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Abstract

Visual interpretation of events requires both an appropriate representation of change occurring in the scene and the application of

semantics for differentiating between different types of change. Conventional approaches for tracking objects and modelling object dynamics

make use of either temporal region-correlation or pre-learnt shape or appearance models. We propose a new pixel-level approach for learning

the temporal characteristics of change at individual pixels. Gaussian mixture models are used to model slow long-term changes in pixel

distributions while pixel energy histories are used to extract fast-change signatures from short-term events and modelled by

CONDENSATION matching.
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1. Introduction

In visual surveillance, automated systems are confronted

with environments under constant change. For such

dynamic scenes, visual change is not necessarily an

indication of the occurrence of problematic events but

rather, is a function of the context (semantics) of the scene.

Deviations from established patterns of change in the image

may signal an abnormal event under way. For example,

constant rapid motion can be observed on a busy road and a

sudden absence of motion may reveal an accident,

while rapid motion on the sidewalk areas which have

previously only been used by slower moving pedestrians is

likely to imply abnormal behaviour.

Previous works addressed the problem of scene-

interpretation by explicitly modelling change in terms

of the dynamics of moving objects. Object detection and

tracking have been performed by numerous methods such

as colour object models [11] and background subtraction

[9,12], while the trajectories of moving objects have been

modelled using Kalman filters [12] and augmented

Hidden Markov densities [8]. However, appearance

models are difficult to obtain in unconstrained

environments such as shopping malls. And the

application of region-growing techniques on collections

of pixels obtained from background subtraction

artificially induces spatial correlations which complicates

the disambiguation process for object or group-based

trajectory event recognition in free-flowing group-based

behaviours.

It is argued here that temporal information contained in

the colour signal of individual pixels constitutes a more

attractive alternative for understanding events than spatial

connectivity or proximity. Pixel signal energy, computed

from the local colour history of the pixel, provides a

condensed temporal measure of change. Although the latter

is related to computing visual motion such as optical flow

from motion-energy filters [6], we are not interested in

establishing correspondence in local pixel neighbourhoods.

Rather, we are only interested in extracting reliable

temporal change at individual pixels. We then consider

that meaningful events rather than simply motion in the

image sequence should be modelled through understanding

the energy-history of each individual pixel. This is to some

extent reminiscent of the notion of ‘topic spotting’ in speech

recognition, i.e. extracting meaning without explicitly

modelling the details. Furthermore, pixel energy constitutes

a good measure for exploiting synchrony in pixel-events,

which have been extensively researched in the psycho-

physical literature [13]. Synchronous recognition of pixel-

events addresses the limitation of the short-sighted view of

single pixels in the scene and provides a more flexible

framework for understanding global events as opposed to

related spatio-temporal motion-energy measures [1].
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To cope with different types of pixel-change, we propose

a two-stage scheme. In Section 2, we make use of adaptive

Gaussian Mixture Models (GMM) for modelling long-term

colour distributions of pixels, especially slow change caused

by lighting cycles. While GMMs provide the platform for

long-duration scene analysis, they have also been

probabilistically formulated for detecting faster short-term

change to perform more computation intensive synchronous

energy-history recognition. A novel approach is proposed in

Section 3 involving energy histories of pixel-change for

CONDENSATION-based recognition. Finally, experimen-

tal results are provided in Section 4 to investigate the

relationship between low-level energy information and

high-level semantics for understanding scene events.

The technique is also compared to traditional GMM

background modelling.

2. Detecting change

Dynamic scenes exhibit a wide spectrum of change both

in terms of the speed and nature of the change occurring in

individual pixels. Fast short-term change can be caused by a

variety of objects of unknown appearance and is mostly

characterised by the dynamics of the change and thus its

temporal profile. On the other hand, long-term change

causes slow shifts in the colour distribution of the scene

background seen at the pixel. Whether these components are

generated by scintillating static objects in the background or

cyclically moving objects, they can be modelled by

Gaussian mixture models. More specifically, given a stream

of colour values for a given pixel, xt [ {x0; x1;…; xl};

the variation in the ðr; g; bÞ components of xt can be

described in terms of Gaussian means m and covariances S.

Illumination specularities or swaying objects such as plants

induce multiple modes into the colour distributions of pixels

[11,12], which require multiple Gaussian components.

A Gaussian mixture pðxÞ ¼
Pk

i¼1 vi·cðx;mi;SiÞ can be

used, where vi represents the mixing parameter and cð·Þ

the Gaussian kernel.

In unconstrained environments, the colour distributions

of specific pixels rarely remain static. Changes in the

lighting conditions or the patterns of sway of objects cause

slow shifts in the parameters of the mixture models. First, we

make these parameters adaptive in a similar fashion to the

online approximation technique described in [12]. New

visual evidence is approximated with uniform Gaussian

clusters of pre-set variance according to the amount of noise

present in the particular capturing setup. Offline methods

such as k-means clustering or EM are not fast enough for

computing thousands of mixtures for separate pixels.

The clusters are then adapted to the particular distribution

of the pixels.

For a new pixel xt; the closest Gaussian with Mahala-

nobis distance smaller than 2 s.d. (,98% confidence) is

selected as responsible. A learning rate a is used to

constrain the pace of change of the means and covariance of

the Gaussian as well as the mixture parameter v of all the

Gaussians to promote long-term changes of the distribution

over short-term variation

mt ¼ ð1 2 aÞmt21 þ axt ð1Þ

St ¼ ð1 2 aÞSt21 þ aðxt·x
T
t Þ ð2Þ

vu;t ¼ ð1 2 aÞvu;t21 þ aðMu;tÞ ð3Þ

Mu;t ¼
1; if u is the responsible Gaussian

0; otherwise

(
ð4Þ

A confidence factor T is used to identify predominant

components in the distribution and is expressed in terms of

the overall ratio (in the range [0,1]) of predominant clusters.

The Gaussian components in the mixture are ordered

according to the product of (a) their weights, which reflect

observation frequency and (b) the inverse of their variances

to promote static objects with smaller variances. The first b

Gaussians which account for a proportion T of observations,

weighted by the inverse of their variance, are considered as

predominant

b ¼ argmin
kmax

B¼1

XB

i¼1

vi . T

( )
ð5Þ

New clusters are generated for observations xt which do not

fit current clusters. Once a limit kmax is exceeded,

the weakest, less important, cluster is replaced for

computational reasons. In our case, we use kmax ¼ 6 so

that the mixture model mostly captures static components

responsible for slow change.

We then formulate the probability of pixel values xt

belonging to pre-learnt set of long-term Gaussian clusters as

opposed to recent foreground components by exploiting the

total conditional probability stored in the Gaussian mixture

model, instead of using only simple Mahalanobis distance to

the closest Gaussian as in [12]

Pðlong-termlxtÞ ¼

Xb

i¼1
pðxtli; tÞPði; tÞ

pðxtÞ
; where ð6Þ

pðxtli; tÞ ¼
1

2p3=2lSi;tl
1=2

£ exp 2
1

2
ðxt 2mi;tÞ

T ðSi;tÞ
21ðxt 2mi;tÞ

� �
ð7Þ

Pði; tÞ ¼ vi;t ð8Þ

The configuration of the predominant set stores the

accumulated history of the observation frequency of each

component in the mixture over a long time scale. The state

of the set can therefore capture slow changes in the colour

distribution of pixels. Depending on the surveillance task,

the predominant set can be locked so that new clusters are

reported as abnormal, e.g. the introduction of a parcel in

a busy scene. In the short term, the long-term models can

detect and segment out interesting non-fitting fast-change
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which are subsequently modelled with energy histories in

Section 3.

3. Recognising meaningful change

Rapidly changing visual phenomena exhibited by the

motion of animated objects typically involve both non-rigid

deformations [9] and purposeful trajectories [5,8,12].

Illumination specularities further complicate the task of

understanding scenes from purely visual data. Without

higher-level knowledge provided in the form of pre-learnt

object and trajectory models, it is very difficult to interpret

frame-wise data. Indeed, semantics used for understanding

scenes and classifying events operate on object-level

information, which is not readily available in low-level

pixel data. However, the temporal sequence of change in

pixel data can provide a better cue as to the type of event

occurring at the pixel’s location. Pixel energy extracts the

signature of change occurring at any time instant.

Furthermore, we propose that histories, or temporal

sequences, of pixel energy provide a generic means of

extracting signatures from short-term visual change. Fig. 1

shows pixel energy collected from a sample sequence of a

person moving from left to right and back.

Pixel energy Pe can be measured from the response of

pairs of quadrature filters of temporal width v [10] and filter

cut-off ct ¼ 3.5 where the filter coefficients become

negligible

PeðxtÞ¼
X2n
i¼0

g
ctði2nÞ

n

� �
xt2i

" #2

þ
X2n
i¼0

h
ctði2nÞ

n

� �
xt2i

" #2

ð9Þ

The filter masks gðyÞ and hðyÞ are, respectively, defined as

gðyÞ ¼ hð2y2 2 1Þe2y2

ð10Þ

hðyÞ ¼ ky þ ly3 e2y2

ð11Þ

where the normalising coefficients are h ¼ 0:9213;

k ¼ 22:205 and l ¼ 0:9780 [4].

Most energy-based approaches suffer from scale

problems for tuning the temporal width of the filters.

Spatio-temporal filters used for computing optical flow

require multiple banks at different scales [3]. However, we

have found that using a temporal width of 10 frames for our

sequences captured at 8 Hz, provide acceptable, although

not optimal, energy histories for a variety of events. Fig. 2

shows typical energy histories extracted from different

pixels in another sequence containing 10 repetitions of a

right– left–right movement by a person. Pixel-energy

information can be seen to possess distinctive repeatable

signatures caused by different patterns of change from the

view-point of the pixels.

We have used the Gaussian mixture models of Section 2

to detect sections of slow change in the energy signal and

segment the latter into discrete pixel-events of temporally

contiguous fast-change with a common 1D connected

component algorithm. The third column of Fig. 2 shows

energy histories of fast-change segmented from the

continuous energy signals. The discrete pixel-event energy

signatures obtained for fixed pixels from a training sequence

of ‘normal’ activities are used as models for classifying new

activities as normal (known) or abnormal (unknown).

Essentially, semantics are being tied to specific energy

histories through supervised learning. Probabilistic

trajectory matching provides the mechanism for recognising

new observations from pre-learnt models [2,5,7].

The CONDENSATION framework provides the flexibility

of recognising new signals with different temporal and

amplitude scales. Multiple hypotheses are generated to

match a backward window, from time t to time t 2 w for a

window of size w, on the signal against template windows in

the models. The propagation of random samples allows for

concurrent hypotheses to be maintained while

providing temporal and amplitude scaling for signal-

matching cross-correlation flexibility.

More precisely, the matching hypothesis or state st for a

pixel at time t is defined as (mt; ft; at; rt) where m is the

model (pixel-event energy-history) being matched, f,

the position of the correlation window in the model, a and

r are the amplitude and temporal scaling parameters,

respectively, as shown in Fig. 3. A finite set of k states are

then propagated across time according to a cross-correlation

observation probability as defined in Ref. [2]

PðytlstÞ ¼ exp 2
Xw21

j¼0

ðyt2j 2 am
m
ðf2rjÞÞ

2

2smðw 2 1Þ

8<
:

9=
; ð12Þ

States are randomly chosen from a cumulative probability

distribution of the normalised observation probabilities of

Fig. 1. Rows from top to bottom: (a) Selected frames from a right–left–right walking sequence. (b) Pixel-energy data is encoded in grey-level using a log-scale

to show small scale structures. (Black indicates high response). Reflective edges can be seen with small responses.
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all the states in the set. Then, states with observation

probability higher than a certain threshold of probable

match (we use a threshold of 30% confidence) are

propagated to the next time step according to

mt ¼ mt21 ð13Þ

ft ¼ ft21 þ rt21 þ N ð14Þ

at ¼ at21 þ N ð15Þ

rt ¼ rt21 þ N ð16Þ

where N is added normal noise for performing local search

in parameter space.

The propagative dynamics of the cross-correlation

windows involve predicting pixel-energy values for the

next time step from previously learnt energy models.

Hypotheses therefore track a correlation feature space for

single pixels, matching new signals against learnt

models. However, recognising energy histories for single

pixels can be prone to noise and can also suffer from

ambiguities arising from spatio-temporal interference

effects by textured surfaces. Without resorting to full

spatio-temporal motion-energy filters, the effect of

synchrony in visual information can be exploited. Global

events affect multiple pixels simultaneously and

irrespective of the type of textured change occurring at

the object-level, the pixel-energy information of the

involved stream of pixels should exhibit strongly

correlated change. Preserving a common time reference

for each learnt energy-history allows for synchronous

cross-propagation of correlation matching hypotheses

across pixels. A percentage of the states are reserved

for random initialisation and cross-propagation.

The propagative dynamics of the samples are

upgraded as:

† Given a pixel xt at time t, for all the samples (mt; ft;

at; rt) satisfying the matching confidence threshold,

another pixel yt with energy-history model m0
t; which

occurred at the same time as mt during training with

corresponding model time index f0
t; is selected.

Assuming that the scaling required to match the

learned models to the new observations applies

across pixels, a new sample ðm0
t;f

0
t þ rt;at; rtÞ is

cross-propagated into pixel yt at the next time step

with similar amplitude and temporal scaling factors as

the original sample.

The probability of the energy in a given pixel at time t

matching the pre-learnt normal models is given as the best

Fig. 2. From left-to-right. (a)Selected frames of a sequence containing 10 right–left–right movements are shown, with a black square for selected pixels. (b)

Distinctive and repeatable structures from energy histories of the entire sequence for the pixel. Gray parts indicate fast-change while black parts indicate slow

change, obtained form GMM (akin to background subtraction). (c) Normalised and super-imposed energy-histories of temporally contiguous fast-change

which have been segmented from the previous column.

Fig. 3. A matching hypothesis or state st consisting of parameters: model

(mt; position ft of the matching window in the model, amplitude scaling at;

and temporal scaling rt).
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observation probability over a set of k states

PðytÞ ¼ max
k

i¼1
ðPðytlsi;tÞÞ ð17Þ

While recognising patterns of pixel-change in a new

sequence, the technique generates hypotheses of normal

(known) energy histories matching energy data from the

training sequence. Good hypotheses generate cross-hypoth-

eses in other pixels, which are synchronously involved in

similar fast-change during the learning stage. Events can

therefore sustain adequate recognition by pixels cross-

propagating hypotheses to each other and back.

The technique provides a good alternative for learning the

binding process of pixel-events into higher-level spatio-

temporal events without object representations and the use

of spatial proximity as a correlation criteria.

4. Experiments

To illustrate how semantics can be incorporated into

temporal models based on energy histories and how the

learnt models can be used to detect unknown deviant events,

we give some preliminary results. The system is trained on a

sequence of approximately 1700 frames (from 20 repeated

events) containing two people carrying out their normal

routine of entering the office from the door on the right,

moving to the left for an inspection and leaving by the same

door, as in Fig. 4.

After training, the system was tested on five sequences of

activities performed by three persons, one of whom was not

present during training. The testing sequences contain

similar events to the training sequences but with differences

in the characteristics of performed movement so as to render

either part of or the whole activity ‘abnormal’. First, the test

subject repeated the movement at (a) slower and (b) faster

speeds. A stationary pause (c) and a quick jump (d) were

introduced in the middle of the right–left movement.

Finally, the system was retrained to include a static object

(a box) in the lower right corner of the room. The context of

the environment allows for movement by the person in the

scene. However, the event of the box falling over (e) is not

considered as normal.

Table 1 shows the results of deviant-event detection

over the five test categories. For the ‘Slow Movement’

and ‘Fast Movement’ sequences, the deviant parts of the

events have been successfully detected as shown in Fig. 5.

The deviant-event detector (DED) perform better in

sequences which involve semantically meaningful

deviations from pre-learnt patterns of change, such as

‘Stationary pause’ and ‘Jump’ where only the deviant

parts of the events are detected as shown in Figs. 6 and 7.

As the Gaussian mixture models do not possess any

Fig. 4. Selected frames from the training sequence.

Table 1

Abnormal event detection results for the test sequences totalling over 1700

frames

Test

events

No. of event

occurrences

No. of

frames

DEM GMM

Detected % Detected %

Slow

movement

6 615 6 100 6 100

Fast

movement

6 255 6 100 6 100

Stationary

pause

6 362 5 83.3 0 0

Jump 6 356 4 66.7 0 0

Falling

box

1 108 1 100 0 0

This is based on the deviant-event detector’s (DED) and GMM model’s

ability to correctly classify events containing normal and abnormal motion.

Fig. 5. Detection results for the ‘Slow Movement’ event. From top row to

bottom: original images, GMM model detection and deviant-event

detection. Fig. 6. Results from the ‘Stationary Pause’ event.
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knowledge of context, they detect all movement as

abnormal events. In the ‘Falling box’ sequence, the

movement of the person is considered as normal in the

particular context of that office environment as the DED

correctly matches the per-pixel change occurring in the

frames with its pre-learnt patterns. Both the DED and the

Gaussian mixture model do detect the event when the box

falls (Fig. 8).

The results show that general semantics concerning the

type of change in individual pixels can be used to

differentiate between different classes of events and indeed

selectively identify locations and time in the scene where

unknown deviant change occurred. Such ability provides

additional flexibility over Gaussian mixture models for

monitoring complex events in dynamic environments.

Furthermore, the deviant-event system selectively detects

only abnormal events and can therefore be used as a

pre-attentive mechanism for initiating person or object

tracking.

5. Conclusion and future work

Modelling behaviours and recognising events often

require object-level representations to interpret visual

data. However, object segmentation and trajectory

extraction relies on spatial proximity (region-growing)

and temporally constrained correlations. However, using

such assumptions in busy scenes might not be sufficient.

We propose a new low-level representation, which can

be linked to semantics to understand events and perform

abnormal event detection without making any

assumptions about objects. Energy-histories provide a

condensed variable-length representation of fast temporal

change in single pixels. Preliminary results show that

they can be used to semantically discriminate between

events involving different pace as well as patterns of

change. We have also used Gaussian mixture models to

separately model and recognise slow change such as

illumination cycles under a less computationally taxing

framework. The ambiguity inherent in viewing a complex

world through a single pixel has been addressed by using

synchronous change in multiple pixels during events to

perform pixel-stream hypotheses.

Although we have used supervised learning to introduce

semantics in a low-level framework, unsupervised learning

can be used to extract common patterns of change over long

periods of time. Currently, the synchronous prediction and

recognition of activity in streams of pixels have not been

fully investigated. Cross-propagation of pixel-matching

hypotheses attempt to recognise familiar patterns of

synchronous change spatially across the image and over

the short period of time that cross-propagation can be

sustained. The higher-order correlation between

synchronous pixel-change such as relative onset of

the pixel-changes and relative phase of pixel-changes can

offer better cues for inferring more complex semantics of

the changes in the scene. Future work will concentrate on

the propagative dynamics for generating hypotheses and

augmenting the technique to discriminate more subtle

deviant-event recognition.
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