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Abstract

We propose a novel technique for head pose classification in crowded public space
under poor lighting and in low-resolution video images. Unlike previous approaches, we
avoid the need for explicit segmentation of skin and hair regions from a head image and
implicitly encode spatial information using a grid map for more robustness given low-
resolution images. Specifically, a new head pose descriptor is formulated using similarity
distance maps by indexing each pixel of a head image to the mean appearance templates
of head images at different poses. These distance feature maps are then used to train a
multi-class Support Vector Machine for pose classification. Our approach is evaluated
against established techniqués 13, 14] using the i-LIDS underground scene dataset
[9] under challenging lighting and viewing conditions. The results demonstrate that our
model gives significant improvement in head pose estimation accuracy, with over 80%
pose recognition rate against 32% from the best of existing models.

1 Introduction

Human head pose and gaze direction can provide useful information for the inference
person’s intent and behaviour. The topic has traditionally been studied for expression
face recognition, and human computer interactiodj.[ However, most existing techniques
rely upon medium to high resolution images captured under well controlled conditions fr
a fairly close distanceq] 8, 12, 15]. Given high resolution images, most existing technique:
deploy extensive feature extraction to capture detailed head/facial shape and texture i
mation. Alternatively, Tian et al.1[6] considered the problem of analysing coarse head po:s
in images captured by wide-angle overhead cameras where silhouette detection is used
basis for head shape representation. However, this approach relies on accurate subtract
head foreground region from the background which is not always feasible.

More recently, a few attempts have been made on head pose estimation in low-resolt
images by treating the problem as a multi-class discrete pose classification problem ir
der to improve robustness. This is achieved by manually labelling head image textures
training different pose classifier,[17, 18]. In particular, Robertson and ReidJ] pro-
posed a combined skin and hair colour based appearance model using colour histogran
head pose classification given low resolution images. In their approachh2ad pose in
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panning angle is discretized into eight pose classes withr&sement. Given background-
foreground segmentation of an input image, pose classification is performed by matching tl
colour histogram of the probe image with those of eight skin-hair-colour appearance mode
using a probabilistic tree. They further combine the estimation of walking direction with
head pose classification to stabilise head pose estimation. This approach relies critica
upon good segmentation of the skin and hair texture regions of a head image.

However, images captured from most public space CCTV cameras are subject to ve
challenging viewing conditions and in low-resolution. Under such conditions, skin and hai
textures of a head image are often not clearly distinctive in either intensity and chromaticit
(see examples in Fig.1). This makes segmentation of skin and hair regions from a head ima
very difficult if not entirely impossible at times.

Figure 1: Typical head images extracted from the i-LIDS underground scene. They are
low-resolution and subject to significant directional lighting changes.

In this paper, we propose a novel approach to head pose classification in crowded pu
lic scenes using low-resolution images captured under challenging viewing conditions. |
particular, we avoid the need for explicit segmentation of skin and hair regions from a hea
image. Spatial positional information is also utilised in our model representation. Howevel
unlike previous techniques using shape explicithf][ we implicitly encode spatial informa-
tion using a grid map for more robustness given low-resolution images. Moreover, in orde
to cope with large degree of variations in the positions of pixels that correspond to skin an
hair textures across different poses, and the non-uniform nature of their distributions in
head image (i.e. there is often no clean-cut separation between skin and hair textures at
pixel level), instead of using pixel appearance information diredtly, we propose a novel
approach to construct feature vectors using similarity distance maps by indexing each pix
of a head image to the mean appearance templates of head images at different poses u
KL divergence. These distance feature maps are then used to train a multi-class Supp
Vector Machine for pose classification. We demonstrate significant performance advantag
of our representation compared to a state-of-the-art mddgland other established tech-
niques B, 14] for head pose estimation in crowded public space under challenging viewing
conditions captured by the UK Home Office i-LIDS data$jt [

2 Framework

Pose Specific Mean Appearance TemplatesTo construct a head appearance representa-
tion, segmented head images need be background whitened in order to minimise the effi
of background pixels surrounding a hed@][ This is especially important for images from
crowded public scenes. However, due to uncontrolled lighting causing significant change
in background, such pre-processing can be unstable and error-prone (see exampl&s in Fig
To overcome this problem, we propose a different representational scheme as follows.
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Figure 2: Poor image quality and uncontrolled lighting cause errors in background subtt
tion and whitening for skin segmentation as proposedisy: [

A set of head images are collected from the i-LIDS dataset to create a training set.
initial images are manually cropped and normalised in size (note that manual cropping is
needed for testing, see S8mn Dataset and Head Detection). Similar2p]3], this training
set is labelled by pose and grouped into eight discrete pose cl&sewherek =1,...,8
(see Fig.3 (a)). However, different fromd, 13], we do not attempt to distinguish between
skin and non skin pixels. Hence there is no need for texture labelling or segmentation
we avoid any assumption on hair and skin configuration within a head/face image.

Due to low image resolution, we assume that each head image pixel value in each |
class and RGB colour channel is a random variable that can be represented approxim
by a single Gaussian distribution. Consequently, Head images of each pose class and
channel can then be represented by a multivariate normal distribution with Gaussian p
meters being also images, i.e. the mean inTdgerhis metric contains the mean values of
each pixel at their image location. For a given set of training images, we compute per p
class and RGB channel a shape-free mean appearance tefigsee Fig3 (b)).

Figure 3: (a) Head pose of 36(n panning angles are quantised into eight discrete pos
classes representing pose angles‘atd®, 9¢°, 135, 180, 225, 270, 315. (b) The
average (mean) head appearance templates for the eight pose classes.

Feature Descriptor by Similarity Distance For pose classification, it is critical to repre-

sent head appearance based on good separation of background, hair and skin/non-ski
els. However, due to the highly non-uniform spread of those pixels, we avoid hard-labell
and categorisation of pixels and instead, we consider an indirect similarity distance rr
sure based representation. The central idea is to compare each input image pixel to a
mean appearance templates regardless pose, i.e. across all poses, given that the tru
of the given image is unknown. Therefore, for a given imaigeve compute a set of eight
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weightsx; j for each pixeln; j. These weights measure a score of similarity between each
pose class appearance mean template and the input image at each pixel. More precis
given a mean template imad® € 0% for each pose class and an input image 0,
wherec = {1,...,8}, their corresponding pixels are denotedws andn; ;. Each pixel from

the input image is profiled by exhaustive comparison to the correspondmg pixels from eac
mean appearance template. To that end, we measukuthrack Leibler divergencéKL)
between the input imagd and each pose class for every pixel\f in each of the three

colour channels. Note that the standKidis defined a®g_ (p||q) = p (Iogg which mea-

sures the divergence between tpd. f. Here for a single input image no distribution can be
estimated for the pixel value at each pixel location. The standartbrmulation is thus not
appropriate. What we measure instead is subtly different from the similarity between tw
distributions, and is referred to &4 coefficients fk. ) :

Sk (mfjlnf;) = fggg{ﬁfj <|0g”}°,>} (1)

wheren; j andny; are pixel intensity values from the same RGB colour channel. Here,
we measure the dlsparlty between actual pixel appearanteasfd the expected values
from each mean appearance template at each pixel position. Note that similar idea has be
exploited for measuring the similarity of two random variables in the domain of prediction
theory of classification]].

Since we aim to keep the topological independence of pixel variation, we construct a sim
ilarity distance weighting map as a feature descriptor (2D matrix) containing the maximun
divergence coefficients between each pose clasdNaatdeach pixel location:

Xi j :mgx{SKL(mfj|\nﬁj)}, andc={1,....8} 2

Thus, x j contains the maximum coefficients from all 8 classes and 3 colour channels &
each pixel position. We impose an additional constraint so dkatmf;|[nf;) = 0 when

nﬁj > mc_j. This effectively removes those divergent pixels deem to be background4 Fig.
shows some examples of the extracted feature descriptors for a range of input head imag
Itis evident that by exhaustively projecting an input image to all eight templates and measu
ing their similarities bydk at each pixel position, the proposed feature descriptor effective
separates hair, skin and background at the pixel-level. In particular, the hair region is repr
sented by high values whilst the face region yields low values in the descriptor. The robu:
head modelling is achieved even though textures’ distributions are not modelled explicitly.

rENN eFE -

Figure 4: Examples of head image feature descriptors (bottom row) constructed from inp
images (top row) by selecting the maximum KL divergeige between each input image
and multiple pose mean templates for each pixel position.

J
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Head Pose Estimation by Multi-class SVM We shall now describe the use of this de-
scriptor as feature representation for pose classification. Instead of classifying head |
by comparing image appearances with those of appearance template ndels fve
compare similarity distance maps between images and models at the pixel-level and :
demonstrate its significant advantage in recognition performance when input images ai
low quality and subject to significant lighting variations and possible occlusion (se8)Sec.
In order to classify any input image by eight discrete head poses, we apply a Mu
class Support Vector Machine (SVM). We build a model whereitheSVM constructs a
hyperplane between the clasth and theC—1 remaining classes. Pose classification is
determined by a majority vote among all eight classifiers. More specifically, we adop
one-against-res8VM strategy [] using a polynomial kernel with the objective of finding
a hyperplane capable of separating one pose class from the rest. Sippdseotes the
training samplesY ¢ € {1,—1} denote the corresponding labels, amd are theLagrange
coefficients determining class boundaries, the hyperpféie) for classification is:

f(Xe) = WgXc+be>1 ®)
[lcl|

We = Og; Yo; Xg (4)
c i;cqc

whereb, is the margin bound between the hyperplane and the Support Vectors (SVs), wt
are allxg vectors with arog, greater than zero. A SVM with fewer SVs and lovegy values
has better classification power with more generalisation capability. We shall demonst
in our experiments that the proposed similarity distance feature descriptor enables a S
learning machine to be constructed with much fewer SVs compared to other existing te
nigues (see Fi@).

Considerations on Similarity Metrics All similarity measures should be compared ac-
cording to their independent coefficients between two pixel values, since additional sca
as integration along the image implies an image comparison and a pixel correlation. K
back Leibler Divergence or the alternative Information Gain Measure provides several
vantages over other metrics for similarity measure. Bhattacharyya coefficients measure
orientation between two distributions, which requires a holistic normalization on the wh
image, which correlates the pixels variations. An Euclidean distance on the other hand n
sures only intensity variation spatially without taking into account the distribution estime
on pixel variations overtime. Assuming that the values at each pixel location across
training set follow a Gaussian distribution, one could aim to compute the join distributio
of RGB channels for each image pixel at its image location under all pose variations.
can then employ the Mahalanobis distance for density weighted clustering of each pixel
hair, skin and background. However, it is unrealistic to assume that these models can be
ficiently well-estimated due to the diversity in pixel variations and difficulties in manuall
labelling pixels into different types of texture/appearance for hair, skin and background. T
pseudo-Bhattacharyya coefficients was also employed &t compare mean appearance
ey
ni‘j
similarity to theKL-divergence, the later can cope with large non-linear variations due to
logarithmic function whilst the former is linear.

models and image pixelsy; j = . Although the pseudo-Bhattacharyya measure ha
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3 Experiments

Dataset and Head Detection We used the i-LIDSJ] underground scene dataset for all our
experiments. The dataset consists of extensive CCTV footages of a busy underground sc
captured under challenging lighting and viewing conditions. Our video data are from twc
underground stations with video frame size of 6480 recorded at 25 fps (see examples in
Fig 1). Typically the head image size varies from»460 to 10x 20 pixels depending on the
distance to camera. They were normalised to a size of 20. These scenes were crowded
most of the time with many people present at any given time. People were often unde
some degree of occlusion and exhibited large head pose variations. Appearance variation
people includes beard faces, bold heads, light and dark hair and skin colours, all of whic
challenge modelling head/face image appearance with any assumption on clear-cut hair, s
and background segmentation.

For training our head pose classifiers, we randomly selected and manually cropped 8
head images with 100 images per pose class. During testing, given an image sequence we
ply a background subtraction algorithm to highlight foreground areas in video frames wher
connected components analysis was performed to give candidate people search windows
head localisation. Head candidates were then obtained using a sliding window pedestri
detection model based on Histogram of Oriented Gradients (HEIG)Tivo models were
trained and hierarchically applied to both the whole and upper body region.

CM, Avg=32.25, Std=20.9557 CM, Avg=10.6722, Std=28 8305 CM, Avg=79.5, Std=11.1995
1 16 .03 21 .04 5101 1 1 7l 06 .08
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Figure 5: Confusion matrix on head pose classification using i-LIDS dataset.-Af b0d
cross validation over 100 images per class provide the results given by: (a) Robertson a
Reid [L3], with average rate 32.25%. (b) Apparance models proposed by Beyinand
Sherrah et al.T4], with average rate 10.97%. (c) Our model, with average rate 79.5%.

Performance Comparison on Head Pose ClassificationTo compare the performance of
the proposed head pose classification model against other existing schemes by perform
10-fold cross validation experiments. In particular we compared the effectiveness of usin
the proposed similarity distance feature descriptor with two existing alternative represent:
tions proposed in3] and [3] respectively. For training a generic skin colour model in the
representation ofl[3] , we extracted over 100,000 data points per colour from both the i-
LIDS database and other publicly available face datasets. Matching of probe image colo
histograms against models was performed using pseudo-Bhattacharyya coefficienfs. Fig
shows that our model outperforms significantly existing techniques using explicit skin an
non-skin histogram based modelling. It was evident that the skin colour from head image
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(a) Skin and non-skin descriptors(b) Similarity distance feature escriptors

Figure 6: i-LIDS dataset difficult for extracting explicit skin and non-skin based models. (
Skin and non-skin textures extracted using the model proposed by Robertson anéidReid
(b) Similarity distance feature maps extracted by our proposed model.

is severely degenerated using the i-LIDS dataset. Moreover, it is noted that for the re
sentation in 3], poor quality in chromaticity of background, hair and skin textures oftel
led to significant misidentification of pixels by explicit skin and non-skin colour modellini
(see Fig.6). Robertson and Reid B] reported head pose classification rate of 80% on thei
original dataset but we could only obtain an average rate of 32% using the i-LIDS date
(Fig. 5 (a)). This is largely because that many dark pixels in i-LIDS data correspond to t
background rather than hair. Similarly many skin and non-skin pixels were easily confus

Similarity Metrics Comparison We compared six different similarity metrics for con-
structing our similarity distance feature maps for pose classification on the i-LIDS data:
Table3 shows thaKL divergenceoutperforms all other five alternative measures by obtain
ing the best pose classification average rate of 80% fer 16ld Cross Validation.

[ Head Pose [ 1T ] 2 ] 3 T 47 5] 6 [ 7 [ 8 | MeanRate]
Probability 036 | 0.34 | 0.38| 041 | 0.64 | 0.36 | 0.40 | 0.43 42%
Euclidean 051 | 037 | 0.68 | 0.57 | 0.89 | 0.81 | 0.57 | 0.53 62%
Bhattacharyya 0.74 | 058 | 0.63 | 0.73 | 0.87 | 0.75 | 0.65 | 0.64 70%
Mahalanobis 0.72 | 068 | 0.66 | 0.73 | 0.81 | 0.82 | 0.67 | 0.74 73%
pseudo Bhattacharyya 0.76 | 0.61 | 0.71 | 0.81 | 0.87 | 0.82 | 0.70 | 0.74 75%
Kullback Leibler 082 | 064 | 0.72 | 090 | 0.90 | 0.94 | 0.68 | 0.76 80%
Table 1: Compare different similarity measures for head pose classification.

The Effect of Descriptor Size We evaluated the effect of choosing different head imag
size therefore the similarity distance feature map/descriptor size on head pose classific
rate. This is to evaluate the robustness of our proposed descriptor against size variat
The dataset used in previous experiments were randomly rescaled from their original
of between 10« 20 to 40x 60 to some new sizes betweerx 5 to 40x 40 pixels. Fig.7
shows that our similarity distance feature descriptor remains largely stable above image
of 5x5. If we disregard size 55, the rate remains stable at about 76%%.

Interpretation of the Learnt Support Vectors In order to give more in depth understand-
ing on what the multi-class SVM has learnt and how different representations may affect
learning of the support vectors, Fig.shows the learnt average positive and negative suy
port vectors (SVs) for the eight different pose classes using our proposed similarity dista
feature descriptors. It is evident that hair texture gives less variation at the top of a he
In contrast, skin texture is highly variable, suggesting its less robustness therefore po
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Descriptor's Size Comparison
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Figure 7: Head pose classification rate against image/feature map size.
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Figure 8: Learnt average support vectors (top row) and average biased feature vectors fre
the SVMs (bottom row) for the eight different pose classes.

ability in encoding information for head pose classification. Moreover, these SVs seem t
be highly separable. For multi-class SVMs using polynomial kernels, fewer support vec
tors with smaller Lagrange coefficients give better classification performance in gesjeral |
Fig. 9 (a) shows that using Roberston and Reid descriptor resulted in a large humber of S\
with poor separability of the decision boundaries. This is evident from many SVs with high
o values. In contrast, our descriptors give much smaller number of highly separable S\
with low o values.

Support Vectors vs Classes Support Vectors vs Classes
(Robertson and Reid) . (Our Descriptors)

er of SVs

Number of SVs

Numb:

Figure 9: (a) SVs of the SVM trained with Robertson and Raid descriptors seé. .
Similarly, (b) shows the SVs of the SVM trained with our descriptors see3y).



OROZCO et al: HEAD POSE CLASSIFICATION IN CROWDED SCENES 9

Figure 10: Examples of automated head pose classification of unknown multiple head
two crowded underground stations. A search window is allocated using connected ¢
ponent after background subtraction and a HoG based pedestrian detection (green bc
Head bounding boxes (red boxes) were determined using a hierarchical HoG sliding v
dow detector. Head pose of each head bounding box was estimated by classification us
multi-class SVM (blue dial with pose value).

Automated Inference of Multiple Head Poses We evaluated the effectiveness of deploy-
ing our model for automated head pose inference on multiple people detected in a crow
public scene captured by the i-LIDS underground dataset. We obtain head candidate
two videos of over 10,000 frames by sliding a HoG based pedestrian detector in each vi
frame after background subtraction. In addition, we trained an upper body model whicl
hierarchically performed within a window of a detected pedestrian. Subsequently, the h
candidate is located by connected components analysis inside the upper body part. Simil
distance feature maps were extracted from all detected head bounding boxes) dfigw
some examples from extracted i-LIDS video sequences. It is evident that head pose est
tion depends on the distance of the camera to each detected person in the scene. The
classification rate is 75% without prior information from previous frames. Misclassificatic
of heads is achieved when head is misdetected. Therefore, the maximum head descrip
built by sliding and scaling the templates, thus achieving a classification of 73%.

4 Conclusion

In this paper, we proposed a novel approach to head pose classification in crowded |
lic scenes using low-resolution images captured under challenging viewing conditions. (
model is designed to avoid the need for explicit segmentation of skin and hair regions fr
a head image. More specifically, in order to cope with large degree of variations in the
sitions of pixels that correspond to skin and hair textures across different poses, and |
non-uniform spread within a head image (i.e. there is often no clean-cut separation betw
skin and hair textures at the pixel level), we formulated a novel representational schem
construct feature vectors using similarity distance maps. These distance feature map
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then used to train a multi-class SVM for pose classification. We demonstrate significar
performance advantages of our proposed model compared to a state-of-the-art model &
another established technique for head pose classification under challenging viewing con
tions in crowded public space given by the UK Home Office i-LIDS dataset.
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