Pattern Recognition 44 (2011) 117-132

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Detecting and discriminating behavioural anomalies

Chen Change Loy *, Tao Xiang, Shaogang Gong

School of EECS, Queen Mary University of London, London E1 4NS, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 20 April 2010
Received in revised form
6 July 2010

Accepted 20 July 2010

Keywords:

Anomaly detection

Dynamic Bayesian Networks
Visual surveillance

Behavior decomposition
Duration modelling

This paper aims to address the problem of anomaly detection and discrimination in complex
behaviours, where anomalies are subtle and difficult to detect owing to the complex temporal dynamics
and correlations among multiple objects’ behaviours. Specifically, we decompose a complex behaviour
pattern according to its temporal characteristics or spatial-temporal visual contexts. The decomposed
behaviour is then modelled using a cascade of Dynamic Bayesian Networks (CasDBNs). In contrast to
existing standalone models, the proposed behaviour decomposition and cascade modelling offers
distinct advantage in simplicity for complex behaviour modelling. Importantly, the decomposition and
cascade structure map naturally to the structure of complex behaviour, allowing for a more effective
detection of subtle anomalies in surveillance videos. Comparative experiments using both indoor and
outdoor data are carried out to demonstrate that, in addition to the novel capability of discriminating
different types of anomalies, the proposed framework outperforms existing methods in detecting
durational anomalies in complex behaviours and subtle anomalies that are difficult to detect when

objects are viewed in isolation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The recent large-scale deployments of surveillance cameras
have led to a strong demand in systems of automated anomaly
detection in visual surveillance [1-3]. Earlier work is mostly
focused on anomaly detection from well-defined simple beha-
viours in an uncrowded scenario [4,5]. More recently, the primary
research focus has shifted to complex behaviour scenario in which
a behaviour pattern is characterised by hierarchical temporal
dynamics and/or complex correlations among multiple objects.

Anomaly detection in complex behaviours is challenging
because the differences between real-life true anomalies (rather
than exaggerated acts) and normal ones are often rather subtle
visually and not well-defined semantically. One way to model
such subtle differences is to consider that anomalies are
associated with deviations in the expected temporal dynamics
embedded in complex behaviours, which in turn can be
considered as having layered hierarchical structures. In addition,
different ways of deviations from the expected temporal
dynamics lead to different types of anomalies, the discrimination
of which has never been attempted to date although it is often of
practical use in real-world applications. In a crowded multiple
object scenario, anomaly detection becomes even more challen-
ging because visual evidences often span across a large spatial and

* Corresponding author. Tel.: +442078828019; fax: +442089806533.
E-mail addresses: ccloy@dcs.qmul.ac.uk, ccloy225@gmail.com (C.C. Loy),
txiang@dcs.qmul.ac.uk (T. Xiang), sgg@dcs.qmul.ac.uk (S. Gong).

0031-3203/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2010.07.023

temporal context, anomaly is thus difficult to detect if an object is
viewed in isolation.

To facilitate effective modelling and anomaly detection for
complex behaviours, it is natural to decompose the modelling task
into a number of sub-tasks. Most existing techniques resort to
object-based decomposition which employs a standalone model
with the model structure being factorised in accordance with the
corresponding temporal processes of individual objects [6,7].
However, object-based decomposition relies on object segmenta-
tion and tracking and therefore is prone to problems associated
with occlusion and trajectory discontinuities when applied to a
crowded wide-area scene. In addition, object-based decomposi-
tion will lead to very complex model structure making model
learning and inference intractable in the presence of large number
of objects. Moreover, it offers no mechanism for discriminating
different types of anomalies and reducing the effect of noise and
error from the observation space.

To address these problems, we propose to perform behaviour-
based decomposition on a complex behaviour and model the
decomposed behaviours with a cascade of Dynamic Bayesian
Networks (CasDBNs), in which a DBN model at each stage is
connected to the model in the next stage via its inferential output.
More specifically, behaviour-based decomposition factorises the
behaviour space into sub-spaces based on directly exploring the
behaviour semantics defined by different temporal characteristics
of the behaviour (e.g. co-occurrence, temporal order, and
temporal duration) and the spatio-temporal visual context where
the behaviour occurs. Behaviours are inherently context-aware,
exhibited through constraints imposed by scene layout and the
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temporal nature of activities in a given scene. We believe that
better behaviour modelling can be achieved based on behaviour-
based decomposition because the important context-awareness
nature of complex behaviours is exploited explicitly, which has
been largely neglected by previous object-based decomposition
based approaches.

Apart from employing a different decomposition strategy, the
proposed framework differs from existing approaches in that it
deploys multiple DBN models in a cascade structure. This model
structure is motivated by the following key observations:

(i) It is noted that different DBN models have different levels of
sensitivity towards different types of anomalies. It is there-
fore possible to exploit this characteristic by employing a
cascade of DBNs, with each of them being sensitive to one
specific type of anomalies. This enables us to integrate the
evidences from each DBN models to achieve a more accurate
detection, and more importantly behaviour discrimination.
It is well known that noise and error in the low-level visual
features are inevitable in a real-world scenario. By construct-
ing a cascade structure with each stage being connected
using the inferential output of the previous stage, the models
in later stages of the cascade will be less affected by the noise
and error in the observation space.

(iii) While a single model generally suffers from the scalability
problem given large number of objects, a CasDBNs would
benefit greatly from behaviour decomposition in avoiding
this problem since the complexity of each individual model
in the cascade is well controlled after the decomposition.

(ii

-

We present two instantiations of our framework to address
two fundamental and open problems of anomaly detection in
complex behaviours. In Section 4, we formulate the framework for
detecting and discriminating anomalies by their abnormal temporal
dynamics (e.g. atypical duration and irregular temporal order)
embedded implicitly in the behaviour structure. In Section 5,
the framework is used to address the problem of modelling
multi-object correlations in a crowded wide-area scene and
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detecting subtle anomalies that are difficult to detect when
objects are viewed in isolation.

1.1. Discriminating different temporal causes of anomalies

It is not only necessary but also critical to both detect and
discriminate different types of anomalies based on the temporal
characteristics of expected behaviours. In many real-world
scenarios, there could be only one type of anomalies that are
deemed as critical for triggering an alarm. For instance, in a bank
branch, a different order of “entering into the branch” and “using
an ATM outside the branch” is of no significance. However, the
durational abnormality in front of the ATM may be of more
interest. On the other hand, in a convenience store, the temporal
order of “paying” and “leaving the shop” is important, whilst
variations in the time spent at these atomic actions of the shopper
behaviour are less critical.

In order to model and differentiate behaviours by their
intrinsic characteristics, we consider a complex behaviour as a
spatio-temporal pattern organised naturally in an hierarchical
structure. For instance, as can be seen from Fig. 1, a person’s
typical behaviour in an office can include a sequence of ordered
atomic actions with certain duration such as entering the office,
working at a desk, printing, and leaving the office. Each atomic
action itself is also composed of multiple constituents having
certain duration and temporal order among them (e.g. entering
the office can consist of opening the door and then walking
toward the desk). A normal behaviour pattern would follow a
typical order of atomic actions with certain duration. Deviation
from either one or both of these temporal characteristics would
cause an anomaly.

In this paper, we show that different DBN models can exhibit
different levels of sensitivity given different types of anomalies.
Based on this finding, we propose to decompose a complex
behaviour based on different temporal characteristics, particu-
larly the temporal order and temporal duration. This is achieved
by exploiting different DBN models in a cascade, with each of
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Fig. 1. Example frames of three behaviour sequences in an office environment and the associated ground truth of action occurrences. Although the behaviour sequences
share the same set of atomic actions ([Act. i] entering, [Act. ii] working at a desk, [Act. iii] printing and [Act. iv] leaving), sequence (b) and sequence (c) exhibit abnormal
temporal dynamics. (a) Normal behaviour sequence; (b) Behaviour sequence with atypical temporal duration; (c) Behaviour sequence with irregular temporal order.
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them being employed to model one of the temporal character-
istics. The resultant framework can then be deployed to detect
and distinguish different types of anomalies, whilst existing
techniques fail.

1.2. Detecting abnormal correlations

Behaviours involving multiple objects are inherently con-
strained by the visual contexts of a scene [8]. Specifically, a
behaviour correlation can be either local or global depending on
whether it takes place within a local or global context. The former
corresponds to correlated objects in proximity in terms of space
and time, whilst the latter corresponds to objects which are
further apart in both space and time. Considering a public wide-
area scene as shown in Fig. 2, anomaly detection in this case is
challenging as visual evidences critical for detection often span
across large spatial and temporal visual context. Importantly,
potential anomalies are usually difficult to detect if objects are
viewed in isolation.

Given the potentially different natures of abnormal correla-
tions and the need to quantify their differences, we can put
anomalies into three categories based on their visual distinctive-
ness and their frequency of occurrence in a training set.
Anomalies in Category-A are often signalled by behaviour patterns
that are visually very different from what have been observed
from the training set. An example is given in Fig. 2(a) which
shows a fire engine in an emergency causing interruption to the
vertical traffic flow at a junction. Category-B corresponds to
anomalies that are ambiguous due to their rare occurrence in the
training set. Anomalies in Category-C are supported only by very
weak visual evidence, i.e., featured with very subtle deviation
from the normal temporal order/durations of different correlated
temporal processes. An example is given in Fig. 2(b) showing a
white van running the red light in the horizontal direction which
has caused no interruption to the traffic flow. Anomalies in both
Categories A and C refer to those that have never occurred in the
training set, whilst anomalies in Category-B are those that appear
in the training set but are statistically under-represented. From
the perspective of a human observer, anomalies in Category-A are
visually obvious thus easy to detect. In contrast, anomalies in both
Categories-B and C are likely to be missed.

For all three categories of behavioural anomalies, a large
number of objects are influencing each other either explicitly or

implicitly in a complex visual context. Anomalies thus can only be
detected effectively and robustly by modelling the local and
global context both spatially and temporally. To that end, we
propose to decompose the complex behaviour semantically in
accordance with the spatial contexts, and employ CasDBNs to
model the temporal aspect of the decomposed behaviours.
Specifically the decomposed behaviours occurring in a local
context are modelled using DBNs in the first stage of a cascade.
The global correlations of them are then modelled in the second
stage. Based on this novel behaviour decomposition and model
structure, the proposed approach is more sensitive to subtle and
ambiguous anomalies (i.e. those in Categories-B and C) as
compared to existing DBN-based approaches. Moreover, it is
computationally more tractable and more robust to noise and
errors in the behaviour representation, as will be shown in our
experiments in Section 6.2.

2. Related work

A number of approaches have been proposed for behaviour
modelling and recognition, including probabilistic graphical models
(e.g. Dynamic Bayesian Networks (DBNs) [9-13], propagation net
[14]), petri nets [15], syntactic approaches (e.g. context-free
grammars [16], stochastic context-free grammars [17]) and logic
based approaches [18]. Among these approaches, graphical models
especially DBNs are the most popular method [19,20].

Various DBN topologies have been developed, which perform
object-based decomposition and factorise the state space and/or
observation space by introducing multiple hidden state variables
and observation state variables, e.g. multi-observation HMM
(MOHMM) [21], parallel HMM (PaHMM) [7] and coupled HMM
(CHMM) [6]. In the case of single object behaviour modelling,
there are also several attempts to embed hierarchical behaviour
structure in the model topology. Examples include hierarchical
HMM (HHMM) [22] and switching hidden semi-Markov model
(S-HSMM) [10], in which the state space is decomposed into
multiple levels of states according to the hierarchical structure of
behaviour. In spite of these efforts, existing DBNs suffer from the
following shortcomings and therefore are inadequate for either
discriminating different types of anomalies or detecting subtle
and ambiguous multi-object behavioural anomalies.

Ineffective and inefficient temporal duration modelling: A funda-
mental requirement in improving the fidelity of, therefore

Fig. 2. (a) Key frames of an abnormal traffic sequence caused by a fire engine that interrupted the normal traffic flow from vertical directions (sequence 1). (b) Key frames
showing a white van running the red light. It can be seen that the vertical traffic has stopped and the horizontal traffic was expected; therefore no traffic interruption was
caused and the sequence appears to be normal. However a careful examination can reveal that the white van crossed the junction slightly sooner than normal after the
previous traffic flow has finished, which gives away the fact that the red light for the horizontal traffic (invisible from the scene) was still on. Note that the behaviour of
each individual object in these two sequences was normal (e.g. no illegal U-turn or driving on the pavement) when viewed in isolation (sequence 2). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reducing false alarm from, an algorithm for detecting complex
behavioural anomalies that exhibits long-term temporal depen-
dency is the ability to explicitly and flexibly model the duration of
the behaviour [23,24]. Hidden semi-Markov model (HSMM), a.k.a.
variable duration HMM (VDHMM) [25,26] uses continuous
probabilistic density function (pdf) to achieve more accurate
behaviour duration modelling than a first-order HMM [27].
However, the introduction of an underlying semi-Markov process
results in a significant increase in computational and numerical
complexity [28]. As compared to HSMM, expanded state HMMs
(ESHMMs) [28], such as multinomial HSMM (Mult-HSMM) [23]
and Coxian HSMM (Cox-HSMM) [24], are more widely used for
behaviour duration modelling [24,10,23,12,29]. ESHMMs avoid
the use of semi-Markov model thus their computational costs are
lower than that of HSMM. Nevertheless the performance and
efficiency of ESHMMs are still not satisfactory when dealing with
long behaviour sequences as these methods require large number
of sub-phases to achieve accurate approximation of the true
duration distribution. As an hierarchical extension of ESHMMs, S-
HSMM [10] models both the temporal order of behaviour and the
associated durational characteristics. However, in order to both
capture the hierarchical behaviour structure and approximate the
temporal duration in a single model, the S-HSMM inevitably has a
complex structure with a large number of model parameters.
Importantly, among the existing studies, although the one on S-
HSMM [10] recognised the importance of both temporal order
and temporal duration in detecting anomalies, there has been no
attempt to differentiate them.

Poor scalability for complex multi-object behaviour modelling: In
addition to the problem of dealing with occlusions and trajectory
discontinuities in a busy multi-object scene, the existing object
decomposition based DBNs suffer from the lack of scalability
when presented with large number of objects. For instance, exact
inference on a CHMM [6,30] beyond two chains (each chain
corresponds to one object) is likely to be computationally
intractable [30]. The same problem should surface for the
dynamically multi-linked HMM (DML-HMM) [9]. It is also noted
that previous studies are concerned with object correlations in
small local context, and there is no investigation on detecting
anomalies that are ambiguous or supported by weak evidence in a
wide-area scene.

Vulnerable to error and noise in behaviour representation: Due to
the limited availability of abnormal data samples, existing
approaches rely on normal data samples for model construction.
Since both a noise contaminated normal pattern and a real
abnormality cannot be explained by the trained model, it is
critical that a behaviour model is robust to error and noise in
behaviour representation. Conventional DBN models learn di-
rectly from a noisy observation space and there is no mechanism
to stop the error propagation through the model topology. As a
result, high false alarm rate is expected given the inevitably noisy
inputs from a real-world busy scenario.

In contrast, the proposed framework is advantageous in the
following aspects:

(i) The framework is able to discriminate different types of
anomalies whilst existing techniques fail. The same capability
is not available in a single DBN model since it is either
tailored towards one type of anomaly or there is no
mechanism to differentiate the anomalies.

(ii) The proposed framework allows for explicit modelling of
behaviour duration. The advantages of such a method are
two-fold: (a) by modelling the duration explicitly, the
proposed framework is more sensitive to durational anoma-
lies, as compared to existing DBN models that model

duration based on implicit and non-parametric approxima-
tion of the true duration distribution; (b) it is also
computationally more tractable for complex behaviour
modelling.

(iii) For complex multi-object behaviour modelling, behaviour-
based decomposition avoids the occlusion problem com-
monly faced by object-based decomposition. Importantly, the
proposed framework is computationally more tractable and
more scalable.

(iv) The proposed framework is more robust to noise and error in
behaviour representation.

It is worth pointing out that cascade structure of DBNs has
been considered for activity analysis [31,32]. Oliver et al. propose
a layered HMM (LHMM) to capture different levels of temporal
details when recognising human activity [31]. The LHMM is
essentially a cascade of HMMs, in which each HMM accepts
observation vectors processed with different time scales. Zhang
et al. [32] present a similar framework based on LHMM with
each stage of the cascade being employed to learn different levels
of actions exhibited from individual to group of people. The
CasDBNs formulated in this paper differ significantly from
previous work [31,32] in the following aspects: (1) our framework
decomposes behaviours based on temporal characteristics
and visual context, a different cascading strategy is thus
formulated; (2) our ultimate goal on detecting and discriminating
video anomalies are different than that of [31,32]. Apart from
DBNSs, cascade structure based on topic models has been
employed for activity analysis [33]. Despite the method has been
shown to be capable in detecting anomalies in a global context, it
is limited to modelling static causal relationships without taking
the temporal ordering of behaviours into account. The model is
thus unable to detect anomalies embedded in the temporal
structure of correlation.

Compared to our earlier version of this work [34], we
formulate in this paper a generic framework for discriminating
different temporal causes of anomalies apart from detecting
abnormal correlation. Besides, in the experiment on
abnormal correlation detection, more extensive evaluations are
conducted to compare the proposed framework with alternative
models.

3. Cascaded Dynamic Bayesian Networks

In the proposed framework, the decomposed behaviours are
modelled using a cascade of DBNs (CasDBNs), with each stage of
the cascade being connected to the next stage via its inferential
outputs. In this section, we describe the model structure and
training strategy of CasDBNs, and how on-line filtering can be
carried out for anomaly detection.

3.1. Model structure

The proposed CasDBNs combine two stages of DBNs in a
cascade. Fig. 3 illustrates the generic structure of the proposed
framework. The framework is flexible in that different types and
numbers of DBNs can be employed in different stages. For
simplicity and clarity of explanation in this section, we use first-
order hidden Markov models (HMMs) as an example of first-stage
models of the framework and a multi-observation HMM
(MOHMM) [9] as the second-stage model. The HMMs at the
first stage are denoted as A', where Al e {Aflr=1,...,R}, and R
corresponds to the number of HMMs, which varies for different
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Fig. 3. The proposed cascade model with two time slices unrolled at each stage of the model. Different types of DBNs can be employed in different stages. In this example,
Hidden Markov models are used as the first-stage models and a Multi-Observation HMM is employed in the second stage. Observation nodes are shown as shaded squares

and hidden nodes are shown as clear squares.

computational tasks (see Sections 4 and 5). The MOHMM in the
second stage is denoted as A®.

In this example, the hidden variable of the rth HMM in the first
stage A, is a discrete random variable denoted as
0/ eqlli=1,...,K"}, where K" represents the number of hidden
states. Similarly, the hidden variable of A® is denoted as
Qf e{qfli=1,...,K&}. Observations of both stages can be discrete
or continuous inputs. In this example, the observations of the first
stage are discrete values and denoted as y;, whilst the inputs to
the second stage are also discrete, denoted as z; e {z},...,28},
where R here represents the number of observation nodes in the
second-stage MOHMM. Note that in this example, the number of
observation nodes in the second-stage MOHMM equals to the
number of HMMs in the first stage. These numbers may be
different given different feature extraction scheme in state space
(see Section 3.2).

We assume that all models are first-order Markov, i.e.
PQ/1Qf_1)=P@Q/1Q{;) and PQfQf,_,)=P(QF|Q¢ ;). We also
assume that the observations are conditionally first-order Mar-
kov, i.e. P(Y¢1Q/ Vi.1)=P(¥,IQ) and P(z:|Qf,Z1.1_1) = P(z:|Qf). It
is assumed that the conditional probability distributions (CPDs)
between a discrete observation node and discrete hidden variable
being multinomial distribution, whilst CPDs between a contin-
uous observation node and discrete hidden variable being
conditional linear Gaussian distribution [35].

3.2. Model learning

The learning of the first-stage models precedes that of the
second-stage models. Specifically, to learn a first-stage model 4, a
training sequence of length T, y}.. = (¥}, ....¥;, .. .,¥}), in which y;
is a multi-dimensional feature vector for behaviour representa-
tion, is used to estimate model parameters through the Baum-
Welch algorithm [36]. To prevent the algorithm from converging
to a poor local optimum, parameters must be initialised properly.
This is achieved by performing k-means clustering on the training
data with the number of clusters k corresponding to the number
of hidden states in the model. Subsequently, the model para-
meters are initialised based on the clustering results.

After the first-stage training, we proceed to the second phase
of the training. First, with the same training sequence, the most
probable explanation (MPE) in the state space of the first-stage

model /, is inferred by using the Viterbi algorithm [37], given as

Qty = argmaxP(Q1 71y} (1)
1:T

To train the second-stage model, the MPE is transmitted to a state
feature extraction component (see Fig. 3). As an important
interface between the second-stage model and first-stage models,
the component is responsible for extracting important features
from the MPE to form an observation vector for the second-stage
model. The feature extraction function is written as

Zt:f(Qltl|‘--‘er....,QQR). (2)

Note that the feature extraction function may vary for different
computational tasks, ranging from simple concatenation of most
probable states, state duration extraction, to more elaborative
methods such as principal component analysis [38] or neural
networks [39]. The intermediate observation vector z, is then used
as inputs by the second-stage model A® for model learning.
Parameters estimation for the second-stage model is carried out
with the similar steps applied to the first-stage models.

3.3. On-line filtering

On-line filtering is an inference process to recursively estimate
the belief state. It is known as ‘filtering’ because we are filtering
out the noise from the observations [35]. In this study, the
purpose of performing filtering is to compute the likelihood
values on-the-fly with respect to the cascade model. This process
does not require the past inputs before the current time instance
for computation; the computational time and the required
memory space are thus constant over time. Specifically, given
an unseen sequence yj.r, our aim is to obtain the normalised log-
likelihood LL’tr at time t with respect to the first-stage model and
the normalised log-likelihood LL? with respect to the second-stage
model, which are given as

r 1
LL{ = ¢ logP(W}|dr), 3)

LLE = logP(zy|A%), )

where P(y,|4r) and P(z1.|A®) are obtained from the computation
of marginal probabilities in the filtering process. In particular, the
marginal probability P(Q/ |y}, of a first-stage model is computed
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Based on Markovian assumption, we can replace P(y|Q/ .y}, ;)
with P(y;|Q/). Under the same assumption, P(Q} |y}, ;) can be
computed from the prior belief state. The normalising constant,
which makes the probabilities sum up to 1, is denoted as
ct = P(yily}, ;). It is obtained during the forward message passing
phase in the on-line filtering. By multiplying all the normalising
constants arising during the filtering, we can compute
Py} |4r) = HtT: 1 ¢l and obtain LL{r according to (3).

To compute LL%, we need to estimate the local hidden state Q)
instantly at every time t. To estimate Q}, the probabilities
P} =q!'ly;,) are first computed using (5). The most likely
hidden state is then determined by choosing the hidden state that
yields the highest probability:
Qf =argmaxP(Q/ =g; Iy}, 6)
4;

With the most likely hidden state Q' obtained using (6), the
observation input for the second-stage model is computed using
(2). Subsequently, we compute marginal probability of stage-two
model by replacing Q! with Qf and y} with z' in (5). We can then
obtain P(z;.|A%) by multiplying the normalising constants ¢§ and
compute LLf following (4).

Note that we used the Viterbi algorithm to obtain the MPE for
training because it provides more accurate estimation of hidden
state path for the training of the second-stage model. In the
testing stage, however, we employed the on-line filtering method
and find the most likely state which has the maximum
probability. A set of such states may not be exactly the same as
those obtained using the Viterbi algorithm, but they do give a
good approximation based on our experimental results. More
importantly, the computational cost is much lower than the
Viterbi algorithm, and it permits the on-line estimation of the log-
likelihoods.

4. Discriminating different temporal causes of anomalies

We decompose a complex behaviour with hierarchical struc-
ture based on two key temporal characteristics, i.e., temporal
order and temporal duration. This is achieved by using different
DBNs to model different temporal characteristics of a given
behaviour sequence.

C.C. Loy et al. / Pattern Recognition 44 (2011) 117-132

4.1. Model structure and learning

In the first stage of CasDBNs, we employ a two-layer HHMM
represented as a DBN [40] to model the hierarchical structure of a
complex behaviour (see Fig. 4). HHMM is chosen because it is
effective in modelling different stochastic levels and length scales
that present in a complex behaviour [41,22]. In particular, the
children states at the bottom layer of HHMM are used to learn
the constituent parts of atomic actions and the parent states at
the top layer of HHMM are employed to learn the atomic actions.
The state of the HHMM in layer d at time t is denoted as Q('u Since
the number of first-stage model R=1 in this case, the superscript r
is omitted. Consequently, the states of the whole model at time ¢t
can be represented by a vector [Q} ;,Q5,]. The binary indicator F; is
introduced here to enforce the fact that the top layer of HHMM
can only change state when the state at the bottom layer is
finished [40]. This DBN structure offers several advantages
compared to the original model proposed by Fine et al. [42], of
which the two main advantages are: (1) it allows one to use
generic DBN learning and inference methods [35]; (2) the exact
inference time complexity of the DBN structure is only O(QPT)
compared to O(QPT?) of original HHMM implementation, where D
is the total number of layer in an HHMM, Q is the number of states
in each layer, and T is the length of a sequence.

The first stage HHMM is employed to detect atypical temporal
order in a behaviour sequence. Specifically, we train the model
using normal sequences so that the hidden state transitional
probability captures the temporal order of normal activity
sequences. Consequently, a sequence with irregular temporal
order is assigned with a low log-likelihood since its temporal
order is poorly explained by the trained model. The normal
behaviour sequences used for training are manually segmented
into atomic actions. Note that this step is only performed during
the training phase. Once trained, the model can be used for
automatic temporal segmentation. Alternatively, one can perform
automatic temporal segmentation during the training phase using
the methods proposed in [21,43].

A hybrid input MOHMM [44] is employed in the second stage
of the CasDBNs (see Fig. 4) which is designed to model the
temporal duration aspect of a behaviour explicitly. The MOHMM
has two observation nodes, one being discrete and the other being
continuous. To obtain the observation features for the MOHMM,
the MPE through the first stage HHMM is first estimated using the
Viterbi algorithm using (1). The intermediate observation feature
vector is then obtained using the feature extraction function f
defined in (2), which has become a function to convert the one-
dimensional sequence of state values Q! ; into a two-dimensional
sequence of observation features encoding the state label and
duration of the state, given as

zi= (z10.22.0) = (d\,1q!)), (7)
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Fig. 4. The DBN representation of the model employed for detecting and differentiating different types of anomalies. Continuous-valued nodes are represented in circle and
discrete-valued nodes are shown in square. Shaded nodes are observed whilst the remaining nodes are hidden.
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where g! is the state label and |qf\ >0 is the corresponding state
duration and they correspond to the discrete and continuous
observation nodes, respectively, in the second-stage MOHMM
(see Fig. 4). Note that the variable z defined in (7) differs from the
one in (2) in that, the z in (2) is formed at every time slices, whilst
the z in (7) is only available after the end of an atomic action is
automatically segmented by the first stage HHMM. After we
obtain the intermediate inputs of the second-stage model, the
learning process of the model proceeds as described in Section 3.

With this structure, the CasDBNs in Fig. 4 are able to model the
duration explicitly with a continuous observation density.
Specifically, the probability Pf(d) of state occupancy for d
consecutive frames at the ith state follows a Gaussian distribu-

tion:
2
exp <— @y > (8)

207

Pi(d) =
! giv 271
where p is the mean duration and 62 is the variance. Note that we
can use a mixture of Gaussians to approximate a more complex
duration distribution. However, a single Gaussian is found to be
sufficient for our experiments.

4.2. Anomaly detection and differentiation

For anomaly detection, given an unseen sequence, we first
compute its normalised log-likelihood LL% and LL% at time T with
respect to the first stage HHMM and second stage MOHMM using
(3) and (4), respectively. We also perform an additional step to
normalise LL} and LI with respect to the respective log-likelihood
range obtained during the training stage. The normalisation aims
to minimise the dominance of the first-stage log-likelihood over
the second-stage log-likelihood due to discrepancy in the size of
input feature vector. Anomaly detection is then achieved by
summing the log-likelihoods of the two stages, LI™ =[[}+LI%.
Specifically, if

LLJ;)m[ < Thsum, (9)

where Th®*™ is a pre-defined threshold, the unseen sequence is
detected as an anomaly.

With the behaviour-based decomposition, the proposed
cascade model can also be utilised for anomaly differentiation.
In particular, our CasDBNs are designed in a way that the DBNs at
the two stages have different levels of sensitivity to different
types of anomalies. Specifically, the first stage HHMM is more
sensitive to irregular temporal orders than atypical durations,
whilst the second stage MOHMM, specially designed for more
accurate duration modelling, is more sensitive to durational
anomalies. The different characteristics of the two models are
taken advantage of by the following procedure for anomaly
differentiation. Firstly, an unseen behaviour sequence is examined
if it is an anomaly using (9). Secondly, if it is classified as an
anomaly, LLy and LI§ of the unseen behaviour sequence are
compared with two thresholds Th' and Thé, respectively. It is then
classified into different types of anomaly using the decision rules
listed in Table 1. The ‘-’ symbols in Table 1 imply that the
framework does not rely on the log-likelihood generated by that
particular stage for decision making because the corresponded

Table 1
Decision rules employed in anomaly differentiation.

LL} < Th'? LIE < Th®? Decision
Yes - Abnormal temporal order
- Yes Atypical duration

model is less sensitive to that anomaly type. The two thresholds
Th! and Th® are determined automatically through a grid search
using cross validation. More precisely, given a validation dataset,
the optimal values of Th! and Th® are determined as those that
yield the best cross-validation accuracy.

4.3. Discussion

One of the key features of our CasDBNs is that the state
occupancy duration, which corresponds to the duration of atomic
actions in a complex behaviour, is modelled explicitly through a
hybrid input MOHMM. The formulation of hybrid input MOHMM
is similar to that proposed by Kimball and Como [44] for accurate
audio segmentation. Here we extend the idea for modelling
activity duration and durational anomalies detection. The way we
model duration is in contrast to most existing DBN-based
approaches for anomaly detection [10,23], which perform implicit
duration modelling. Here we provide an in-depth discussion on
the pros and cons of existing DBNs on duration modelling and
how explicit modelling can bring about more accurate and
importantly, computationally more efficient duration modelling,
therefore resulting in durational anomalies being better detected
and distinguished from those caused by abnormal temporal order
of atomic actions.

Let us first look at how state occupancy duration is modelled
implicitly using a standard first-order HMM. The probability of
staying at a certain hidden state in a first-order HMM decreases
exponentially with time, with the state duration following a
geometric distribution. Specifically, the probability of state
occupancy for d consecutive frames at the ith state P(d) is equal
to the probability of d—1 self-loop transitions and a state exit
transition:

Py(d) = af'(1-ay), (10)

where a;; is the self-transition probability. An example of the
geometric distribution is shown in Fig. 5 (HMM curve). However,
typical behaviour sequences rarely follow a geometric duration
distribution. Instead, in most cases there will be an expected
duration for each atomic actions, and duration that is either too
short or too long would be considered as abnormal. First-order
HMM is thus not suitable to model duration distribution of typical
behaviour sequences and insensitive to durational anomalies.
Expanded state HMMs (ESHMMs) [28], such as multinomial
HSMM (Mult-HSMM) [23] and Coxian HSMM (Cox-HSMM) [24]
aim to provide a more accurate modelling of duration of arbitrary
distribution through expanding a hidden state into intercon-
nected sub-phases. However, the computational cost of learning
and inference for an ESHMM increases drastically as the length of
a sequence increases. This makes ESHMMSs unsuitable for
modelling behaviour sequences with long duration. In particular,
for a Mult-HSMM, the number of sub-phases required has to be
the same as the maximum duration of a behaviour sequence,
which in turn determines the number of free parameters needed
to describe the model. Fig. 5 show that although it can
approximate the actual distribution accurately, it needs a large
number of parameters and thus computationally expensive. To
overcome this problem, Cox-HSMM was proposed which requires
fewer parameters in duration modelling (see the table in Fig. 5) by
approximating the duration distribution with fewer sub-phases.
However, as can be seen from Fig. 5, fewer number of sub-phases
leads to poorer approximation as compared to Mult-HSMM. In
essence, Cox-HSMM requires more sub-phases to maintain the
same level of approximation accuracy given sequence with
increased duration. This will lead to the increase of parameters
in the model. To make the ESHMMs computationally tractable,
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Fig. 5. Comparing different DBNs with our CasDBNs for modelling state occupancy distribution. The distribution of the actual duration follows a Gaussian distribution with
a mean of 20 time slices and standard deviation of 5. Estimated duration distributions are obtained using different models, namely HMM, Mult-HSMM, Cox-HSMM and
CasDBNs. For the Mult-HSMM, the number of phases was set to 30, which was the maximum duration obtained from the synthetic sequences, while the number of phases
of Cox-HSMM was set to 10 in the study. Single Gaussian was used in the observation node of second-stage model in CasDBNs. The table next to the plot summarises the

number of parameters of different models used for duration modelling.

compromise has to be made to reduce the number of sub-phases,
therefore sacrificing the approximation accuracy and detection
performance.

The only way to achieve both accurate duration modelling and
small number of model parameters regardless of the length of a
behaviour sequence is to model the duration explicitly in a
parametric form. Our CasDBNs have done exactly that through the
second stage MOHMM. In particular, the framework requires a
fixed number of Gaussian mixtures (even though a single
Gaussian was used in our study) to model a duration distribution,
and importantly the number of mixtures is determined by the
complexity of the duration distribution rather than the length of
the sequence. Therefore, the proposed framework only needs to
adjust its Gaussian parameters given sequences with arbitrary
duration length. Fig. 5 show that with a much smaller number of
parameters, our CasDBNs can achieve the same accuracy as Mult-
HSMM and outperforms Cox-HSMM. Thanks to the decomposition
strategy, in most cases the number of training data needed for our
CasDBNs would not be substantially different from an HMM.

5. Detecting abnormal correlations

In this section, the proposed framework is formulated for
detecting abnormal correlations among multiple objects in a
wide-area outdoor scene.

5.1. Behaviour decomposition based on visual context

Based on visual context learning, we decompose behaviours in
a complex wide-area scene into regions in which distinctive
behaviour patterns are detected and represented as discrete local
atomic events. This is achieved by using a discrete event based
approach introduced by our previous work [8]. Without relying on
object segmentation and tracking, the approach is not affected by
the severe occlusions commonly occurred in a busy outdoor
scene. We provide a brief description of the approach here to
facilitate explanations in other sections appeared later.

A continuous video sequence V is first segmented uniformly
into T non-overlapping video clips V={vy,...,v,...,vr}, with each
video clip v, containing Ny frames. Foreground blobs are
represented as 10 dimensional feature vectors which include
object centroid (%, ¥), width and height of bounding box (w, h),
occupancy (Ry), ratio of the dimension (Ry), the mean optical flow
of the bounding box (u, v), and the scaled optical flow (R,=u/w,
R,=v/h), given as fy,, =[X,y,w,h,Rf,Rq,u,v,Ry,Ry]. The blobs are
then clustered using k-means into a set of atomic events (e.g.
vehicles stop at the middle of intersection waiting for right-
turning) across all the frames in a clip v.. Upon obtaining atomic
events for all clips, global clustering based on Gaussian mixture

model (GMM) is performed to group the atomic events into coarse
global event classes. Based on the distributions of the clusters,
spatial scene segmentation is carried out to decompose a scene S
into R semantic regions with R automatically determined through
model selection, where S={sq,...,5,,...,Sg}. Specifically, two pixels
are considered to be similar and grouped together if similar
classes of events occurred there. Consequently, behaviour pat-
terns within each segmented region are similar to each other
whilst being different from those in other regions. To detect the
atomic events more accurately, the aforementioned clustering
method is repeated within each region with automatic feature
selection to group foreground blobs into finer regional event
classes. As a result, a video clip v, is spatially represented by
segmented regions (see Fig. 6(b)), each of which contains a set of
correlated regional atomic events. To construct the input features
for the proposed cascade model, we represent the behaviours
captured in a video clip v, using R binary vectors {y},....y5....y%},
which correspond to the occurrence of regional events in each
region. Specifically, a binary vector y; is given as
V=01 Ve Y. We have
. 1 if atomic event e}, occurs in region s,, 1 <n<N;

Yne= { 0 otherwise

am

where e}, is the atomic event belonging to the nth regional event
class in region s, and N, is the total number of regional event
classes in region ..

5.2. Model structure and learning

The first stage of the CasDBNs for multi-object behaviour
modelling is composed of multiple MOHMMs (see Fig. 7), each of
which is used to model the temporal evolvement of regional
atomic events within a single region. The second stage consists
of a MOHMM for modelling the state sequences inferred from
the first stage MOHMMSs, and is responsible for learning the
global correlations among decomposed local behaviours across
regions. The MOHMMs in both stages are ergodic models having
discrete-valued observation nodes and discrete hidden variables.
Note that discrete MOHMMs are chosen because of the discrete
representation of the regional events. In contrast to conventional
HMM that emits a symbol in a given state, a MOHMM allows a
state to produce multiple symbols in every time step. It is thus
ideal for modelling multiple atomic events temporally in each
region in the first stage, and modelling the temporal correlations
of local behaviours across multiple regions in the second stage.

Parameter estimation is carried out using Baum-Welch
algorithm. After the first-stage training, the MPE through a
first-stage model A, is obtained by using the Viterbi decoding
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Fig. 6. Scene segmentation according to spatial visual context. (a) A traffic scene, (b) segmented regions.
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Fig. 7. The proposed cascade model for detecting abnormal correlations among multiple objects.

according to (1). We use the feature extraction function f to
concatenate the MPEs obtained across first-stage models to form
the second-stage input z;:

z. =, ... ,of,....of (12)

where r=1,...,R. The second-stage input z; is then used for
second-stage model training. The parameter estimation proce-
dures follow the same steps implemented during first-stage
training.

5.3. Detecting abnormal correlations

In the detection phase, both normalised log-likelihood values
Lthr and LL? can be used for anomaly detection. However, since we
are interested in global behaviour anomalies that are defined in
the correlations of decomposed behaviours, the use of second-
stage log-likelihood LLf for anomaly detection would be more
appropriate since the second-stage model implicitly models the
correlations among local atomic events and collectively learn the
evidences obtained from all first-stage models. Abnormal correla-
tion detection is thus achieved by computing LLf according to (4)
and comparing the obtained value against a pre-defined threshold
Th. Specifically, if LL¥ < Th, the unseen sequence is detected as
anomalous.

6. Experiments

We first examine the effectiveness of the behaviour-based
decomposition and the CasDBNs in detecting and discriminating
different types of anomalies in indoor environments. The
performance of the proposed framework is then evaluated on

detecting abnormal correlations among multiple objects in a busy
traffic junction.

6.1. Discriminating different temporal causes of anomalies

Two experiments were conducted. In the first experiment, we
studied the abnormality detection capability of CasDBNs. In the
second experiment, we examined the performance of CasDBNs on
discriminating different types of abnormal behaviours. The
experimental results were then compared with those obtained
using alternative models including a first-order HMM, an HHMM
and a S-HSMM [10], which is an hierarchical extension of the
Coxian HSMM [24].

Datasets: Two video datasets, collected in an office scenario
and a café scenario, respectively, were employed in the experi-
ments. The videos were recorded at 15 Hz and have a frame size of
320 x 240 pixels and 320 x 256 pixels, respectively. The office
dataset consists of 60 sequences (32998 frames) in total,
including 25 normal behaviour sequences, 15 sequences contain-
ing atypically long duration and 20 sequences with atypical
temporal order. Examples of the office sequences can be seen in
Fig. 1. A total of 60 sequences (31338 frames) were collected for
the café dataset, including 30 normal behaviour sequences, 10
sequences containing atypically long duration, 10 sequences
containing atypically short duration and 10 sequences with
abnormal temporal order. The typical temporal order and
duration (computed as the mean duration in the normal
sequences) of the atomic actions involved in both datasets are
given in Fig. 8.

Background subtraction was performed using adaptive
Gaussian mixture background modelling [45]. Feature extraction
proceeded by extracting the object centroid (x,y), occupancy (Ry),
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Fig. 9. Averaged ROC curves for the HMM, HHMM, S-HSMM and CasDBNs based on (a) office dataset, (b) café dataset.

ratio of the dimension (R;), and ratio of the minor axis to the
major axis (R.), of an ellipse fitted to the blob. The features
extracted were represented as a feature vector £, = [X,¥,Rs, R4, Re]
and used as the input to the first stage HHMM in the CasDBNs
(see Fig. 4).

We applied random sample cross validation in this experi-
ment. In particular, in each cross-validation run, we randomly
selected 15 normal behaviour sequences from the office dataset
and 20 normal sequences from the café dataset to train the
CasDBNs, a first-order HMM, an HHMM and a S-HSMM. We varied
the number of hidden states in each model and report the best
results obtained from each model. Specifically, the number of
hidden states in the first-order HMM was varied from 2 to 15. It
turned out that an HMM with 12 states gave the best result on
office dataset, whist an HMM with 13 states yielded the best
result on café dataset. For the standalone HHMM, S-HSMM and
the first stage HHMM in CasDBNs, we set the number of parent
states |Q!| at the top layer as equal to the number of atomic
actions involved in the dataset. The number of children states |Q}|
corresponding to each parent state was varied from 2 to 6. The
optimal numbers of children states were 4 and 3 for the office
dataset and the café dataset, respectively. For the second-stage
MOHMM, the number of hidden states was set to the number of
atomic actions involved.

An additional parameter to determine for S-HSMM is the
number of sub-phases for modelling the behaviour duration. We
tested the performance of S-HSMM with different number of sub-
phases and found that 20 sub-phases for each children state
yielded a reasonable balance between the accuracy and computa-
tional complexity. It is worth pointing out that the total number
of sub-phases of a S-HSMM is enormously large even with a small
number of parent states and children states. For instance, a S-
HSMM with four parent states with three children states each
would has 240 sub-phases when the number of sub-phases is set
to 20 for each children state.

Anomaly detection: The first experiment was to test the
performance of the proposed framework on anomaly detection.
In each cross-validation run, normalised log-likelihood LLi®™ was

computed and compared with varying threshold Th®**™. The
receiver operating characteristic (ROC) curve averaged over 10
runs of the four models are shown in Fig. 9. The results show
that the proposed framework outperforms the other three
models. As expected, with the intrinsic hierarchical structure of
the behaviours being explicitly modelled, HHMM outperforms
HMM. On top of the hierarchical structure modelling, S-HSMM
provides more accurate duration modelling via state expansion.
Consequently, S-HSMM achieves better performance than
HHMM. As pointed out in Section 4.3, our CasDBNs offer more
accurate duration modelling at a much lower computational
cost compared to an expanded state HMM such as S-HSMM
(214 parameters compared to 799 for S-HSMM), thanks to the
explicit duration modelling enabled by the cascade model
structure. In particular, it is noted that our CasDBNs are more
sensitive to durational anomalies, leading to the better detection
performance.

Anomaly differentiation: The objective of the second experi-
ment is to evaluate the capability of behaviour-based decom-
position and CasDBNs in distinguishing different types of
anomalies, i.e. anomalies in temporal order and duration. The
datasets were divided into training set, validation set and testing
set. The number of training sequences was the same as that in the
previous experiment. We randomly picked 15 sequences from
office data set and 20 sequences from café dataset as validation
set to find the optimal values of thresholds Th' and Thé. The rest of
the dataset were reserved for testing. The experimental results on
the office dataset show that the CasDBNs are able to distinguish
durational abnormality and temporal order abnormality at an
accuracy rate of 82.40%, whilst an accuracy rate of 95.33% is
obtained in the experiment on the café dataset.

Figs. 10 and 11 show the levels of sensitivity of HMM,
S-HSMM, the first stage HHMM and the second stage MOHMM
towards the two different types of anomalies. Each log-likelihood
value in these plots corresponds to one behaviour sequence. From
Figs. 10(a-c) and 11(a-c), it is evident that HMM, HHMM and
S-HSMM are insensitive to abnormal temporal duration, whilst
being sensitive to abnormal temporal orders. Importantly, when
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Fig. 10. Normalised log-likelihood plot (averaged over 10 runs) for (a) HMM, (b) S-HSMM, (c) CasDBNs Stage 1—HHMM and (d) CasDBNs Stage 2—MOHMM based on
office dataset. Y-axis represents the normalised log-likelihood, while X-axis represents the index of test sequences. The first 5 sequences are normal sequences, 6-15 are
sequences with atypical duration, and 16-30 are sequences with abnormal temporal order.
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Fig. 11. Normalised log-likelihood plot (averaged over 10 runs) for (a) HMM, (b) S-HSMM, (c) CasDBNs Stage 1—HHMM and (d) CasDBNs Stage 2—MOHMM based on café
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sequences with abnormal temporal order.

Fig. 12. The frames with the corresponding detected foreground blob. Imperfect blob detection caused by lighting change, which in turn causes the sequence being

wrongly classified. (a) Frame 33, (b) Frame 34.

used alone, they cannot be used to distinguish the two types of
anomalies. In comparison, the second stage MOHMM is sensitive
to durational anomalies. Combined with the first stage HHMM,
they act as filters that are selective to different anomaly types,
thus offering a solution to the behaviour differentiation task.

Most of the misclassifications by our CasDBNs were caused by
the noise in behaviour representation due to the changing lighting
conditions. The adaptive background subtraction method was
configured to have a slow adaptation rate; it thus could not adapt
to the sudden change of illumination. An example of such errors is
depicted in Fig. 12, from which we can observe a drastic lighting
change between two consecutive frames. This erroneous feature
input triggered both the first stage HHMM and the second stage
MOHMM to believe that the current atomic action has finished
and another atomic action out of order has begun. Consequently,
this sequence, correctly detected as an anomaly, was wrongly
classified as an anomaly with abnormal temporal order following
the decision rules set out in Table 1.

6.2. Detecting abnormal correlations

Dataset: The road traffic video footage used in this experiment
was recorded at 25Hz and resized to a resolution of 360 x 288

pixels. The total duration of the recording is approximately
25 min, showing a busy road junction regulated by traffic lights,
dominated by four types of traffic flows as illustrated in Fig. 13.
Specifically, Flow A corresponds to traffic in vertical directions.
Flow B, C and D are regarded as traffic flows in horizontal
directions. In particular, Flow B represents left-turning and right-
turning traffics by vehicles from vertical directions. Flow C
corresponds to rightward traffic and Flow D corresponds to
leftward traffic. The order of the traffic flow depends upon how
busy the vertical traffics are. During most of the recording, the
scene was extremely crowded. Consequently, Flow B can only
take place after Flow A finishes and is followed by C and D,
(i.e. the typical temporal order is A, B, C, D). However, it is noted
that very occasionally, there is a gap in Flow A which is big
enough for Flow B to take place until the gap closes. In other
words, Flow A and B can occur alternatively during the vertical
traffic phase. This makes global behaviour modelling and anomaly
detection challenging in this scene as vehicles behaviours and the
correlations among them are determined by not only the traffic
light cycles, but also the traffic volume as well as the driving
habits and reactions of the drivers.

A total of 123 non-overlapping clips were segmented from the
video. In particular, 73 clips (21900 frames) were used for
training, whilst 50 clips (15 000 frames) were reserved for testing.
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Fig. 13. Traffic flows observed in the dataset. (a) Flow A, (b) Flow B, (c¢) Flow C, (d) Flow D.

Table 2
Ground truth of the traffic dataset.

Category Description Clip no.
A Anomalies that are visually obvious 3,4

B Rare and ambiguous behaviours 25, 35
C Anomalies supported by weak evidence 10, 41

Scene segmentation was applied on the dataset resulting in six
semantic regions (see Fig. 6(b)). A total of 30 local atomic events
were automatically discovered in the six regions.

Ground truth: Prior to the evaluation of the proposed method,
ground truth was first obtained by performing exhaustive
frame-wise examination on both the training and testing set.
Consequently, six out of 50 testing clips were labelled as anomaly.
They are summarised in Table 2.

Following the definitions given in Section 5.3, clips 3 and 4
were categorised in Category-A since they contain anomalies
featured with abnormal correlations that are visually obvious. In
particular, clip 3 captures the event where all the vehicles in
vertical traffic flow stopped moving either because the drivers
heard the siren and/or saw the fire engine approaching the
junction from the left entrance (see Fig. 14(a)). In clip 4, the fire
engine entered the junction and caused interruptions to the
vertical traffic at both directions (see Fig. 2(a)). Clips 25 and 35
correspond to abnormal traffic flows where vehicles did not
follow the typical temporal order of A-B-C-D. In particular, clip
25 shows a motorbike making a left turn during the vertical traffic
flow A. In clip 35, vehicles were using a gap in the middle of traffic
flow A to make right turn and left turn at the same time interval.
Both clips were grouped into Category-B because they belong to
rare/unusual behaviour with low frequency of occurrence in the
training set (out of 73 training clips, only three clips correspond to
left-turn and two clips correspond to turning both ways). Clip 10
(see Fig. 14(c) and also Fig. 2(b)) shows a white van running the
red light from the left to right horizontally (see the caption of
Fig. 2 for details), and Clip 41 is featured with a car jumping the
red light in the vertical direction. Both clips were labelled as
anomalies belonging to Category-C, which are undetectable even
by human without comprehensive examination of the traffic cycle
duration over time.

Model construction: For CasDBNs, the number of hidden states
in the second-stage MOHMM was set to 2 with each of them
representing the horizontal and vertical traffic flows, respectively.
To obtain the optimal number of hidden states in each first-stage
model, we varied the number of states from 2 to 10, and observed
the matching accuracies of the global traffic phases (correspond-
ing to the red-green traffic light phases) inferred using the
training data in each setting with the ground truth global phases.
The first-stage model with five hidden states yielded the best
accuracies. It is observed that different states of a model
correspond to different stages of a regional behaviour (e.g.
vehicles waiting in the region, vehicles start moving).

We employed a MOHMM, a CHMM, a PaHMM, and an
hierarchical MOHMM (HMOHMM) as baseline methods in this
experiment. The number of hidden states of MOHMM was set to 2
since the global traffic flows have two phases (vertical and
horizontal). We let the MOHMM learned directly from the
observation space and without behaviour-based decomposition.
Thus, each hidden state of the model consisted of 30 observation
nodes, each of which corresponds to one class of atomic events
detected. Note that it is possible for a MOHMM to learn from the
regional information, i.e. to let each observational node encode all
possible combinations of regional events. However, it was found
from our experiment (not reported here) that the false detections
obtained were unacceptably high due to the sparse observational
vectors. We implemented a CHMM with six coupled chains with
each of them correspond to one segmented region. Following the
same setting as in the first-stage MOHMM models of CasDBNs,
each chain in CHMM had five hidden states. The number of
observation nodes per hidden state in each chain was equal to the
number of atomic events detected in respective region. The
PaHMM had a similar setting as the CHMM but with the chains
decoupled. As for the HMOHMM, there are multiple MOHMMs, of
which their hidden states were conditionally dependent on
another common hidden variable. Together they formed two
hidden layers that had the same definition as respective hidden
layer of the two stages in the CasDBNs. The key difference
between the HMOHMM and the CasDBNs is that the former has
additional dependencies between the two hidden layers, whilst
the two stages of CasDBNs were coupled using the inferential
outputs of the first stage. Note that the CHMM, PaHMM and
HMOHMM took advantage of our behaviour-based decomposition
to reduce the computational cost. The key difference against our
CasDBNs is therefore on the model structure.

Experimental results: The normalised log-likelihoods for each
test clip was computed and compared against a threshold Th for
anomaly detection. Th was varied to obtain the ROC curves of the
models, as shown in Fig. 15. As can be seen from the ROC curves,
the detection result of CasDBNs is significantly better than those
obtained using the baseline methods.

To gain some insights into the causes of the misdetections and
false alarms, the normalised log-likelihoods obtained using the
five models are plotted in Fig. 16. As can be observed, all models
except the CasDBNs suffered from high false alarm rate. In
particular, although the CHMM was able to detect anomalies that
are supported by strong visual evidences (i.e., clips 3 and 4), it
missed other anomalies that are either ambiguous (Category-B) or
those that are supported by weak visual evidences (Category-C).
The poorest result is observed in the HMOHMM. As compared to
the CasDBNs, the structure of the HMOHMM is inevitably more
complex due to the additional dependencies between the first
stage and the second stage. As a result, the model is not able to
learn the ‘true’ dependencies given limited amount of training
data, leading to poor result. In comparison, Fig. 16 suggests that
our CasDBNs are more selective. In particular, anomalies
belonging to Categories A and B (Clips 3, 25, and 35) can be
easily detected as abnormal behaviours with only 1 false positive.
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Fig. 14. Example clips for abnormal behaviours that are visually obvious featured with apparent abnormal correlations (Category-A), abnormal behaviours that are
ambiguous (Category-B), and clips that contain a subtle anomaly that is almost undetectable by human (Category-C). The corresponding objects that caused the anomalies
are highlighted using bounding boxes. (a) Clip 3 (Category-A), (b) Clip 35 (Category-B), (c) Clip 10 (Category-C), (d) Clip 41 (Category-C).
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Fig. 15. The receiver operating characteristic (ROC) curves. The area under ROC
(AUROC) achieved by using the single MOHMM, PaHMM, CHMM and HMOHMM
was 0.5720, 0.5644, 0.6080, and 0.4224, respectively, compared with 0.9280
obtained by using the proposed framework.

More importantly, the model correctly detected anomalies
supported by weak visual evidence, namely clip 10 at the cost
of 4 false positives, and clip 41 at the cost of 2 false positives. In
the analysis of clip 41, we found that the events triggered in
regions 2 and 5, i.e. the route taken by the car, were not correlated
with events occurrence in other regions. The conflict of local
events occurrence was successfully captured by CasDBNs in the
first-stage inferential outputs, and was collectively passed to the
second-stage model for global anomaly detection. The second-
stage model of CasDBNs was then able to detect that the inferred
states from stage-one models were out of the normal temporal
order, resulting in a low log-likelihood for clip 41. The capability
of combining the visual evidences from local regions for global
anomaly detection is unique to CasDBNs and explains its superior
ability to detect anomalies in Category-C. For instance, to detect

clip 41, CHMM, PaHMM, MOHMM, and HMOHMM recorded more
than 15 false positives.

The high false alarm rate (see Fig. 15) observed in the baseline
methods was mainly caused by the fact that they are susceptible
to noise, since all models learn directly from the observation
space without any mechanism to prevent error propagation. An
example can be seen in Fig. 17, which shows that in clip 13,
vehicles in region four were mistakenly grouped as a large blob
with vehicles in region 1 (highlighted using the black bounding
box) causing errors in event occurrence in region 4, which
consequently led to a false alarm using these models. In contrast,
the CasDBNs were able to cope with this error by estimating the
most probable state and the influence of the error was further
reduced by collectively considering all the evidences from
different segmented regions. As can be seen from Fig. 16(e),
clips 13 yielded much higher log-likelihood value using the
CasDBNs, indicating the model is able to cope with the erroneous
input effectively.

Our experiments on multi-object correlation anomaly detec-
tion demonstrate that the CasDBNs are more robust to noise and
errors exhibited in behaviour representation than the alternative
models. Given erroneous features caused by shadows, occlusions,
and changing lighting condition, conventional DBN models are
unable to filter out these errors in the observation space or
prevent them from propagating to the state space. As a result,
these models suffer from the problem of high false alarm rate. Our
results also suggest that even with behaviour-based decomposi-
tion, alternative models for multi-object correlation modelling
(e.g. CHMM and PaHMM) are unable to accurately capture the
temporal dynamics of the causal relationships between objects.
They thus failed to detect subtle behavioural anomalies supported
by weak visual evident such as Clips 10 and 41 in Fig. 14. On the
contrary, the first stage in the CasDBNs is connected to the second
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stage via its inferential outputs, which can minimise the
propagation of noise from one stage to the next. Therefore, the
model can work well given noisy data.

Object-based decomposition vs. behaviour-based decomposition:
An experiment was carried out on the traffic dataset to highlight
the inadequacy of object-based decomposition and advantage of
behaviour-based decomposition. Fig. 18(a) shows the trajectories
extracted from a 2-minute video clip using a Kalman filter based
tracker. In Fig. 18(b), we plot the duration of each of the extracted
trajectories (331 in total), and compare with the ground truth
trajectories (114 in total) which were obtained by manual
labelling. It is evident that the large amount of broken
trajectories makes an object-based decomposition unsuitable for
anomaly detection.

6.3. Computational cost

The CasDBNs need less parameter and is thus computationally
more tractable than alternative DBN models such as CHMM when
dealing with multiple temporal processes. Consequently the

[4)]
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CasDBNs can be readily applied to a wide area busy scene with
complex spatial and temporal visual context. This is mainly due to
the decomposition of behaviour based on visual context, and the
effective modelling of global correlations using the two-stage
structure. In particular, referring to the model structure given in
Fig. 7, the time complexity for a standard MOHMM is O(TN?),
where T is the number of time slices and N is the number of
hidden states. Therefore the proposed framework exhibits
O((R+1)TN?) complexity assuming that the second-stage model
and all first-stage models have the same number of hidden states.
In other words, the complexity of our framework scales linearly to
the number of decomposed behaviours, which is much lower than
conventional DBN models used for multi-object correlation
modelling such as CHMM. For instance, the complexity of CHMM
is exponential to the number of decomposed behaviours, given as
O(TN?C), where C is the number of coupled temporal processes
corresponding the number of objects if a tracking-based repre-
sentation is used [6] or the number of event classes if event based
representation is deployed [11].

The training and inference (on the full training/testing sets)
time needed by the models in detecting abnormal correlations
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Fig. 16. The normalised log-likelihood plots. (a) Single MOHMM, (b) PaHMM, (c) CHMM, (d) HMOHMM, (e) CasDBNs.
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Fig. 17. An example of imperfect blob detection in clip 13 which result in local atomic events being grouped into wrong clusters. The blob is marked with a black colour

bounding box.
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Fig. 18. Taking an object-based decomposition approach, objects are tracked in a busy traffic scene resulting in large number of broken trajectories. (a) Trajectories,

(b) histogram of duration.
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Table 3

The training and inference time (on the full training/testing set) averaged over 10
runs along with the standard deviation of the MOHMM, PaHMM, CHMM,
HMOHMM, and CasDBNs in Matlab implementation.

Model Training time (s) Inference time (s)

Single MOHMM 114.5500 +0.5725 2.2824 +0.0009

PaHMM 404.3969 +7.6180 11.1020 +0.3310
CHMM 1052.8067 +15.1522 30.0124 +0.5455
HMOHMM 448.3300 +9.5261 19.5817 +0.4374
CasDBNs 160.7282 +0.5488 5.8180 +0.1819

(Section 6.2) are summarised in Table 3. The platform employed
in the experiments has a dual-Core 3 GHz processor with 4 GB of
RAM.

6.4. Limitations and possible extensions
The proposed framework has several limitations:

(i) Even though individual stages in CasDBNs are generative, the
CasDBNs itself cannot be used in a fully generative fashion
due to the lack of dependencies between stages. Never-
theless, the primary objective of using CasDBNs is for
detecting and discriminating anomalies, rather than generat-
ing new activity sequences. Importantly, compromising the
generative capability offers computational gain that is critical
for real-time detection, robustness to noise and discrimina-
tion of video anomalies.

(ii) The proposed model can only perform atypical duration
detection after a full sequence of an atomic action is
automatically segmented. This is a trade-off between the
per time frame detection given partial observation and the
explicit modelling of the whole duration. Further exploration
is needed to overcome this shortcoming.

(iii) The first stage of CasDBNs is still sensitive to noise in the task
of discriminating different types of anomalies. This is because
we have to use the output from both stages to make the
decision on the anomaly type, with the first-stage model still
under the direct influence of the erroneous behaviour
representation. To mitigate this problem, apart from improv-
ing the image pre-processing, one can monitor the reliability/
confidence value of low-level features and stop the anomaly
detection process temporarily when low feature reliability
value (which is possibly caused by noise) is observed.

In this study, we choose MPE to form the intermediate
observation for the subsequent DBN stage, due to its good
trade-off between simplicity and effectiveness. Nonetheless,
alternative feature extraction methods exist and need to be
investigated. Although only a two-stage CasDBNs are employed in
this study, the proposed framework can be generalised to have
more stages to model more complex behaviours (e.g., more types
of anomalies, more complex visual contexts). One of the ongoing
work is to extend the framework for the detection of abnormal co-
occurrence of events captured by a network of cameras, for which
CasDBNs of more than two stages are required. A possible
implementation is to add an additional stage on top of the
second-stage model to learn the temporal dependency and co-
occurrence of behaviours captured by a small local camera
network. The hidden states of the third stage then correspond
to the phases of global multi-camera behaviour that can only be
interpreted across different camera views. Beyond that, the fourth
stage will be required when behaviours are modelled across
different local camera networks. When we extend the framework
to more stages, we would foresee longer training time and

inference time. However, these problems can be effectively solved
by using efficient approximate inference algorithms [46].

7. Conclusions

We have presented a framework for detecting anomalies
exhibited in complex behaviours which are more subtle and
difficult to detect owing to the complex temporal characteristics
and correlation among multiple objects’ behaviours. In contrast to
conventional methods that perform object-based decomposition
and employ standalone models for complex behaviour modelling,
we have proposed to decompose complex behaviour in accor-
dance with different temporal characteristics and visual contexts
and model the decomposed behaviours with a cascade of DBNs.
The experimental results have shown that the proposed frame-
work has a unique capability of abnormality differentiation,
lacking from the existing techniques. In addition, while alter-
native methods fail to detect durational abnormality accurately,
the framework is sensitive to abnormal duration in complex
behaviours. In multiple object scenarios, we have demonstrated
that framework’s capability in coping with the noise and errors in
behaviour representation. More importantly, it has shown super-
ior performance in detecting subtle anomalies that are ambiguous
or difficult to detect when objects are viewed in isolation. Both
behaviour-based decomposition and cascaded structure are
crucial for achieving the superior performance. Without the
behaviour-based decomposition, the correlation cannot be mod-
elled effectively (and will be computationally less tractable). On
the other hand, without the cascaded structure, the model would
be susceptible to noise presented in the low-level feature space.

References

[1] W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveillance of object
motion and behaviors, IEEE Transactions on Systems, Man, and Cybernetics
34 (3) (2004) 334-352.

[2] HM. Dee, S.A. Velastin, How close are we to solving the problem of
automated visual surveillance? Machine Vision and Applications 19 (5-6)
(2008) 329-343.

[3] T.B. Moeslund, A. Hilton, V. Kriiger, A survey of advances in vision-based
human motion capture and analysis, Computer Vision and Image Under-
standing 104 (2) (2006) 90-126.

[4] N. Johnson, D.C. Hogg, Learning the distribution of object trajectories for
event recognition, Image and Vision Computing 14 (8) (1996) 609-615.

[5] R. Fraile, S.J. Maybank, Vehicle trajectory approximation and classification,
in: British Machine Vision Conference, Southampton, UK, 1998, pp. 832-840.

[6] M. Brand, N. Oliver, A. Pentland, Coupled hidden Markov models for complex
action recognition, in: IEEE International Conference on Computer Vision and
Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 994-999.

[7] C. Vogler, D. Metaxas, A framework for recognizing the simultaneous aspects
of American sign language, Computer Vision and Image Understanding 81 (3)
(2001) 358-384.

[8] J. Li, S. Gong, T. Xiang, Scene segmentation for behaviour correlation,
in: European Conference on Computer Vision, Marseille, France, 2008,
pp. 383-395.

[9] S. Gong, T. Xiang, Recognition of group activities using dynamic probabilistic
networks, in: [EEE International Conference on Computer Vision, Nice, France,
2003, pp. 742-749.

[10] T.Duong, H. Bui, D. Phung, S. Venkatesh, Activity recognition and abnormality
detection with the switching hidden semi-Markov model, in: IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, San Diego,
CA, USA, 2005, pp. 838-845.

[11] T. Xiang, S. Gong, Beyond tracking: modelling activity and understanding
behaviour, International Journal of Computer Vision 67 (1) (2006) 21-51.

[12] Y. Du, F. Chen, W. Xu, Y. Li, Recognizing interaction activities using dynamic
Bayesian network, in: International Conference on Pattern Recognition, Hong
Kong, China, 2006, pp. 618-621.

[13] T. Xiang, S. Gong, Video behaviour profiling for anomaly detection,
IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (5)
(2008) 893-908.

[14] Y. Shi, A. Bobick, 1. Essa, Learning temporal sequence model from partially
labeled data, in: IEEE International Conference on Computer Vision and
Pattern Recognition, New York, NY, USA, 2006, pp. 1631-1638.



132 C.C. Loy et al. / Pattern Recognition 44 (2011) 117-132

[15] M. Perse, M. Kristan, ]. Pers, G. Music, G. Vuckovic, S. Kovacic, Analysis of multi-
agent activity using petri nets, Pattern Recognition 43 (4) (2010) 1491-1501.

[16] M. Brand, Understanding manipulation in video, in: International Conference
on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996,
pp. 94-99.

[17] Y.A. Ivanov, A.F. Bobick, Recognition of visual activities and interactions by
stochastic parsing, IEEE Transactions on Pattern Analysis and Machine
Intelligence 22 (8) (2000) 852-872.

[18] G. Medioni, I. Cohen, F. Brémond, S. Hongeng, R. Nevatia, Event detection and
analysis from video streams, IEEE Transactions on Pattern Analysis and
Machine Intelligence 23 (8) (2001) 873-889.

[19] L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis,
Pattern Recognition 36 (3) (2003) 585-601.

[20] P. Turaga, R. Chellappa, V.S. Subrahmanian, O. Udrea, Machine recognition of
human activities—a survey, IEEE Transactions on Circuits and Systems for
Video Technology 18 (11) (2008) 1473-1488.

[21] T. Xiang, S. Gong, Activity based surveillance video content modelling,
Pattern Recognition 41 (7) (2008) 2309-2326.

[22] N.T. Nguyen, D.Q. Phung, S. Venkatesh, H.H. Bui, Learning and detecting
activities from movement trajectories using the hierarchical hidden Markov
model, in: IEEE International Conference on Computer Vision and Pattern
Recognition, San Diego, CA, USA, 2005, pp. 955-960.

[23] S. Luhr, S. Venkatesh, G.W. West, H.H. Bui, Explicit state duration HMM for
abnormality detection in sequences of human activity, in: Pacific Rim
International Conference on Artificial Intelligence, Auckland, New Zealand,
2004, pp. 983-984.

[24] T. Duong, D. Phung, H. Bui, S. Venkatesh, Efficient coxian duration modelling
for activity recognition in smart environments with the hidden semi-Markov
model, in: International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, Melbourne, Australia, 2005, pp. 277-282.

[25] M. Russell, RK. Moore, Explicit modelling of state occupancy in hidden Markov
models for automatic speech recognition, in: IEEE International Conference on
Acoustics Speech and Signal Processing, Tampa, Florida, USA, 1985, pp. 5-8.

[26] S.E. Levinson, Continuously variable duration hidden Markov models for
automatic speech recognition, Computer Speech and Language 1 (1) (1986)
29-45.

[27] S. Hongeng, R. Nevatia, Large-scale event detection using semi-hidden
Markov models, in: IEEE International Conference on Computer Vision, Nice,
France, 2003, pp. 1455-1462.

[28] M.J. Russell, A.E. Cook, Experimental evaluation of duration modelling
techniques for automatic speech recognition, in: IEEE International Con-
ference on Acoustics Speech and Signal Processing, Dallas, Texas, USA, 1987,
pp. 2376-2379.

[29] Y. Du, F. Chen, W. Xu, Human interaction representation and recognition through
motion decomposition, IEEE Signal Processing Letters 14 (12) (2007) 952-955.

[30] N. Oliver, B. Rosario, A. Pentland, A Bayesian computer vision system for
modeling human interactions, IEEE Transactions on Pattern Analysis and
Machine Intelligence 22 (8) (2000) 831-843.

[31] N. Oliver, E. Horvitz, A. Garg, Layered representations for human activity
recognition, in: IEEE International Conference of Multimodal Interfaces,
Pittsburgh, Pennsylvania, USA, 2002, pp. 3-8.

[32] D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, G. Lathoud, Modeling
individual and group actions in meetings with layered HMMs, IEEE
Transactions on Multimedia 8 (3) (2004) 509-520.

[33] J. Li, S. Gong, T. Xiang, Global behaviour inference using probabilistic latent
semantic analysis, in: British Machine Vision Conference, Leeds, UK, 2008,
pp. 193-202.

[34] C.C. Loy, T. Xiang, S. Gong, From local temporal correlation to global anomaly
detection, in: International Workshop on Machine Learning for Vision-based
Motion Analysis (European Conference on Computer Vision), Marseille,
France, 2008.

[35] K.P. Murphy, Dynamic Bayesian networks: representation, inference and
learning, Ph.D. Thesis, University of California at Berkeley, Computer Science
Division, 2002.

[36] L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains, The
Annals of Mathematical Statistics 41 (1) (1970) 164-171.

[37] G.D. Forney, The Viterbi algorithm, Proceedings of the IEEE 61 (1973)
268-278.

[38] Y. Wang, X. Hou, T. Tan, Recognize multi-people interaction activity by PCA-
HMMs, in: Asian Conference on Computer Vision, Hyderabad, India, 2006, pp.
160-169.

[39] H. Hermansky, D.P.W. Ellis, S. Sharma, Tandem connectionist feature
extraction for conventional HMM systems, in: International Conference
on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000,
pp. 1635-1638.

[40] K.P. Murphy, M.A. Paskin, Linear-time inference in hierarchical HMMs, in:
Advances in Neural Information Processing Systems, MIT Press, Cambridge,
2001.

[41] S. Luhr, H.H. Bui, S. Venkatesh, G.W. West, Recognition of human activity
through hierarchical stochastic learning, in: International Conference on
Pervasive Computing and Communication, Fort Worth, Texas, USA, 2003,
pp. 416-422.

[42] S. Fine, Y. Singer, N. Tishby, The hierarchical hidden Markov model: analysis
and applications, Machine Learning 32 (1) (1998) 41-62.

[43] H. Zhong, ]. Shi, M. Visontai, Detecting unusual activity in video, in: IEEE
International Conference on Computer Vision and Pattern Recognition,
Washington, DC, USA, 2004, pp. 819-826.

[44] S. F. Kimball, J. Como, Cascaded hidden Markov model for meta-state
estimation, US Patent Number: 6963835, 2005.

[45] C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-
time tracking, in: IEEE International Conference on Computer Vision and
Pattern Recognition, vol. 2, Ft. Collins, CO, USA, 1999, pp. 246-252.

[46] K.P. Murphy, Y. Weiss, The factored frontier algorithm for approximate
inference in DBNs, in: Uncertainty in Al, Seattle, Washington, USA, 2001,
pp. 378-385.

Chen Change Loy received the B.Eng degree in Electronics Engineering from University of Science, Malaysia in 2005. He is now a Ph.D candidate (Supervisors: Tao Xiang
and Shaogang Gong) in the School of Electronic Engineering and Computer Science, Queen Mary University of London. His current research interests include computer
vision and machine learning, with focus on activity analysis and abnormal behaviour recognition in surveillance video.

Tao Xiang received the Ph.D degree in electrical and computer engineering from the National University of Singapore in 2002. He is a currently a lecturer in the School of
Electronic Engineering and Computer Science, Queen Mary University of London. His research interests include computer vision, statistical learning, video processing, and

machine learning, with focus on interpreting and understanding human behaviour.

Shaogang Gong is Professor of Visual Computation at Queen Mary University of London, a Fellow of the Institution of Electrical Engineers and a Member of the UK
Computing Research Committee. He received his D.Phil in computer vision from Keble College, Oxford University in 1989. He has published over 200 papers in computer
vision and machine learning, and a book on Dynamic Vision: From Images to Face Recognition. His work focuses on motion and video analysis; object detection, tracking
and recognition; face and expression recognition; gesture and action recognition; visual behaviour profiling and recognition.



	Detecting and discriminating behavioural anomalies
	Introduction
	Discriminating different temporal causes of anomalies
	Detecting abnormal correlations

	Related work
	Cascaded Dynamic Bayesian Networks
	Model structure
	Model learning
	On-line filtering

	Discriminating different temporal causes of anomalies
	Model structure and learning
	Anomaly detection and differentiation
	Discussion

	Detecting abnormal correlations
	Behaviour decomposition based on visual context
	Model structure and learning
	Detecting abnormal correlations

	Experiments
	Discriminating different temporal causes of anomalies
	Detecting abnormal correlations
	Computational cost
	Limitations and possible extensions

	Conclusions
	References




