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Abstract

We propose a novel technique for head pose classification in crowded public space
under poor lighting and in low-resolution video images. Unlike previous approaches, we
avoid the need for explicit segmentation of skin and hair regions from a head image and
implicitly encode spatial information using a grid map for more robustness given low-
resolution images. Specifically, a new head pose descriptor is formulated using similarity
distance maps by indexing each pixel of a head image to the mean appearance templates
of head images at different poses. These distance feature maps are then used to train a
multi-class Support Vector Machine for pose classification. Our approach is evaluated
against established techniques [3, 13, 14] using the i-LIDS underground scene dataset
[9] under challenging lighting and viewing conditions. The results demonstrate that our
model gives significant improvement in head pose estimation accuracy, with over 80%
pose recognition rate against 32% from the best of existing models.

1 Introduction

Human head pose and gaze direction can provide useful information for the inference of
person’s intent and behaviour. The topic has traditionally been studied for expression and
face recognition, and human computer interaction [10]. However, most existing techniques
rely upon medium to high resolution images captured under well controlled conditions from
a fairly close distance [4, 8, 12, 15]. Given high resolution images, most existing techniques
deploy extensive feature extraction to capture detailed head/facial shape and texture infor-
mation. Alternatively, Tian et al. [16] considered the problem of analysing coarse head pose
in images captured by wide-angle overhead cameras where silhouette detection is used as the
basis for head shape representation. However, this approach relies on accurate subtraction of
head foreground region from the background which is not always feasible.

More recently, a few attempts have been made on head pose estimation in low-resolution
images by treating the problem as a multi-class discrete pose classification problem in or-
der to improve robustness. This is achieved by manually labelling head image textures for
training different pose classifiers [2, 17, 18]. In particular, Robertson and Reid [13] pro-
posed a combined skin and hair colour based appearance model using colour histograms for
head pose classification given low resolution images. In their approach, 360◦ head pose in
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panning angle is discretized into eight pose classes with 45◦ increment. Given background-
foreground segmentation of an input image, pose classification is performed by matching the
colour histogram of the probe image with those of eight skin-hair-colour appearance models
using a probabilistic tree. They further combine the estimation of walking direction with
head pose classification to stabilise head pose estimation. This approach relies critically
upon good segmentation of the skin and hair texture regions of a head image.

However, images captured from most public space CCTV cameras are subject to very
challenging viewing conditions and in low-resolution. Under such conditions, skin and hair
textures of a head image are often not clearly distinctive in either intensity and chromaticity
(see examples in Fig.1). This makes segmentation of skin and hair regions from a head image
very difficult if not entirely impossible at times.

Figure 1: Typical head images extracted from the i-LIDS underground scene. They are of
low-resolution and subject to significant directional lighting changes.

In this paper, we propose a novel approach to head pose classification in crowded pub-
lic scenes using low-resolution images captured under challenging viewing conditions. In
particular, we avoid the need for explicit segmentation of skin and hair regions from a head
image. Spatial positional information is also utilised in our model representation. However,
unlike previous techniques using shape explicitly [14], we implicitly encode spatial informa-
tion using a grid map for more robustness given low-resolution images. Moreover, in order
to cope with large degree of variations in the positions of pixels that correspond to skin and
hair textures across different poses, and the non-uniform nature of their distributions in a
head image (i.e. there is often no clean-cut separation between skin and hair textures at the
pixel level), instead of using pixel appearance information directly [11], we propose a novel
approach to construct feature vectors using similarity distance maps by indexing each pixel
of a head image to the mean appearance templates of head images at different poses using
KL divergence. These distance feature maps are then used to train a multi-class Support
Vector Machine for pose classification. We demonstrate significant performance advantages
of our representation compared to a state-of-the-art model [13] and other established tech-
niques [3, 14] for head pose estimation in crowded public space under challenging viewing
conditions captured by the UK Home Office i-LIDS dataset [9].

2 Framework

Pose Specific Mean Appearance TemplatesTo construct a head appearance representa-
tion, segmented head images need be background whitened in order to minimise the effect
of background pixels surrounding a head [13]. This is especially important for images from
crowded public scenes. However, due to uncontrolled lighting causing significant changes
in background, such pre-processing can be unstable and error-prone (see examples in Fig2).
To overcome this problem, we propose a different representational scheme as follows.
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Input Whitened Skin Input Whitened Skin

Figure 2: Poor image quality and uncontrolled lighting cause errors in background subtrac-
tion and whitening for skin segmentation as proposed by [13].

A set of head images are collected from the i-LIDS dataset to create a training set. All
initial images are manually cropped and normalised in size (note that manual cropping is not
needed for testing, see Sec.3 on Dataset and Head Detection). Similar to [2, 13], this training
set is labelled by pose and grouped into eight discrete pose classesk45◦ wherek = 1, ...,8
(see Fig.3 (a)). However, different from [2, 13], we do not attempt to distinguish between
skin and non skin pixels. Hence there is no need for texture labelling or segmentation and
we avoid any assumption on hair and skin configuration within a head/face image.

Due to low image resolution, we assume that each head image pixel value in each pose
class and RGB colour channel is a random variable that can be represented approximately
by a single Gaussian distribution. Consequently, Head images of each pose class and RGB
channel can then be represented by a multivariate normal distribution with Gaussian para-
meters being also images, i.e. the mean imageM . This metric contains the mean values of
each pixel at their image location. For a given set of training images, we compute per pose
class and RGB channel a shape-free mean appearance template,Mc (see Fig.3 (b)).

(a) (b)

Figure 3: (a) Head pose of 360◦ in panning angles are quantised into eight discrete pose
classes representing pose angles at 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. (b) The
average (mean) head appearance templates for the eight pose classes.

Feature Descriptor by Similarity Distance For pose classification, it is critical to repre-
sent head appearance based on good separation of background, hair and skin/non-skin pix-
els. However, due to the highly non-uniform spread of those pixels, we avoid hard-labelling
and categorisation of pixels and instead, we consider an indirect similarity distance mea-
sure based representation. The central idea is to compare each input image pixel to a set of
mean appearance templates regardless pose, i.e. across all poses, given that the true pose
of the given image is unknown. Therefore, for a given imageN, we compute a set of eight
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weightsxi, j for each pixelni, j . These weights measure a score of similarity between each
pose class appearance mean template and the input image at each pixel. More precisely,
given a mean template imageMc ∈ ℜaxb for each pose class and an input imageN ∈ ℜaxb,
wherec = {1, ...,8}, their corresponding pixels are denoted asmc

i, j andni, j . Each pixel from
the input image is profiled by exhaustive comparison to the corresponding pixels from each
mean appearance template. To that end, we measure theKullback Leibler divergence(KL)
between the input imageN and each pose class for every pixel ofMc in each of the three

colour channels. Note that the standardKL is defined asDKL (p||q) = p
(

log p
q

)
which mea-

sures the divergence between twop.d. f . Here for a single input image no distribution can be
estimated for the pixel value at each pixel location. The standardKL formulation is thus not
appropriate. What we measure instead is subtly different from the similarity between two
distributions, and is referred to asKL coefficients (δKL) :

δKL
(
mc

i, j ||nc
i, j

)
= max

RGB

{
mc

i, j

(
log

mc
i, j

ni, j

)}
(1)

whereni, j and mc
i, j are pixel intensity values from the same RGB colour channel. Here,

we measure the disparity between actual pixel appearance ofN and the expected values
from each mean appearance template at each pixel position. Note that similar idea has been
exploited for measuring the similarity of two random variables in the domain of prediction
theory of classification [1].

Since we aim to keep the topological independence of pixel variation, we construct a sim-
ilarity distance weighting map as a feature descriptor (2D matrix) containing the maximum
divergence coefficients between each pose class andN at each pixel location:

xi, j = max
c

{
δKL(mc

i, j ||nc
i, j)

}
, andc = {1, ...,8} (2)

Thus, xi, j contains the maximum coefficients from all 8 classes and 3 colour channels at
each pixel position. We impose an additional constraint so thatδKL(mc

i, j ||nc
i, j) = 0 when

nc
i, j ≥ mc

i. j . This effectively removes those divergent pixels deem to be background. Fig.4
shows some examples of the extracted feature descriptors for a range of input head images.
It is evident that by exhaustively projecting an input image to all eight templates and measur-
ing their similarities byδKL at each pixel position, the proposed feature descriptor effective
separates hair, skin and background at the pixel-level. In particular, the hair region is repre-
sented by high values whilst the face region yields low values in the descriptor. The robust
head modelling is achieved even though textures’ distributions are not modelled explicitly.

Figure 4: Examples of head image feature descriptors (bottom row) constructed from input
images (top row) by selecting the maximum KL divergenceδKL between each input image
and multiple pose mean templates for each pixel position.
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Head Pose Estimation by Multi-class SVM We shall now describe the use of this de-
scriptor as feature representation for pose classification. Instead of classifying head pose
by comparing image appearances with those of appearance template models [3, 14], we
compare similarity distance maps between images and models at the pixel-level and shall
demonstrate its significant advantage in recognition performance when input images are of
low quality and subject to significant lighting variations and possible occlusion (see Sec.3).

In order to classify any input image by eight discrete head poses, we apply a Multi-
class Support Vector Machine (SVM). We build a model where thei-th SVM constructs a
hyperplane between the classi-th and theC−1 remaining classes. Pose classification is
determined by a majority vote among all eight classifiers. More specifically, we adopt a
one-against-restSVM strategy [7] using a polynomial kernel with the objective of finding
a hyperplane capable of separating one pose class from the rest. SupposeXc denotes the
training samples,Yc ∈ {1,−1} denote the corresponding labels, andαci are theLagrange
coefficients determining class boundaries, the hyperplanef (Xc) for classification is:

f (Xc) = WT
c Xc +bc ≥ 1 (3)

wc =
||c||

∑
i=1

αci yci xci (4)

wherebc is the margin bound between the hyperplane and the Support Vectors (SVs), which
are allxci vectors with anαci greater than zero. A SVM with fewer SVs and lowerαci values
has better classification power with more generalisation capability. We shall demonstrate
in our experiments that the proposed similarity distance feature descriptor enables a SVM
learning machine to be constructed with much fewer SVs compared to other existing tech-
niques (see Fig.9).

Considerations on Similarity Metrics All similarity measures should be compared ac-
cording to their independent coefficients between two pixel values, since additional scaling
as integration along the image implies an image comparison and a pixel correlation. Kull-
back Leibler Divergence or the alternative Information Gain Measure provides several ad-
vantages over other metrics for similarity measure. Bhattacharyya coefficients measure the
orientation between two distributions, which requires a holistic normalization on the whole
image, which correlates the pixels variations. An Euclidean distance on the other hand mea-
sures only intensity variation spatially without taking into account the distribution estimate
on pixel variations overtime. Assuming that the values at each pixel location across the
training set follow a Gaussian distribution, one could aim to compute the join distributions
of RGB channels for each image pixel at its image location under all pose variations. One
can then employ the Mahalanobis distance for density weighted clustering of each pixel into
hair, skin and background. However, it is unrealistic to assume that these models can be suf-
ficiently well-estimated due to the diversity in pixel variations and difficulties in manually
labelling pixels into different types of texture/appearance for hair, skin and background. The
pseudo-Bhattacharyya coefficients was also employed by [13] to compare mean appearance

models and image pixels,wi, j =
√

mc
i, j

ni, j
. Although the pseudo-Bhattacharyya measure has

similarity to theKL-divergence, the later can cope with large non-linear variations due to its
logarithmic function whilst the former is linear.
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3 Experiments

Dataset and Head Detection We used the i-LIDS [9] underground scene dataset for all our
experiments. The dataset consists of extensive CCTV footages of a busy underground scene
captured under challenging lighting and viewing conditions. Our video data are from two
underground stations with video frame size of 640×480 recorded at 25 fps (see examples in
Fig 1). Typically the head image size varies from 40×60 to 10×20 pixels depending on the
distance to camera. They were normalised to a size of 20×20. These scenes were crowded
most of the time with many people present at any given time. People were often under
some degree of occlusion and exhibited large head pose variations. Appearance variation of
people includes beard faces, bold heads, light and dark hair and skin colours, all of which
challenge modelling head/face image appearance with any assumption on clear-cut hair, skin
and background segmentation.

For training our head pose classifiers, we randomly selected and manually cropped 800
head images with 100 images per pose class. During testing, given an image sequence we ap-
ply a background subtraction algorithm to highlight foreground areas in video frames where
connected components analysis was performed to give candidate people search windows for
head localisation. Head candidates were then obtained using a sliding window pedestrian
detection model based on Histogram of Oriented Gradients (HOG) [6]. Two models were
trained and hierarchically applied to both the whole and upper body region.

(a) (b) (c)

Figure 5: Confusion matrix on head pose classification using i-LIDS dataset. A 10− f old
cross validation over 100 images per class provide the results given by: (a) Robertson and
Reid [13], with average rate 32.25%. (b) Apparance models proposed by Beymer [3] and
Sherrah et al. [14], with average rate 10.97%. (c) Our model, with average rate 79.5%.

Performance Comparison on Head Pose ClassificationTo compare the performance of
the proposed head pose classification model against other existing schemes by performing
10-f old cross validation experiments. In particular we compared the effectiveness of using
the proposed similarity distance feature descriptor with two existing alternative representa-
tions proposed in [13] and [3] respectively. For training a generic skin colour model in the
representation of [13] , we extracted over 100,000 data points per colour from both the i-
LIDS database and other publicly available face datasets. Matching of probe image colour
histograms against models was performed using pseudo-Bhattacharyya coefficients. Fig.5
shows that our model outperforms significantly existing techniques using explicit skin and
non-skin histogram based modelling. It was evident that the skin colour from head images
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(a) Skin and non-skin descriptors(b) Similarity distance feature escriptors

Figure 6: i-LIDS dataset difficult for extracting explicit skin and non-skin based models. (a)
Skin and non-skin textures extracted using the model proposed by Robertson and Reid [13].
(b) Similarity distance feature maps extracted by our proposed model.

is severely degenerated using the i-LIDS dataset. Moreover, it is noted that for the repre-
sentation in [13], poor quality in chromaticity of background, hair and skin textures often
led to significant misidentification of pixels by explicit skin and non-skin colour modelling
(see Fig.6). Robertson and Reid [13] reported head pose classification rate of 80% on their
original dataset but we could only obtain an average rate of 32% using the i-LIDS dataset
(Fig. 5 (a)). This is largely because that many dark pixels in i-LIDS data correspond to the
background rather than hair. Similarly many skin and non-skin pixels were easily confused.

Similarity Metrics Comparison We compared six different similarity metrics for con-
structing our similarity distance feature maps for pose classification on the i-LIDS dataset.
Table3 shows thatKL divergenceoutperforms all other five alternative measures by obtain-
ing the best pose classification average rate of 80% for 10− f old Cross Validation.

Head Pose 1 2 3 4 5 6 7 8 Mean Rate

Probability 0.36 0.34 0.38 0.41 0.64 0.36 0.40 0.43 42%
Euclidean 0.51 0.37 0.68 0.57 0.89 0.81 0.57 0.53 62%
Bhattacharyya 0.74 0.58 0.63 0.73 0.87 0.75 0.65 0.64 70%
Mahalanobis 0.72 0.68 0.66 0.73 0.81 0.82 0.67 0.74 73%
pseudo Bhattacharyya 0.76 0.61 0.71 0.81 0.87 0.82 0.70 0.74 75%
Kullback Leibler 0.82 0.64 0.72 0.90 0.90 0.94 0.68 0.76 80%

Table 1: Compare different similarity measures for head pose classification.

The Effect of Descriptor Size We evaluated the effect of choosing different head image
size therefore the similarity distance feature map/descriptor size on head pose classification
rate. This is to evaluate the robustness of our proposed descriptor against size variations.
The dataset used in previous experiments were randomly rescaled from their original size
of between 10× 20 to 40× 60 to some new sizes between 5×5 to 40×40 pixels. Fig.7
shows that our similarity distance feature descriptor remains largely stable above image size
of 5×5. If we disregard size 5×5, the rate remains stable at about 76%±4%.

Interpretation of the Learnt Support Vectors In order to give more in depth understand-
ing on what the multi-class SVM has learnt and how different representations may affect the
learning of the support vectors, Fig.8 shows the learnt average positive and negative sup-
port vectors (SVs) for the eight different pose classes using our proposed similarity distance
feature descriptors. It is evident that hair texture gives less variation at the top of a head.
In contrast, skin texture is highly variable, suggesting its less robustness therefore poorer
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Figure 7: Head pose classification rate against image/feature map size.

Pose 0◦ Pose 45◦ Pose 90◦ Pose 135◦ Pose 180◦ Pose 225◦ Pose 270◦ Pose 315◦

Figure 8: Learnt average support vectors (top row) and average biased feature vectors from
the SVMs (bottom row) for the eight different pose classes.

ability in encoding information for head pose classification. Moreover, these SVs seem to
be highly separable. For multi-class SVMs using polynomial kernels, fewer support vec-
tors with smaller Lagrange coefficients give better classification performance in general [5].
Fig. 9 (a) shows that using Roberston and Reid descriptor resulted in a large number of SVs
with poor separability of the decision boundaries. This is evident from many SVs with high
α values. In contrast, our descriptors give much smaller number of highly separable SVs
with low α values.

(a) (b)

Figure 9: (a) SVs of the SVM trained with Robertson and Raid descriptors see Fig.5.(a).
Similarly, (b) shows the SVs of the SVM trained with our descriptors see Fig.5.(b).
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Figure 10: Examples of automated head pose classification of unknown multiple heads in
two crowded underground stations. A search window is allocated using connected com-
ponent after background subtraction and a HoG based pedestrian detection (green boxes).
Head bounding boxes (red boxes) were determined using a hierarchical HoG sliding win-
dow detector. Head pose of each head bounding box was estimated by classification using a
multi-class SVM (blue dial with pose value).

Automated Inference of Multiple Head Poses We evaluated the effectiveness of deploy-
ing our model for automated head pose inference on multiple people detected in a crowded
public scene captured by the i-LIDS underground dataset. We obtain head candidates in
two videos of over 10,000 frames by sliding a HoG based pedestrian detector in each video
frame after background subtraction. In addition, we trained an upper body model which is
hierarchically performed within a window of a detected pedestrian. Subsequently, the head
candidate is located by connected components analysis inside the upper body part. Similarity
distance feature maps were extracted from all detected head bounding boxes. Fig.10 show
some examples from extracted i-LIDS video sequences. It is evident that head pose estima-
tion depends on the distance of the camera to each detected person in the scene. The head
classification rate is 75% without prior information from previous frames. Misclassification
of heads is achieved when head is misdetected. Therefore, the maximum head descriptor is
built by sliding and scaling the templates, thus achieving a classification of 73%.

4 Conclusion

In this paper, we proposed a novel approach to head pose classification in crowded pub-
lic scenes using low-resolution images captured under challenging viewing conditions. Our
model is designed to avoid the need for explicit segmentation of skin and hair regions from
a head image. More specifically, in order to cope with large degree of variations in the po-
sitions of pixels that correspond to skin and hair textures across different poses, and their
non-uniform spread within a head image (i.e. there is often no clean-cut separation between
skin and hair textures at the pixel level), we formulated a novel representational scheme to
construct feature vectors using similarity distance maps. These distance feature maps are
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then used to train a multi-class SVM for pose classification. We demonstrate significant
performance advantages of our proposed model compared to a state-of-the-art model and
another established technique for head pose classification under challenging viewing condi-
tions in crowded public space given by the UK Home Office i-LIDS dataset.
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