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Abstract

Most existing person re-identification(Re-ID) ap-

proaches achieve superior results based on the assumption

that a large amount of pre-labelled data is usually available

and can be put into training phrase all at once. However,

this assumption is not applicable to most real-world

deployment of the Re-ID task. In this work, we propose

an alternative reinforcement learning based human-in-the-

loop model which releases the restriction of pre-labelling

and keeps model upgrading with progressively collected

data. The goal is to minimize human annotation efforts

while maximizing Re-ID performance. It works in an

iteratively updating framework by refining the RL policy

and CNN parameters alternately. In particular, we for-

mulate a Deep Reinforcement Active Learning (DRAL)

method to guide an agent (a model in a reinforcement

learning process) in selecting training samples on-the-fly

by a human user/annotator. The reinforcement learning

reward is the uncertainty value of each human selected

sample. A binary feedback (positive or negative) labelled

by the human annotator is used to select the samples of

which are used to fine-tune a pre-trained CNN Re-ID

model. Extensive experiments demonstrate the superiority

of our DRAL method for deep reinforcement learning

based human-in-the-loop person Re-ID when compared to

existing unsupervised and transfer learning models as well

as active learning models.

1. Introduction

Person re-identification (Re-ID) is the problem of match-

ing people across non-overlapping camera views distributed

at distinct locations. Most existing supervised person Re-ID

approaches employ a train-once-and-deploy scheme, that is,

pairwise training data are collected and annotated manually
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Figure 1: An illustration of Deep Reinforcement Active

learning (DRAL). For each query anchor (probe), an agent

(reinforcement active learner) will select sequential in-

stances from gallery pool for human annotation with binary

feedback (positive/negative) in an active learning process.

for every pair of cameras before learning a model. Based

on this assumption, supervised Re-ID methods have pro-

gressed on several benchmarks in recent years [21, 56, 35,

52, 25].

However, in practice this assumption is not easy to adapt

due to a few reasons: Firstly, pairwise pedestrian data is

prohibitive to be collected since it is unlikely that a large

amount of pedestrian may reappear in other camera views.

Secondly, the increasing number of camera views amplifies

the difficulties in searching the same person among multi-

ple camera views. To address these difficulties, one solu-

tion is to design unsupervised learning algorithms. A few

works begin to focus on transfer learning or domain adap-

tion technique for unsupervised Re-ID [11, 44, 28]. How-

ever, unsupervised learning based Re-ID models are inher-

ently weaker compared to supervised learning based mod-

els, compromising Re-ID effectiveness in any practical de-

ployment.

Another possible solution is following the semi-

supervised learning scheme that decreases the requirement

of data annotations. Successful researches have been done

on either dictionary learning [27] or self-paced learning [14]

based methods. These models are still based on a strong as-

sumption that parts of the identities (e.g. one third of the
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training set) are fully labelled for every camera view. This

remains impractical for a Re-ID task with hundreds of cam-

eras and 24/7 operations, typical in urban applications.

To achieve effective Re-ID given a limited budget cost

on annotation, we focus on human-in-the-loop person Re-

ID with selective labelling by human feedback on-the-fly

[43]. This approach differs from the common once-and-

done model learning approach. Instead, a step-by-step se-

quential active learning process is adopted by exploring hu-

man selective annotations on a much smaller pool of sam-

ples for model learning. These cumulatively labelled data

by human binary verification are used to update model train-

ing for improving Re-ID performance. Such an approach to

model learning is naturally suited for reinforcement learn-

ing together with active learning, the focus of this work.

Active learning is a technique for on-the-fly human data

annotation that aims to sample actively the more informa-

tive training data for optimising model learning without ex-

haustive data labelling. Formally, some instance from an

unlabelled set are selected and then annotated by a human

oracle, and the label information can be employed for model

training. These operations will repeat many times until it

satisfies the termination criterion, e.g. the annotation bud-

get is exhausted. The most critical in this process is the sam-

ple selection strategy. The more informative samples from

less human annotation cost can greatly benefit the perfor-

mance. Rather than a hand-design strategy, we propose to a

reinforcement learning-based criterion. Fig 1 illustrates our

design for a Deep Reinforcement Active Learning (DRAL)

model. Specifically, we develop a model which introduces

both active learning (AL) and reinforcement learning (RL)

in a single human-in-the-loop model learning framework.

By representing the AL part of our model as a sequence

making process, since each action affects the sample cor-

relations among unlabelled data pool (with similarity re-

computed at each step), it will influence the decision of next

step. By treating the uncertainty brought by the selected

samples as the objective goal, the RL part of our model aims

to learn a powerful sample selection strategy given human

feedback annotations. Therefore, the informative samples

selected from the RL policy can significantly boost the per-

formance of Re-ID which in return enhance the ability of

sample choosing strategy. The iterative training scheme will

lead to a strong Re-ID model.

The main contributions of this work are: (1) We in-

troduce a Deep Reinforcement Active Learning (DRAL)

model, formulated to explore jointly both reinforcement

learning and active learning principles in a single CNN deep

learning framework. (2) We design an effective DRAL

model for human-in-the-loop person Re-ID so that a deep

reinforcement active learner (agent) can facilitate human-

in-the-loop active learning strategy directly on a CNN deep

network. Extensive comparative experiments show clearly

the proposed DRAL model has advantages over existing su-

pervised and transfer learning methods on scalability and

annotation costs, over existing semi-supervised, unsuper-

vised and active learning methods with significant perfor-

mance gain whilst using much less annotations.

2. Related Work

Person Re-ID. Person Re-ID task aims to search the same

people among multiple camera views. Recently, most per-

son Re-ID approaches [50, 45, 8, 10, 33, 38, 7, 53, 19, 5,

51, 9, 39, 36] try to solve this problem under the super-

vised learning framework, where the training data is fully

annotated. Despite the high performance these methods

achieved, their large annotation cost cannot be ignored. To

address the high labelling cost problem, some researchers

propose to learn the model with only a few labelled sam-

ples or without any label information. Representative algo-

rithms [32, 48, 2, 55, 23, 44, 28, 46] include domain transfer

scheme, group association approaches, and some label esti-

mation methods.

In addition to the above-mentioned approaches, some

researchers aim to reduce the annotation cost in a human-

in-the-loop (HITL) model learning process. When there is

only a few annotated image samples, HITL model learn-

ing can be expected to improve the model performance by

directly involving human interaction in the circle of model

training, tuning or testing. With the human population cor-

rect the inaccuracies happen in machine learning predic-

tions, the model could be efficiently corrected thereby lead-

ing to higher results. This circumstance sounds similar to

the situation of person Re-ID task whose pre-labelling in-

formation is hard to be obtained with the gallery candidate

size far beyond that of the query anchor. Motivated by

this, Wang et al. [43] formulates a Human Verification In-

cremental Learning (HVIL) model which aims to optimize

the distance metric with flexible human feedback continu-

ously in real-time. The flexible human feedback (true, false,

false but similar) employed in this model enables to involve

more information and boost the performance in a progres-

sive manner.

AL and RL. Active Learning has drawn many attention

in the last few decades and been exploited in Natural Lan-

guage Processing (NLP), data annotation and image clas-

sification task [41, 6, 4, 31]. Its procedure can be thought

as human-in-the-loop setting, which allows the algorithm to

interactively query the human annotator with the instances

recognized as the most informative samples among the en-

tire unlabelled data pool. This work is usually done by using

some heuristic selection methods with limited effectiveness.

Therefore, some researchers aim to address the shortcom-

ings of the heuristic selection approaches by framing the ac-

tive learning as a reinforcement learning problem to explic-

itly optimize a selection policy. In [15], rather than adopt-

6123



Fc Fc

Agent

0 0.83 0.71 0.66 0.47 0.36

0.83 0 0.85 0 0.87 0

0.71 0.85 0 0 0 0

0.66 0 0 0 0 0

0.47 0.87 0 0 0 0.77

0.36 0 0 0 0.77 0

State !"

#"$%

&"

'
query

true or false

!"$%

Fc

()

Deep Reinforced Active Learner for sample selection 

CNN

Similarity

K-reciprocal

0 0.83 0.71 0.66 0.47 0.36

0.83 0 0.85 0 0.87 0

0.71 0.85 0 0 0 0

0.66 0 0 0 0 0

0.47 0.87 0 0 0 0.77

0.36 0 0 0 0.77 0

pair-wise 

annotated data

CNN Updating & State Initialization

()

Action

Figure 2: The Deep Reinforcement Active Learning (DRAL) framework: State measures the similarity relations among all

instance. Action determines which gallery candidate will be sent for human annotator for querying. Reward is computed

with different human feedback. A CNN is adopted for state initialization and being updated by the pairwise data annotated

via a human annotator in-the-loop on-the-fly when the model is deployed. This iterative process stops when it reaches the

annotation budget.

ing a fixed heuristic selection strategy, Fang et al. performs

to learn a deep Q-network as an adaptive policy to select

the data instances for labelling. Woodward et al. [47] try

to solve the one-shot classification task by formulating an

active learning approach which incorporates meta-learning

with deep reinforcement learning. An agent learned via this

approach enables to decide how and when to request label.

Those successful applications indicate that reinforcement

learning is a natural fit for active learning.

3. Methodology

3.1. Base CNN Network

We employ the Resnet-50 [20] architecture as the base

net with ImageNet pre-train. To effectively learn the ID dis-

criminative feature embedding, we adopt both cross entropy

loss for classification and triplet loss for similarity learning

synchronously.

The softmax Cross Entropy loss function defined as:

Lcross = −
1

nb

nb
∑

i=1

log(pi(y)) (1)

where nb denotes the batch size and pi(y) is the predicted

probability on the groundtruth class y of input image.

Given triplet samples xa, xp, xn, xa is an anchor point.

xp is hardest positive sample in the same class of xa , and

xn is a hardest negative sample of a different class of xa.

Finally we define the triplet loss as following:

Ltri =

nb
∑

xa,xp,xn

[Dxa,xp
−Dxa,xn

+m] (2)

where m is a margin parameter for the positive and negative

pairs.

Finally, the total loss for can be calculated by:

Ltotal = Lcross + Ltri (3)

3.2. A Deep Reinforced Active Learner ­ An Agent

The framework of the proposed DRAL is presented in

Fig 2, of which “an agent” (model) is designed to dynami-

cally select instances that are most informative to the query

instance. As each query instance arrives, we perceive its

ns-nearest neighbors as the unlabelled gallery pool. At each

discrete time step t, the environment provides an observa-

tion state St which reveals the instances’ relationship, and

receives a response from the agent by selecting an action

At. For the action At = gk, it requests the k-th instance

among the unlabelled gallery pool being annotated by hu-

man oracle, who replies with binary feedback true or false

against the query. This operation repeats until the maxi-

mum annotation amount for each query is exhausted. When

plentiful enough pair-wise labelled data are obtained, the

CNN parameters enable to be updated via triplet loss func-

tion, which in return generates a new initial state for incom-

ing data. Through iteratively executing the sample selection

and CNN network refreshing, the proposed algorithm could

quickly escalate. This progress terminates with all query

instances have been browsed once. More details about the

proposed active learner are revealed in the following. To

clarify on our formulation of the model, Table 1 and Algo-

rithm 1 give the definitions of the notations and the entire

process of the approach, respectively.
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Table 1: Definitions of notations.

Notations Description

At, St, Rt action, state and reward at time t
τr , n train set and its size

τp pairwise annotated data set

Sim(i, j) similarity between samples i, j

dji Mahalanobis distance of i, j
q, gk query, the k-th gallery candidate

ytk binary feedback of gk at time t
Xt

p, X
t
n positive/negative sample batch until time t

Kmax annotating sample number for each query

ns action size

κ parameter of reciprocal operation

thred threshold parameter

Algorithm 1 DRAL

Input: agent π, CNN weights w, τr (size n), τp= ∅
for i = 1 : n do

Sample query q and gallery pool g from τr
while t < Kmax do

St ← (Sim,R(ni, k)) via Eq. 4-8

At : gk ← π(St), requests label for pair (q, gk)
τp← τp ∪ (q, gk)
(Rt, Sim)← (St, At) via Eq. 9

end while

optimize π∗ ← argmax
π

E[Rt + γRt+1 + ...]

optimize w by τp after several steps

end for

3.2.1 Action

The action set defines to select an instance from the unla-

belled gallery pool, hence its size is the same as the pool.

At each time step t, when encountered with the current state

St, the agent decides the action to take based on its pol-

icy π(At|St). Therefore the At instance of the unlabelled

gallery pool will be selected querying by human oracle.

Once At = gk is performed, the agent is unable to choose it

again in the subsequent steps. The termination criterion of

this process depends on a pre-defined Kmax which restricts

the maximal annotation amount for each query anchor.

3.2.2 State

Graph similarity has been widely employed for data se-

lecting in active learning framework [16, 30] by digging

the structural relationships among data points. Typically,

a sparse graph is adopted which only connects data point to

a few of its most similar neighbors to exploit their contex-

tual information. In this work, we also construct a sparse

similarity graph among query and gallery samples and take

it as the state value. With a queried anchor q and its corre-

sponding gallery candidate set g = {g1, g2, ..., gns
}, there

Re-ID features could be extracted via the CNN network,

where ns is a pre-defined number of the gallery candidates.

The similarity value Sim(i, j) between every two samples

i, j(i 6= j) are then calculated as

Sim(i, j) = 1−
dji

max
i,j∈q,g

dji
(4)

where dji is the Mahalanobis distance of i, j, else set as 0.

A k-reciprocal operation [57] is executed to build the sparse

similarity matrix. For any node ni ∈ (q, g) of the similar-

ity matrix Sim, its top κ-nearest neighbors are defined as

N(ni, κ). Then the κ-reciprocal neighbors R(ni, κ) of ni

is obtained through

R(ni, κ) = {xj |(ni ∈ N(xj , κ)) ∧ (xj ∈ N(ni, κ))} (5)

Compared to the previous description, the κ-reciprocal

nearest neighbors are more related to the node ni, of which

the similarity value is remained otherwise be assigned with

zero. This sparse similarity matrix is then taken as the initial

state and imported into the policy network for action selec-

tion. Once the action is employed, the state value will be

adjusted accordingly to better reveal the sample relations.

To better understand the update of state value, we illus-

trate an example in Fig 3. For a state St at time t, the op-

timal action At = gk is selected via the policy network,

which indicates the gallery candidate gk will be selected for

querying by the human annotator. A binary feedback is the

given as ytk = {1,−1}, which indicates gk to be the pos-

itive pair or negative of the query instance. Therefore the

similarity Sim(q, gk) between q and gk will be set as

Sim(q, gk) =

{

1, ytk = 1
0, ytk = −1

(6)

The similarities of the remaining gallery samples gi, i 6= k
and query sample will also be re-computed, which aiming to

zoom in the distance among positives and push out the dis-

tance among negatives. Therefore, with positive feedback,

the similarity Sim(q, gi) is the average score between gi
with (q, gk), where

Sim(q, gi) =
Sim(q, gi) + Sim(q, gk)

2
(7)

Otherwise, the similarity Sim(q, gi) will only be updated

when the similarity among gk and gi is larger than a thresh-

old thred, where

Sim(q, gi) = max(Sim(q, gi)− Sim(gk, gi), 0) (8)

The k-reciprocal operation will also be adopt afterwards,

and a renewed state St+1 is then obtained.
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Figure 3: An example of state updating with different human feedback, which aims to narrow the similarities among instances

sharing high correlations with negative samples, and enlarge the similarities among instances which are highly similar to the

positive samples. The values with yellow background are the state imported into the agent.

3.2.3 Reward

Standard active learning methods adopt an uncertainty mea-

surement, hypotheses disagreement or information density

as the selection function for classification [4, 18, 58, 49] and

retrieval task [17, 3]. Here, we use data uncertainty as the

objective function of the reinforcement learning policy.

For data uncertainty measurement, higher uncertainty in-

dicates that the sample is harder to be distinguished. Fol-

lowing the same principle of [42] which extends a triplet

loss formulation to model heteroscedastic uncertainty in a

retrieval task, we perform a similar hard triplet loss [21]

to measure the uncertainty of data. Let the Xt
p, X

t
n indicate

the positive and negative sample batch obtained until time t,
dxgk be a metric function measuring Mahalanobis distances

between any two samples gk and x. Then the reward is

computed as

Rt = [m+ ytk( max
xi∈Xt

p

dxi
gk

− min
xj∈Xt

n

dxj
gk
)]+ (9)

where [•]+ is the soft margin function by at least a mar-

gin m. Therefore all the future rewards(Rt+1, Rt+2, ...) dis-

counted by a factor γ at time t can be calculated as

Q∗ = max
π

E[Rt + γRt+1 + γ2Rt+2 · · · |π, St, At]

(10)

Once Q∗ is learned, the optimal policy π∗ can be directly

inferred by selecting the action with the maximum Q value.

3.3. CNN Network Updating

For each query anchor, several samples are actively se-

lected via the proposed DRAL agent and are manually an-

notated by the human oracle, and these pairwise data will be

added to a updated training data pool. The CNN network is

then updated gradually using fine-tuning. We use the triplet

loss as the objective function, and when more labelled data

is involved, the model becomes more robust and smarter.

The renewed network is employed for Re-ID feature extrac-

tion, which in return helps the upgrade of the state initial-

ization. We stop this iterative training scheme with a fixed

annotation budget when each image in the training data pool

has been browsed once by our DRAL agent.

4. Experiments

4.1. Dataset and Settings

Datasets For experimental evaluations, we report results

on both large-scale and small-scale person re-identification

benchmarks for robust analysis:

(1) The Market-1501 [54] is widely adapt large-scale

re-id dataset that contains 1,501 identities obtained by De-

formable Part Model pedestrian detector. It includes 32,668

images obtain from 6 non-overlapping camera views in the

campus with 12936 images of 751 identities used for train-

ing. In testing stage, 3368 queries are used as the query set

to search the true match among the remained candidates.

(2) CUHK01 [24] is one of the remarkable small-scale

re-id dataset, which consists of 971 identities from two cam-

era views, each identity has two images per camera view

and thus totally including 3884 images which are manually

cropped. The entire dataset is split into two parts: 485 iden-

tities for training and 486 for testing.
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(3) DukeMTMC-ReID(Duke) [34] is one of the most

popular large scale re-id dataset which consists 36411

pedestrian images captured from 8 different camera views.

Among them, 16522 images (702 identities) are adopted for

training, 2228 (702 identities) images are taken as query to

be retrieved from the remaining 17661 images.

Evaluation Protocols Two evaluation metrics are adopted

in this approach to evaluate the Re-ID performance. The

first one is the Cumulated Matching Characteristics(CMC),

and the second is the mean average precision(mAP) which

taking person Re-ID task as an object retrieval problem.

Implementation Details. We implemented the proposed

DRAL method in the Pytorch framework. We pre-train a

resnet-50 multi-class identity discrimination network with

the combination of triplet loss and cross entropy loss by

60 epochs(pre-train on Duke for Market1501 and CUHK01,

pre-train on Market1501 for Duke), at a learning rate of 5E-

4 by using the Adam optimizer. The final FC layer out-

put feature vector (2,048-D) is extracted as the re-id feature

vector in our model by resizing all the training images as

256×128. The policy network in the proposed method con-

sists of three FC layers setting as 256. The proposed DRAL

model is randomly initialized and then optimized with the

learning rate at 2E-2, and (Kmax, ns, κ) are set as (10, 30,

15) by default. The balanced parameter thred and m are set

as 0.4 and 0.2, respectively. With every 25% of the training

quires have been reviewed by the human annotator, we start

to fine-tune the CNN network with learning rate at 5E-6.

4.2. Comparison With Unsupervised/Transfer
Learning/Semi­Supervised Approaches

Human-in-the-loop person re-identification does not re-

quire the pre-labelling data, but receive user feedback for

the input query little by little. It is feasible to label many

of the gallery instances, but to cut down the human anno-

tation cost, we perform to use the active learning technique

for sample selecting. Therefore, we compare the proposed

DRAL method with some active learning based approach

and unsupervised/transfer/semi-supervised based methods,

in the table we use ’uns/trans/semi’, ’active’ to indicate the

training style. Moreover, the baseline results reported is

computed by directly employing a pre-trained CNN model,

and the upper bound result indicates that the model is fine-

tuned on the dataset with fully supervised training data.

For unsupervised/transfer learning and semi-supervised

setting, sixteen state-of-the-arts approaches are selected

for comparing including UMDL [32], PUL [14], SP-

GAN [11], Tfusion [28], TL-AIDL [44], ARN [26],

TAUDL [23], CAMEL [48], SSDAL [40], SPACO [29],

One-Exampler [13] and DML [52]. In table 2, 3 and 4,

we illustrate the rank-1, 5, 10 matching accuracy and

mAP(%) performance on the Market1501 [54], Duke [34]

and CUHK01 [24] dataset, of which the results of our ap-

Table 2: Rank-1, 5, 10 accuracy and mAP (%) with some

unsupervised, semi-supervised and adaption approaches on

the Market1501 dataset.

style Methods
Market1501

mAP R-1 R-5 R-10

u
n

s/
tr

an
s/

se
m

i

UMDL [32] 22.4 34.5 52.6 59.6

PUL [14] 20.7 45.5 60.7 66.7

SPGAN [11] 26.9 58.1 76.0 82.7

TFusion [28] - 60.75 74.4 79.25

TL-AIDL [44] 26.5 58.2 74.8 81.1

ARN [26] 39.4 70.3 80.4 86.3

TAUDL [23] 41.2 63.7 77.7 82.8

CAMEL [48] 26.3 54.5 - -

SSDAL [40] 19.6 36.4 - -

SPACO [29] - 68.3 - -

One-Exampler [13] 26.2 55.8 72.3 78.4

DML [52] 46.57 - - -

ac
ti

v
e

Random 35.15 58.02 79.07 85.78

QIU [22] 44.99 67.84 85.69 91.12

QBC [1] 46.32 68.35 86.07 91.15

GD [12] 49.3 71.44 87.05 91.42

HVIL [43] - 78.0 - -

O
u

rs

Baseline 20.04 42.79 62.32 70.04

UpperBound 73.25 87.95 95.25 96.79

DRAL 66.26 84.2 94.27 96.59

Table 3: Rank-1, 5, 10 accuracy and mAP (%) with some

unsupervised, semi-supervised and adaption approaches on

the Duke dataset.

style Methods
Duke

mAP R-1 R-5 R-10

u
n

s/
tr

an
s/

se
m

i

UMDL [32] 7.3 17.1 28.8 34.9

PUL [14] 16.4 30.0 43.4 48.5

SPGAN [11] 26.2 46.4 62.3 68.0

TL-AIDL [44] 23.0 44.3 - -

ARN [26] 33.4 60.2 73.9 79.5

TAUDL [23] 43.5 61.7 - -

CAMEL [48] - 57.3 - -

One-Exampler [13] 28.5 48.8 63.4 68.4

ac
ti

v
e

Random 25.68 44.7 63.64 70.65

QIU [22] 36.78 56.78 74.15 79.31

QBC [1] 40.77 61.13 77.42 82.36

GD [12] 33.58 53.5 69.97 75.81

O
u

rs

Baseline 14.87 28.32 43.27 50.94

UpperBound 60.93 77.96 88.69 91.61

DRAL 56 74.28 84.83 88.42

proach are in bold. The proposed method achieves 84.2%

and 66.26% at rank-1 and mAP, which outperforms the sec-

ond best unsupervised/transfer/semi-supervised approaches
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Table 4: Rank-1, 5, 10 accuracy and mAP (%) with some

unsupervised and adaption approaches on the CUHK01

dataset.

style Methods
CUHK01

mAP R-1 R-5 R-10

u
n

s/
tr

an
s TSR [37] - 22.4 35.9 47.9

UCDTL [32] - 32.1 - -

CAMEL [48] 61.9 57.3 - -

TRSTP [28] - 60.75 74.44 79.25

ac
ti

v
e

Random 52.46 51.03 71.09 81.28

QIU [22] 56.95 54.84 76.85 85.29

QBC [1] 58.88 57.1 80.04 86.83

GD [12] 54.79 52.37 75.21 83.44

O
u

rs

Baseline 45.55 43.21 65.74 73.46

UpperBound 79.96 79.22 93.00 95.37

DRAL 71.52 74.07 88.99 93.93

by 13.9% and 19.69% on Market1501 [54] benchmark.

For Duke [34] and CUHK01 [24] datasets, DRAL also

achieves fairly good performance with rank-1 matching rate

at 74.28% and 74.07%. These results demonstrate clearly

the effectiveness of our active sample selection strategy

implemented by the DRAL method, and shows that with-

out annotating large quantities of training data, a good re-

identification model can be built effectively by DRAL.

4.3. Comparisons with Active Learning

Beyond the approaches as mentioned above, we fur-

ther compare with some active learning based approaches

which involve human-machine interaction during training.

We choose four active learning strategy as comparisons of

which the model is trained through the same framework as

our method, of which an iterative procedure of these ac-

tive sample selection strategy and CNN parameter updating

is executed until the annotation budget is achieved. Here

20% of the entire training samples(around 4% pairs) are se-

lected via the reported active learning approaches, which

indicates 388, 2588, 3304 are set as the annotation budget

for termination on the CUHK01 [24], Market1501 [54], and

Duke [34] dataset, respectively Beside these active learn-

ing methods, we also compare the performance with an-

other active learning approach HVIL [43], which runs ex-

periments under human-in-the-loop setting. The details of

these approaches are described as follows: (1) Random, as a

baseline active learning approach, we randomly pick some

samples for querying; (2) Query Instance Uncertainty [22]

(QIU), QIU strategy selects the samples with the highest un-

certainty for querying; (3) Query By Committee [1] (QBC),

QBC is a very effective active learning approach which

learns an ensemble of hypotheses and queries the instances

that cause maximum disagreement among the committee;

(4) Graph Density [12] (GD), active learning by GD is an al-

gorithm which constructs graph structure to identify highly

connected nodes and determine the most representative data

for querying. (5) Human Verification Incremental Learn-

ing [12] (HVIL), HVIL is trained with the human-in-the-

loop setting which receives soft user feedback (true, false,

false but similar) during model training, requiring the anno-

tator to label the top-50 candidates of each query instance.

Table 2, 3, 4 compares the rank-1, 5, 10 and mAP rate

from the active learning models against DRAL, where the

baseline model result is from directly employing the pre-

trained CNN model. We can observe from these results that

(1) all the active learning methods perform better than the

random picking strategy, which validates that active sam-

ple selection does benefit person Re-ID performance. 2)

DRAL outperforms all the other active learning methods,

with rank-1 matching rate exceeds the second best models

QBC, HVIL and GD by 16.97%, 6.2% and 13.15% on the

CUHK01 [24], Market1501 [54] and Duke [34] dataset, re-

spectively, with a much lower annotation cost. This sug-

gests that DRAL is more effective than other active learn-

ing methods for person Re-ID by introducing the policy as

sample selection strategy.

4.4. Comparison at Different Annotation Cost

In this work, cost is measured via the annotation num-

ber between image pairs. With training set size n, the

cost for the fully supervised setting will be n ∗ (n− 1)/2
, and 10 ∗ n for the reported DRAL result. Therefore

our DRAL annotates about 0.12%(Duke [34]), 0.15%(Mar-

ket1501 [54]) and 1%(CUHK01 [24]) pairs. We further

compare the performance of the proposed DRAL approach

in a varying amount of labelled data (indicate by Kmax)

with fully supervised learning(UpperBound) on the three

reported datasets. With the enlarge of training data size, the

cost of annotating all data shows exponential increasement.

Among the results, the baseline is obtained by directly em-

ploying the pre-trained CNN for testing. For the fully su-

pervised setting, with all the training data annotated, it en-

ables to fine-tune the CNN parameters with both the triplet

loss and the cross-entropy loss to looking for better perfor-

mance. For DRAL method, we present the performance

with Kmax setting as 3, 5 and 10 in Table 5. As can be

observed, 1) with more annotated data, the model becomes

stronger with increasing annotation cost. With the annota-

tion number for each query increases from 3 to 10, the rank-

1 matching rate improves 13.37%, 8.72% and 15.43% on

the Duke [34], Market1501 [54] and CUHK01 [24] bench-

marks. 2) compared to the fully supervised setting, the pro-

posed active learning approach shows only around 4% rank-

1 accuracy falling on each dataset. However, the annotation

cost of DRAL is far below the supervised one.
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Table 5: Rank-1 accuracy and mAP (%) result by directly employing(Baseline), fully supervised learning(UpperBound), and

DRAL with varied Kmax on the three reported dataset, where n indicates the training instance number for each benchmark.

The annotation cost is calculated through the times of labelling behavior for every two samples.

Methods
Duke Market1501 CUHK01

cost
mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Baseline 14.05 28.32 43.27 50.94 18.96 42.79 62.32 70.04 41.59 43.21 65.74 73.46 0

DRAL

43.82 64.77 78.19 82.81 52.5 75.48 89.9 93.26 55.71 58.64 77.78 85.6 n ∗ 3
51.48 70.51 84.16 87.43 59.71 81.06 93.21 95.1 66.98 70.06 87.14 91.87 n ∗ 5

56 74.28 83.43 88.42 66.26 84.2 94.27 96.59 71.52 74.07 88.99 93.93 n ∗ 10
UpperBound 60.93 77.96 88.69 91.61 73.25 87.95 95.25 96.79 79.96 79.22 93.00 95.37 n ∗ (n− 1)/2
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Figure 4: Rank-1 accuracy and mAP(%) improvement with respect to the iterations on the (a) Market1501, (b) Duke and (c)

CUHK01 dataset. The gray line and green bar(bold number) indicates the rank-1 accuracy and mAP respectively.

4.5. Effects with Number of Iterations

The promise of active learning is that, through iteratively

increasing the size of labelled data, the model performance

is enhanced gradually. For each input query, we only as-

sociate the label to the gallery candidates derived from the

DRAL, and adopted these pairwise labelled data for CNN

parameter updating. We set the iteration as a fixed num-

ber 4 in our experiments on all the datasets. Fig 4 shows

the rank-1 accuracy and mAP improvement with respect to

the iterations on the three datasets. From these results, we

can observe that the performance of the proposed DRAL

active learner improves quickly, with rank-1 accuracy in-

creases around 20%∼40% over the first two iterations on

all three benchmarks, and the improvement in model per-

formance starts to flat out after five iterations. This suggests

that for person Re-ID, fully supervising may not be essen-

tial. Once the informative samples/information have been

obtained, a sufficiently good Re-ID model can be derived at

the cost of a much smaller annotation workload by explor-

ing a sample selection strategy on-the-fly.

5. Conclusion

In this work, we addressed the problem of how to reduce

human labelling effort in conventional data pre-labelling for

person re-identification model training. With limited an-

notation cost or inaccessible large quantity of pre-labelled

training data, our model design aims to maximise the effec-

tiveness of Re-ID model learning with a small number of se-

lective sample labelling. The key task for the model design

becomes how to select more informative samples at a fixed

annotation cost. Specifically, we formulated a Deep Rein-

forcement Active Learning (DRAL) method with a flexible

reinforcement learning policy to select informative samples

(ranked list) for a given input query. Those samples are

then fed into a human annotator so that the model can re-

ceive binary feedback (true or false) as reinforcement learn-

ing reward for DRAL model updating. Moreover, an itera-

tive scheme is executed for the update of DRAL and Re-ID

model. Extensive comparative evaluations were conducted

on both large-scale and small-scale Re-ID benchmarks to

demonstrate our model robustness.
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