint audio-visual SVMs.

The paper is organised as follows. A literature review is pre-
sented in Section 2. Section 3 outlines a brief description of multi-
class SVMs and probabilistic outputs for SVMs. Section 4 details
our system, audio-visual fusion with a kernel Canonical Analysis
technique, combined with a multiple multi-class SVMs. The ex-
perimental results and the evaluation are presented in Section 5.
Conclusions are drawn in Section 6.

2 Background
Most existing AV-ASR approaches use a generative model, such
as hidden Markov Models (HMM) [3, 5], for capturing temporal
information explicitly. The drawback of generative models is that
they estimate a distribution over all (input and output) variables,
which can become difficult to compute for real-time applications
and with high-dimensional feature spaces. Moreover, because all



output probabilities should be computed for each incoming fea-
ture vector, it is useful to reduce often huge amount of compu-
tations which increase with the dimension of the feature space
and also with the number of Gaussians. Alternatively, discrim-
inative models, such as Support Vector Machines (SVM), have
been used in speech recognition systems. Smith and Gales [6] and
Shimodaira et al. [7] first investigated the use of Support Vector
Machines for speech recognition. They pointed out the dual prob-
lem of using discriminative learners for speech recognition: (a)
managing the variation of the time duration of the utterances (or
words) and (b) dealing with multi-class decisions. Both papers in-
vestigate the former issue: Smith and Gales used an extension of
the Fisher Kernel, whereas Shimodaira et al. used a dynamic time
warping algorithm. Gurban and Thiran [8] apply SVMs within
the framework of HMM-based speech recognition. However, they
simply concatenate audio and visual features to feed a SVM clas-
sifier, which do not optimize the use of such a learner. Therefore
they obtain better results with a decision fusion strategy.

As mentioned in the previous section, the values produced by
SVMs are uncalibrated and do not give any assessment of the
quality of the prediction. An extensive research corpus deal with
audio-only speech reading. Golowich and Sun [9] use a combina-
tion of Support Vectors Classifiers (SVC) and HMM for phoneme
recognition. An interpretation of the multiple SV classification as
an approximation to multiple logistic smoothing spline regression
allow them to recover conditional class probabilities, which are
required as inputs to an HMM. Then Ganapathiraju et al. [10] ex-
tended this approach by creating a hybrid SVM/HMM architec-
ture for speech reading. Gordan et al. [11] employ multiple SVM
classifiers and integrate them into a Viterbi decoding lattice. Each
class trained one SVM and each of their output is converted to
a posterior probability. Then the SVM with probabilistic outputs
are integrated into Viterbi lattices as nodes. This approach is per-
formed on visual speech recognition only. Other combinations of
SVMs and HMMs are employed in [12] and in [13], where a set
of SVMs is used to calculate the class posterior probabilities and
to share these probabilities among all HMMs. A similar approach
is taken in [14], where a parallel mixtures of SVMs is integrated
within a HMM framework. The output of the SVM mixtures, used
to classify the phonemes, is used to estimate the emission proba-
bilities of the HMMs, which perform the speech recognition. A
summary of the speech reading system using SVM is shown in
Table 1.

To conclude, only the Gurban and Thiran’s technique uses au-
dio and visual modalities for recognition. However, in this ap-
proach the two types of features are simply concatenated and
therefore the high correlation between the two modalities is not
exploited. Moreover, to the best of our knowledge, none of the
previous approaches integrates audio and visual signals to extract
and use information in degraded conditions. This is the contribu-
tion of our work that we present in this paper.

3 Support vector machines for multi-class
problems

As discussed in the previous section, generative models can suf-
fer from high dimensional feature spaces, whereas discriminative
models could cope in this case. We now first briefly describe
SVMs for binary and multi-class problems and then the theory
of probabilistic outputs for SVMs.

3.1 Multi-class SVMs

SVMs are supervised learning methods based on the structural
risk minimization principle and was initially defined for classify-
ing linearly separable object classes [15]. For any particular set
of two-class objects, a SVM finds the unique hyperplane having
the maximum margin, which separated +1 objects and -1 objects.
The hyperplane can be seen as a classifier decision surface. Since
most classes is rarely separable, the coordinates of the objects
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Figure 1: Linear separation of patterns in a two-dimensional fea-
ture space

can be mapped into a higher dimensional feature space (a Hilbert
space of finite or infinite dimension), where a linear separation is
sought (see Figure 1). This mapping is done by one (or several)
kernel function φ. Polynomials and radial basis functions [16]
kernels are the most used. The only difficulty is to identify, for a
particular dataset, the correct set of non-linear functions than can
perform such a mapping.

Let us have a set of m training patterns {xm, ym}, where
x = {x1, x2 . . . , xn} is a n dimensional pattern and ym ∈
{+1,−1} represents the labels associated to each pattern.
Given a set of feature functions as φi, such that φ(x) =
(φ1(x), φ2(x), . . . , φh(x)), the class of a pattern xk is:

f(xk) = sign[wφ(x) + b] = sign

(
m∑

i=1

αiyiφ(xi)φ(xk) + b

)
(1)

where w are the support vectors, αi the Lagrange multipliers and
b the threshold parameter. However, as most classification prob-
lems contain more than two categories, several methods have been
proposed to create a multi-class SVMs by combining several bi-
nary classifiers. Examples of such methods are one-versus-the-
rest, one-versus-one and DAGSVM [17] classifiers. One-versus-
the-rest trains a 2-class SVM model for all possible pairs of
classes from the training set, which for a k-class problem results
in a K(K−1)

2
SVM models. On the other hand, one-versus-one

constructs K separate SVMs. The kth SVM classifier is trained
with all patterns from the kth class labeled +1 and all other pat-
terns labeled -1. Finally, DAGSVM organises the pairwise classi-
fiers into a direct acyclic graph. Alike one-versus-the-rest, for an
K-class problem, DAGSVM contains K(K−1)

2
classifiers, one for

each pair of classes. Other authors also consider all classes at once



Ref Features Fusion Recognition Database
audio visual

[10] MFCC - - SVM/HMM 36 words
∆ MFCC 10000 sentences

(6 words per sentence)
[9] MFCC - - SVM/HMM TIMIT

[11] - pixel intensities - parallel SVM 4 digits (English)
[8] MFCC pixel intensities straight SVM/HMM -

∆ MFCC concatenation
[14] cepstral coeff. - - mixture of SVM, HMM 40 sentences

Frame energy 72 speakers
[13] LPC - - SVM/HMM 10 digits (Chineses)

400 utterances
[7] MFCC - - DTAK-SVM 6 phonemes

∆ MFCC 2500 samples
[6] MFCC - - Fisher Kernel + SVM 26 letters

∆ MFCC 300 utterances
Our MFCC + SCF 2D + time kCCA Multiple SVM 10 digits (Englsih)

approach PCA SIFT descriptors 2500 utterances

Table 1: A summary of audio-visual speech reading approaches using Support Vector Machines. DTAK: Dynamic Time-Alignment
Kernel; HMM: Hidden Markov Model; LPC: Linear Predictive Coding; MFCC: Mel Frequency Cepstral Coefficients; ∆ MFCC: 1st and
2nd derivative of Mel Frequency Cepstral Coefficients; kCCA: kernel Canonical Correlation Analysis; SCF: Spectral Crest Factor; SIFT:
Scale-Invariant Feature Transform; SVM: Support Vector Machines

[18, 19]. Crammer and Singer [18] described an efficient fixed-
point algorithm for solving a quadratic optimization problem in
the context of output coding. Weston and Watkins [19] define a
single objective function for training allK SVMs simultaneously,
based on maximising the margin from each to remaining classes.
However the results presented suggest that it performs no better
than the more ad-hoc methods of building multi-class classifiers
from sets of two-class classifiers.

One-versus-the-rest is less complex and, based on empirical
analysis, perform appropriately for our purpose.

3.2 Probabilistic outputs for SVMs

Given a test sample x, the output of SVMs, f(x), provides the dis-
tance of x from the separating hyperplane. While the sign of the
SVM output determines the class prediction, the magnitude of the
SVM output can indicate the confidence level of that prediction.
However, as the SVM output is an uncalibrated value, it might
not translate directly into a probability value that is useful for es-
timating confidence. Vapnik [20] mapped the outputs of SVMs to
probabilities by decomposing the feature space. However, this ap-
proach requires a solution of a linear system for every evaluation
of the SVM. Hastie and Tibshirani [21] model probabilities to the
output of a SVM by using Gaussians to fit the class-conditional
densities p(f(x)|y = +1) and p(f(x)|y = −1), where y is a
semantic label. The posterior probability is then computed with
the Bayes rule:

P (y = 1|f(x)) =
p(f(x)|y = 1)P (y = 1)∑

i=−1,1 p(f(x)|y = i)P (y = i)
, (2)

where P (y = i) are prior probabilities that are computed from
the training set. The posterior probability function in Equation 2
can be seen as a sigmoid with the following analytic form:

P (y = 1|f(x)) =
1

1 + exp(af(x)2 + bf(x) + c)
. (3)

However, since a SVM is trained to separate the positive sam-
ples from the negative ones, we can assume P (y = 1|f(x)) to
be monotonic in f(x), which is not the case in Equation 3. The
reason for this contradiction could be due to the assumption of
Gaussian class-conditional probabilities, an assumption that may
not always be valid. To overcome this issue, Platt [4] used a para-
metric model to fit the posterior P (y = 1|f(x)) directly, without
having to estimate the conditional density p(f(x)|y) for each se-
mantic label y. The Bayes rule from Equation 2 on two exponen-
tials suggests using a parametric form of a sigmoid:

P (y = 1|f(x)) =
1

1 + exp(Af(x) +B)
. (4)

This model assumes that the SVM outputs are proportional to
the log odds of a positive example. The parameters A and B of
Equation 4 are fitted using maximum likelihood estimation from
a training set. More precisely, A and B are obtained by minimiz-
ing the negative log likelihood of the sigmoid training data using
a model-trust minimization algorithm.

4 Multiple multi-class probabilistic SVMs
We aim to integrate the audio and the visual signals to extract
and use information in degraded conditions. To that end, we fuse
audio-visual features with a kernel Canonical Correlation Analy-
sis (kCCA) technique [22], combined with a multiple multi-class
SVMs. To detect corrupted signals, two classifiers are trained
on each modality separately in order to extract confidences fac-
tors. The confidences factors are then used to select the most
effective strategy to integrate audio and visual features. Finally a
last SVMs classify the joint audio-visual space and perform the
recognition. We use one-versus-the-rest for the three multi-class
SVMs as we empirically found that that it performed better than
the other approaches discussed above. A linear kernel is used for
the audio classifier. The visual and the final classifier are both
trained using a radius basis functions kernel. Let Atest and Vtest

denote the testing audio and visual feature space, respectively.



Atest = {atest|atest ∈ Rm2} and Vtest = {vtest|vtest ∈ Rn2}.
LetPa(k|Atest) andPv(k|Vtest) denote the probability estimates
that each atest and vtest belong to class k|k ∈ {1, ...,K} , pro-
vided by their respective single-modality SVM. The audio confi-
dence factor, CFa, is then

CFa =

∑M2
i argmax1≤k≤K(Pa(k|Atest))

M2
. (5)

The visual confidence factor, CFv , is

CFv =

∑N2
i argmax1≤k≤K(Pv(k|Vtest))

N2
. (6)

CFa and CFv are used in the fusion process. kCCA provides
the canonical factors pairs, Wa and Wv . If Rva and Rav are the
regression matrices calculated from the training set, then we have
the following fusion strategies:

Ṽ =
((
WT

a Atest

)−1
Rav

)T

.

Ã =

((
WT

v Ṽ
)−1

Rva

)T (7)

whenCFv < 0.5 < CFa (noisy visual and clean audio features);
or

Ã =
((
WT

v Φ(Vtest)
)−1

Rva

)T

Ṽ =

((
WT

a Ã
)−1

Rav

)T (8)

when CFa < 0.5 < CFv (noisy audio and clean video features);
and

Ã =
((
WT

v Φ(Vtest)
)−1

Rva

)T

Ṽ =
((
WT

a Atest

)−1
Rav

)T (9)

in all other conditions (both signals are either degraded or clean).
Finally, the joint audio-visual feature vector Ztest is a combina-
tion of Ã and Ṽ :

Ztest =

(
Ã

Ṽ

)
. (10)

Figure 2 shows the block diagram of the proposed framework.

5 Experimental Results
5.1 Setup

We evaluate the proposed approach on the CUAVE database [23].
This database consists of 36 speakers pronouncing 10 connected
or continuous digits. There are over 2500 utterances of single in-
dividuals facing the camera, either moving or still. The audio and
visual speech signals are recorded as a sequence of acoustic wave-
forms (sampled at 16kHz mono) and MPEG-2 files (compressed
at 5000 kbps).

We temporally extract the Region-of-Interest (ROI) using a
colour Block Matching Algorithm. At initialisation, a manual
selection of three points (the tip of the nose and the two cor-
ners of the lips) is performed on the first frame only. The ROI
is then automatically extracted on the subsequent frames. Our vi-
sual representation consists of a visual space-time feature space,
which embed the lip movements, using 2D + time SIFT descrip-
tors [24]. As audio features, we use Mel-Frequency Cepstral Co-
efficients (MFCC) to model the human ear perception and the

Audio-visual
feature fusion

Joint feature
multi-class

classifier

Audio and
visual feature

estimation

Audio multi-
class classifer

AUDIOVIDEO AUDIO VIDEO

Feature selection
and extraction

Feature selection
and extraction

Recognition

Video multi-
class classifier

trainAtrainV testVtestA

ACF

VCF

av

vaav

WW
RR

trainZ testZ

Figure 2: Block diagram of the proposed audio-visual recognition
system.

Spectral Flatness Measure (SFM) to measure the tonality of the
signal. Thirteen MFCCs and five SFM coefficients are extracted
from the FFT spectrum. Then dimensionality reduction is per-
formed using Principal Component Analysis (PCA).

5.2 Evaluation

To evaluate the use of the residual information available in a de-
graded or incomplete signals, we tested the proposed approach
with two types of visual degradation, partial occlusion and salt
and pepper noise; and one type of audio degradation, additive
Gaussian noise. The visual occlusion consists of three fingers
covering the frames from the top left corner of the ROI to the bot-
tom right. Different sizes of occlusion, from 8 to 19% of the ROI,
are applied. Salt and pepper represents a noise density added to
the frames from 0.01 to 0.55. Finally, degraded audio is catego-
rized by signal-to-noise ratios (SNR) from -5dB (very degraded)
to 25dB (clean audio). Table 2 summarises the degradation of
the recognition rates of the proposed approach when increasing
the audiovisual noise. One can observe that the occlusion is less
disturbing than the salt and pepper noise. This is due to the spatio-
temporal visual features, which can effectively cope with missing
data. In heavy noisy conditions in both audio and visual inputs,
the recognition rate is still acceptable. The canonical space gen-
erated by the training set gives a strong and robust support to the
testing set.

Due to the lack of available studies on both audio and visual
degraded signals, a complete comparative evaluation is not possi-
ble. However we compare our approach with the works presented



degraded video
occlusion (%) salt and pepper

8.4 9.7 11.2 12.9 14.5 16.3 18.9 0.01 0.02 0.06 0.10 0.23 0.50 0.55

25 95.2 95.0 94.9 94.8 93.5 93.3 93.3 95.1 95.1 91.2 91.1 90.9 90.1 89.5
20 95.1 95.0 94.7 94.5 93.1 93.7 93.9 95.1 92.6 92.2 88.3 87.2 71.8 67.8

degraded audio 15 94.2 94.0 94.7 93.5 93.1 93.7 93.9 96.1 92.6 92.2 88.3 87.2 69.4 60.5
SNR (dB) 10 94.2 94.1 94.8 94.6 94.2 92.8 93.0 95.3 92.6 92.2 88.3 86.5 59.4 50.4

5 93.4 92.7 92.0 91.6 91.1 89.7 89.6 93.4 92.6 92.2 84.1 72.0 49.4 40.4
0 93.4 92.7 92.0 91.2 91.1 89.7 89.5 92.6 91.2 91.2 83.5 63.3 43.5 39.0
-5 93.4 92.7 92.0 91.0 90.3 89.4 89.0 91.6 90.7 88.4 77.0 52.8 38.0 28.3

Table 2: Recognition rate (%) over 10 digits using kCCA using our multiple multi-class strategy

in Section 2 and summarize in Table 1. Most algorithms do not
make use of visual cues and none of them are evaluated in noisy
conditions. However it is interesting to observe how they perform
using a SVM or SVM/HMM recognition system. Table 3 shows
six audio speech recognition systems, one visual lip-reading sys-
tem and two AV-ASR systems. We can observe how the confi-
dence factors (which allow a detection of noisiness) remove the
dependency of the results from the degraded audio signal.

degraded audio - SNR (dB), clean video
25 20 15 10 5 0 -5

Ganapathiraju, 2000 [10] 88.4 - - - - - -
Golowich, 1998 [9] 54.9 - - - - - -
Gordan, 2002 [11] 89.33 (visual feature only)
Gurban, 2005 [8] 93 92 91 91 83 80 80
Kruger, 2006 [14] 92.23 - - - - - -

Qu, 2006 [13] 89 - - - - - -
Shimodaira, 2001 [7] 92.3 - - - - - -

Smit, 2002 [6] 95.9 - - - - - -
Our model 97.3 97.3 97.3 97.3 97.3 97.3 97.3

Table 3: Recognition rate (%) of SVM-based approaches.

6 Conclusions
In this work we have addressed the problem of using residual in-
formation in degraded audio-visual signals and have shown the
viability of a multiple multi-class SVMs strategy for speech read-
ing. The proposed approach first extracts visual spatio-temporal
features and audio cepstral coefficents. Then two classifiers are
trained on a single modality to obtain confidence factors are ex-
ploited to select the fusion strategy. A third classifier is trained
on the joint audio-visual feature space and used to perform digit
recognition.

Experimental results demonstrate that our system can effi-
ciently recognize digits in degraded conditions, both in the audio
and the visual signals. Moreover, a visual occlusion is less dis-
turbing than salt and pepper noise, thanks to the visual extraction
technique and the canonical space generated by the training set.
A comparative evaluation also attested how the confidence factors
(which allow a detection of noisiness) remove the dependency of
the results from the degraded audio signal.

As future work we will explore other types of audio degrada-
tion, such as compression and reverberation.
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