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Abstract

We propose a unified framework using Latent Dirich-
let Allocation (LDA) for discovering behaviour global cor-
relations over a distributed camera network. We explore
LDA for categorising object motion patterns as local be-
haviours in each camera view before correlating these lo-
cal behaviours globally over different physical locations in
multi-camera views. In particular, a Temporal Order Sen-
sitive LDA (TOS-LDA) is formulated to discover behaviour
global temporal correlations of different durations among
all camera views simultaneously. In addition, a novel on-
line global activity prediction method is proposed based on
which global anomalies can be detected on the fly. We val-
idate the effectiveness of our approach using public multi-
camera CCTV footages.

1. Introduction

Understanding complex activities and detecting anoma-
lies over a large distributed space, such as a residential
building complex or a public infrastructure site, is challeng-
ing for computer vision. Due to the nature of an expanded
space, such scenarios usually require the installation of dis-
tributed multiple CCTV cameras each of which monitors a
separate location. To meet this challenge, we consider that
solving the following three problems is essential: (1) How
to represent reliably object behaviour characteristics in each
camera view under difficult and changing viewing condi-
tions due to occlusion, variable lighting and resolution. Vi-
sual features and scene complexity can be significantly dif-
ferent in different camera views especially across different
physical locations. We need a representational scheme that
reflects more about object behaviour characteristics rather
than object visual appearances. Such a scheme will be more
consistent for all different camera views and less sensitive to
variations in viewing conditions. (2) How to correlate local
activities observed across all camera views in order to infer
a coherent global understanding. This is hard because of-
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ten only partial visual information is observed in each cam-
era view and meaningful behaviour correlations are visu-
ally less well-defined. In typical single camera views, video
contents are assumed to be self-contained in the sense that
meaningful object behaviour interpretation can be achieved
locally within each camera view. In contrast, interpreting
local behaviours in a global context across multiple cam-
era views of different locations is inherently more difficult
due to greater uncertainties in visual continuity and correla-
tion, e.g. from an object travelling through different views
to different objects appearing and behaving across different
views introduce significantly different spatial and temporal
correlations. (3) How to evaluate on-the-fly global activities
and detect anomalies across multi-camera views given par-
tial local observations in each individual camera view. To
perform on-the-fly decision making and prediction, a model
is required to infer globally temporal correlations among all
local behaviours under uncertainty and incompleteness.

To that end, our contributions in this work are three folds.
First, we introduce a novel method to informatively and
concisely represent visual activities in each camera view
through modelling co-occurrences of low-level motion in-
formation. Second, we introduce a Temporal Order Sensi-
tive Latent Dirichlet Allocation (TOS-LDA) model to dis-
cover any meaningful behaviour global correlations in a
multi-camera network. Compared to the conventional La-
tent Dirichlet Allocation (LDA) model [2] which was de-
signed to extract topics by clustering only co-occurring vi-
sual words, the proposed TOS-LDA model is designed to
also encode temporal orders among visual words there-
fore capable of representing both long-scale behaviour co-
occurrences and short-scale temporal order dynamics in a
single model. Third, we formulate a novel online global
anomaly detection method over multi-camera views by
continuously evaluating temporal correlations among lo-
cal behaviours in different camera views. Our experiments
demonstrate that our online process is able to achieve com-
parable performance to that of an offline batch process
based model, but with only partial observations running in
real-time on-the-fly.



1.1. Related Work

Existing work on multi-camera analysis has been fo-
cused on two problems: camera topology inference and
global activity analysis. Camera topology inference aims
to learn connectivities among cameras. Early attempts are
based on exhaustive matching of object appearance and
estimating a set of constant time delays (plus variances)
between entry and exit zones of different camera views
through tracking [8, 3]. These methods make strong and
often invalid assumptions about object movement character-
istics such as speed and trajectory, inter-camera time delay,
or object appearance features. More recently, Loy et al. [7]
employ Cross Canonical Correlation Analysis (xCCA) to
discover inter-camera temporal and causal orders for infer-
ring camera topology. However, XxCCA assumes such inter-
camera relationships to be single mode and non-variable
once discovered. In reality, such relationships can be multi-
mode and dynamic. For global activity analysis, Wang et
al. [11] employ LDA model to categorise global behaviours
through studying co-occurrences of trajectory-based motion
patterns in all camera views. However, the trajectory-based
representation would limit this method only to scenarios
where objects can be reliably tracked. In contrast, our pro-
posed framework does not require any tracking either within
or between camera views. Moreover, the LDA model in
[11] does not encode any temporal dynamics/delay among
activities within the camera network. Although there exists
temporal topic models such as [9, 1], they make the first-
order Markov assumption for temporal modelling and are
unable to model long-term dependency and so cannot detect
long-scale temporal anomalies. In our work, both short-
scale and long-scale temporal dependences of behaviours
within a whole camera network are embedded in the pro-
posed TOS-LDA model and thus is able to detect both types
of temporal anomalies. Finally, on-line global activity pre-
diction and anomaly detection are not achievable using the
conventional topic models which must wait for the whole
video clip to finish before decision making. This problem
can be addressed by the proposed TOS-LDA model which
enables real-time on-line prediction and anomaly detection
with accumulation of partial visual evidence.

2. Multi-view Behaviour Representation

We wish to represent all camera views by local be-
haviours in a common framework to reflect global scene
semantics and be less sensitive to image feature noise. To
this end, each camera view is segmented independently into
semantic regions. Local activities in each region are similar
to each other whilst being different from those in other re-
gions. Regional visual words are then extracted from each
region and indexed in a common global behaviour represen-
tational space.

2.1. Low Level Feature Space

First, local motions are computed as our low level fea-
tures. Specifically, optical flows are computed in each frame
for those pixels considered to be ‘moving’, filtered by frame
differencing. Second, this low level feature space is quan-
tised both in location and in motion direction using a code-
book. For location, the image plane is uniformly divided
into G cells of size [ by [ pixels (in this paper [ is set to 20).
Pixels within the same cell will have the same location in-
dexed by g with 1 < g < . The motion directions of the
flow vectors are also quantised into P cardinal directions
(P = 4 in this paper). Now after these quantisations, we
have a codebook of G x P possible visual words to repre-
sent the pixel level features, and each ‘moving pixel’ v is
uniquely labelled by its associated cell g, where 1 < g < G,
and its motion direction p where 1 < p < P.

Scene segmentation is performed at the cell level. Each
cell could be represented using the low-level motion fea-
tures. However, using such a low-level feature representa-
tion would not give us a semantically meaningful segmen-
tation. To that end, each cell is represented using the in-
ferred local behaviour topics using Latent Dirichlet Allo-
cation (LDA). In particular, video clips of 25 frames long
are treated as documents, and moving pixels are treated as
words for word-document analysis described next.

2.2. Inferring Local Behaviour Topics using LDA

Latent Dirichlet Allocation (LDA) [2] has been widely
used for text document analysis aiming to discover seman-
tic topics from documents according to co-occurrences of
words. In LDA, a document w is a collection of N words:
w = {wy, -+ ,Wp, - ,wn} and can be modelled as a
mixture of K topics z = {z1,--- , zx }. Each topic is mod-
elled as a multinomial distribution over a vocabulary con-
sisting of V' words (in our case V = G x P), from where
all words in w are sampled. Given a corpus of documents
for training (i.e. a set of equal length video clips), the LDA
model learns the following parameters through variational
inference:

1. a: a K dimension vector governing the Dirichlet dis-
tributions of topics in the corpus;

2. B: a K x V dimension matrix representing the multi-
nomial distributions of words in a vocabulary for all
learned topics where [y, = P(v|zx) and ), B, = 1.

Given the learned model parameters, the log-likelihood
for a document w, log p(w|a, 3), is written as:

N
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Another important inference task is to compute the topic
profile for a new document P(z|w), that is the likelihood
of each topic featuring in the document. P(z|w) can be
learned through iterations between the following two steps:
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where W is the first order derivative of a logI" function, vari-
ational parameter {7} approximates the topic distribution
P(z|w), and ¢, represents how likely a word w,, is as-
sociated to a topic z;. Computing both log p(w|a, 3) and
P(z|w) is intractable and variational inference need be used
for a solution [2].

LDA is essentially a bag-of-words method that clusters
co-occurring words into topics. It provides a more concise
way of representing the document than using all the words
directly, because the number of topics K is in general much
smaller than the size of the codebook/vocabulary V.

2.3. Semantic Scene Segmentation

Instead of using low level motion features, each cell can
be represented more effectively by semantically meaning-
ful local behaviour topics automatically learned using LDA.
Specifically, each cell is represented using the likelihood of
observing each possible word given each of the K local be-
haviour topics. There are P different words for the g-th cell,
each of which is denoted as vg with 1 < p < P. The feature
vector representing the g-th cell is thus written as:

f, = [P(vylz1), -+, P(vh]z), -+, P(vl|2k)], ()

where k = 1,--- , K, P(v}]|z) is the likelihood of observ-
ing v} with the k-th local behaviour topic z;, and has been
learned as part of model parameter (3 (see Sec. 2.2).

With this behaviour topic based representation, the simi-
larity between each pair of cells in the camera view is mea-
sured by examining how similar their topic profile feature
vectors f, are (Eq. (4)). This similarity measure is then
used as the input to a spectral clustering algorithm with
the number of clusters automatically determined via model
selection [13]. Different clusters then correspond to dif-
ferent semantic regions. Note that our scene segmentation
method is similar in spirit to that of Li et al. [6]. However,
Li et al. segment a scene through clustering distributions
of visual features associated with blobs of foreground pix-
els, which could be inconsistent and unreliable due to scene
complexity in different camera views. Moreover, the pro-
posed method is also intrinsically different from the work
in [10] in that we use the LDA profiles for representing lo-
cal behaviours in a scene instead of the quantised low-level
motion features in [10].

2.4. Global Behaviour Representation

So far the analysis has been done within each camera
view independently. Now the behaviours observed cross
camera views are to be represented in a global framework.
Assume that K r semantic regions have been segmented in
C camera views. These regions are now referred globally
as {R,.} where 1 < r < Kpr. We then represent global be-
haviours using a codebook of K visual words. Each of the
visual words represents the regional behaviour associated
with the r-th region. More specifically, a video is split into
non-overlapped sliding windows of 25 frames; we compute
the number of ‘moving pixels’ detected in r-th region over a
sliding window. If the number is higher than a given thresh-
old, a visual word v, with 1 < r < Ky is extracted. Note
that the sliding window is used here to increase the robust-
ness to noise introduced by low-level features.

Our global behaviour representation method is essen-
tially a dimensionality reduction process. The dimension
of the feature space has been reduced from the total number
of pixels in multiple camera views (in the order of millions
typically) to the total number of cells (thousands), then to
the number of semantic regions (dozens). The final result is
an extremely concise yet semantically meaningful represen-
tation of global behaviours upon which our Temporal Order
Sensitive LDA (TOS-LDA) modelling is based.

3. Multi-Camera Behaviour Correlations

In a conventional LDA model, each visual word is put
into a bag (document) and the temporal order information
about occurrences of visual words is therefore lost. How-
ever, this information is crucial for behaviour modelling
as behaviours are dynamic processes where temporal order
matters. To overcome this problem, we formulate a Tempo-
ral Order Sensitive LDA (TOS-LDA) for behaviour global
correlation modelling so to capture the temporal order in-
formation whilst keeping the bag of words model structure.

In our model, a document w corresponds to a video clip
of T' continuous sliding windows (7 is set to 60 in this pa-
per). Each video frame is composed of C' camera views and
KR, semantic regions. As described above, our visual words
are now defined over all regions and the size of the vocabu-
lary or codebook is K. Now to make our model temporal
order sensitive, each visual word is indexed by both the re-
gion label r and the sliding window index ¢. This increases
the size of codebook/vocabulary V to T' x K and we have
a vocabulary {v!} where v{ is the word extracted from the
r-th region in the ¢-th sliding window, 1 < r < Kp and
1 <t < T. With the introduction of sliding window index
t, a document is now composed of a set of successive slid-
ing windows: w = {wq,--- ,w;,--- , wr} where w; is the
t-th sliding window in the video clip/document. Each slid-
ing window now contains different types of words as the



sliding window index ¢ is different.

Compared to a standard LDA, our TOS-LDA differs
mainly in how the document is represented using visual
words. The parameter learning and inference methods are
identical to that of LDA (see Sec. 2.2). Yet, this simple
extension of LDA brings about the crucial benefit of captur-
ing the dynamic nature of visual behaviours and providing
a much more powerful solution to global behaviour mod-
elling. In addition, with the temporal order information en-
coded in the model, TOS-LDA is effective for modelling
both long-scale co-occurrences and short-scale temporal or-
der dynamics of local behaviours. In contrast, the conven-
tional LDA is insensitive to the latter because those instan-
taneous co-occurrences will be overwhelmed by long-scale
thus stronger co-occurrences. Furthermore, an online real-
time global behaviour prediction and anomaly method is
now made possible.

4. Online Prediction and Anomaly Detection

Whilst some early attempts have been made for perform-
ing online activity evaluation on individual objects in isola-
tion from single camera views [5, 4], it is less obvious how
to evaluate global activities observed over different camera
views because multi-camera behaviour global correlations
are much less structured. In this section, a method is intro-
duced for performing multi-camera online activity evalua-
tion using our TOS-LDA. More precisely, given a trained
model, TOS-LDA is used to predict likely global correla-
tions of local behaviours based on partial observations and
detect anomalies on-the-fly.

4.1. Prediction

Recall that our document w is a video clip of T succes-
sive sliding windows: w = {wy,--- W, -+, wp}. Let
us first introduce the definition of an accumulative tempo-
ral document, which is denoted as wy.; = {wy, -+, W}
and composed of all the sliding windows up to index t.
Clearly, two successive accumulative temporal documents
wi.¢ and w41 have the following relationship: wy.;41 =
{W1.t, Wit }; we also have wi.r = w.

Given an accumulative temporal document wy.;, we wish
to make prediction for the next sliding window w;;; by
evaluating how likely a local behaviour will be observed
in each of the K regions cross all camera views. This is
expressed as P(wj, |Wy.;) where @y, is the visual word
corresponding to the occurrence of a local behaviour in the
r-th region in frame ¢ 4 1. Its value is computed as:

P(@iy1, Wrt)

Plwry) ®)

P(@} 4 |Wie) =

where P(wj, |, W) is the joint probability of w;,, and
wi.¢. The profile of K topics inferred from wy.;, referring as

a K -component vector ., (see Egs. (2) and (3)), is used to
compute P(w}, 1, wy.:). More precisely, Eq. (5) is rewritten
- Py, Wit|a, B,71:)

P(Wl:t‘ay ﬁa ’Yl:t)
This results in an approximation of the log-likelihood of
P(@]|Wr.0) as:

(6)

P(W7y1|Wrt) =

IOg P(ﬂ)\:+1‘w1:t) ~ L (71:t7 ¢(@:+17w1:t); avﬂ)
—L (71:t7 ¢(W1:t); «, ﬂ) ) (7)

where L(x) represents the lower bound of logP(x). In
computing L(7y1.¢, d(W1.¢); 0, 3), we follow the standard
procedure of variational inference [2] in which v;.; and
¢(w1.¢) are inferred through iterative update using Eq. (2)
and Eq. (3). For computing L(7y1.¢, ¢(W 1, Wi); @, §), we
set 1.+ as constant and only update ¢ using w;. 11 and wy
according to Eq. (2). Following the same procedure, the
likelihoods of occurrences of local behaviours in all regions
in the next sliding window can be computed.

4.2. Anomaly Detection

With the online prediction described above, global be-
haviour anomalies can be detected on-the-fly as follows:

1. At sliding window ¢, using the TOS-LDA model pa-
rameters «, 3 to infer the topic profile ~;.; using wy.¢
(Egs. (2) and (3));

2. Compute the likelihoods of local behaviour occur-
rences for all K'r regions in the next sliding window
t + 1 using log P(wj |w1.¢) (Eq. (7));

3. Given the real observations at time ¢ + 1, w41, com-
pute an anomaly score A, = > log P(Wyj, |W1.¢)
for the regions where local behaviours have been ob-
served. This sliding window is deemed as being ab-
normal if A, < Thy where T'hy is a global behaviour
anomaly threshold;

4. If frame ¢ + 1 is abnormal, locate the contributing
local behaviours by examining all new observations
in w,; with corresponding log P(wy, ||Wy.). If
log P (@}, ,|W1.t) < Thy, then the corresponding lo-
cal behaviour is identified as one of the causes of the
global anomaly; T'hy, is the local anomaly identifica-
tion threshold.

5. Experiments

5.1. Dataset and Settings

The proposed approach was evaluated using real-world
surveillance videos from 5 cameras monitoring both the in-
side and outside of a residential building. The recording



lasted for three hours with a frame rate of 25Hz and frame
size of 720 x 576 pixels. This gives a total of 15 hours of
videos or 1350000 frames. Fig. 1 shows examples of the
views with paths of typical and diverse local behaviours in
each view and the topology of the camera network. In par-
ticular, camera 1, 5 and 4 monitored the front entrance, the
lift and back exit connecting stairs of the building. These
cameras were connected through camera 2 and 3 monitor-
ing the lobby and lift lobby respectively. Typical global
behaviour would be people walking through camera 1 and
2 and either waiting for the lift in 3 or using the staircase
through 4. Although the paths of regular behaviours in
Fig. 1 seem to suggest that these behaviours are relatively
simple, the behaviours in this network can be quite complex
and uncertain. For example, people can either wait for the
lift in camera 3 or use the stairs in camera 4 depending on
which floor the lift was (cannot be detected visually using
the 5 views) and which floor they wanted to go. For wait-
ing in the lift lobby, some people preferred to walk around
(green arrow in camera 3) whilst other stood still, depending
on personal preference. As shown in Fig. 1, most views are
non-overlapping and with low resolution. The whole build-
ing is poorly lit with unstable lighting, especially in camera
1 and 2. All these conditions make this scenario challenging
for modelling behaviour global correlations.

Figure 1. Camera configuration and views in the scenario.

The three-hour long footage of 5 camera views was split
into video clips of one-minute long, each containing 60 slid-
ing windows. Our dataset thus consisted of 159 clips in
total. After careful human examination, 40 clips were la-
belled to contain abnormal behaviour correlations and the
remaining 119 normal. We randomly selected 79 normal
clips for training and the rest 40 normal and 40 abnormal
clips for testing. The number of local behaviour topics for
each view was set to 10. For global behaviour modelling
using TOS-LDA, the number of topics were also set to 10.

5.2. Semantic Scene Segmentation

The scene segmentation results are illustrated in
Fig. 2(a). For comparison, we also implemented the method

proposed in [6] and the results are shown in Fig. 2(b). It is
evident from Fig. 2 that our method produced more mean-
ingful segmentation in all views. For instance, the be-
haviours in camera 3 were far more complex than those
in cameras 2 and 5 and the segmentation results using our
method reflected such behaviour complexity differences. In
contrast, the method in [6] produced more regions in cam-
eras 2 and 5 than camera 3 and thus failed to precisely cap-
ture the behaviour complexities in different camera views.
Moreover, the method in [6] requires the removal of non-
activity pixels beforehand to ensure reasonable performance
(camera 4, for example). In contrast, our method does not
require any threshold to remove non-activity pixels and is
able to produce meaningful segments for both busy and
quiet scenes.

(b) The method in [6]

Figure 2. Comparison of semantic scene segmentations.

5.3. Behaviour Global Correlation Modelling

The global topics learned using our TOS-LDA model
correspond to typical global behaviour correlations repre-
sented as local behaviours occurring according to certain
temporal order. An example of the learned global behaviour
topics is illustrated in Fig. 3(a) by highlighting the top 2
local behaviours (words) that are most likely to happen in
the corresponding sliding window in the topic given by the
learned model parameter 3 (see Sec. 2.2). Note that each
word is associated with a sliding window index ¢. It can
be seen clearly from Fig. 3(a) that this topic corresponds
to the global behaviour of people reaching the ground floor
via the staircase (camera 4, regions 29, 30), walking pass
the lift lobby (camera 3, regions 21, 23) and the front lobby
(camera 3, regions 14, 16), and appearing outside the build-
ing (camera 1, regions 5, 10). The limited space allows us
only show one example of the discovered topics. According
to our observation, all other topics are also meaningful and
informative.

For comparison, we learned a conventional LDA without
introducing the sliding window index ¢ in the visual words.
Although similar global topics can be learned, these LDA
topics contain no information about the temporal order of
the local behaviours. For instance, a topic learned using
the LDA is depicted in Fig. 3(b), which corresponds to the
same global behaviour as in Fig. 3(a). However, this topic
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(b) An example of topic learned using LDA
Figure 3. Comparing topics learned using TOS-LDA and LDA.
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Figure 4. Example activities of people moving in (top row) and
moving out (bottom row) of the building using stairs in camera 4.

only suggests that those local behaviours are expected to
take place in the same video clip; it says nothing about by
what order they are supposed to take place. Fig. 4 shows
two different global behaviours. They have different topic
profiles (Eq. (2) and Eq. (3)) therefore separable using our
TOS-LDA model, whilst having the same profile thus indis-
tinguishable using the LDA (both have the topic in Fig. 3(b)
as the dominant topic).

5.4. Global Activity Prediction / Anomaly Detection

Three experiments were conducted to compare the per-
formance for global anomaly detection using (1) our TOS-
LDA model and a conventional LDA model; (2) our
TOS-LDA offline with complete observation (i.e. using
log p(w|a, 3) in Eq. (1) as the abnormality measure), and
online with only partial observations (using the procedure
described in Sec. 4.2); (3) our TOS-LDA model and an
alternative Dynamic Bayesian Network based model pro-
posed in [12]. To gain some insight into how different
methods perform given different types of global anomalies,
we classified the 40 abnormal videos into two categories

in which anomalies are mainly caused by: (1) long scale
abnormal co-occurrences (23 videos); (2) short scale abnor-
mal temporal order of local behaviours (17 videos). Some
examples are shown in Fig. 5. In (a), a group of people
moved out of the lift but went to the back exit in camera
4 instead of using the front entrance in camera 1. This re-
sults in abnormal co-occurrences of local behaviours over
the whole video clip. Fig. 5 (b) shows a rare short scale
temporal order anomaly where people loitered in the whole
scenario and caused significant unexpected temporal orders
between local behaviours across camera views. The results
are shown using ROC curves in Figs. 6 and 8.

(b) Short scale temporal order anomaly

Figure 5. Examples of abnormal global behaviours in the multi-
camera scenario.
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Figure 6. Detection performance comparison between TOS-LDA,
LDA, and a DBN based method in [12]

TOS-LDA vs. LDA - The results in Fig. 6(a) shows that
both the TOS-LDA and the LDA model yielded similar
accuracy for detecting long-scale temporal abnormal co-
occurrences, whereas our TOS-LDA outperformed the LDA
for detecting abnormal temporal order of local behaviours,
especially when the false alarm rate was low (see Fig. 6(b)).
To examine the cause of such difference, we set the false
alarm rate to 5% in Fig. 6 (b) and the corresponding true
positive rates are 41% and 64% for the LDA and the TOS-
LDA. This results in the correct detection of 7 and 11 ab-
normal videos respectively out of the 17 anomalies. The 11
detections from the TOS-LDA model included all 7 videos
detected by the LDA model. In Fig. 7, we show the syn-
chronised frames extracted from the 4 anomalies that were
missed by the LDA model. In these videos, a group of



people walked around randomly across the camera network
without clear intention. Consequently the temporal orders
structure of behaviour global correlations were significantly
different from those of normal global behaviours where
people had clear goals of movement. This temporal order
structure cannot be captured by a standard LDA resulting in
miss-detection.

R /& A/'A
Figure 7. Four examples of short scale temporal order anomalies
missed by the LDA model.

TOS-LDA vs. DBN — We tested the performance of
TOS-LDA against a Multi-Observation Hidden Markov
Model (MOHMM) based Dynamic Bayesian Network
(DBN) described in [12]. We used the same representation
but extended it to a multi-camera scenario where our
aim was to learn the temporal dynamics of topic profiles
associated with multiple behaviours in all camera views.
Given a training video, we associated each of the local
behaviours with a dominant topic learned from the LDA
model. The dominant topics in all sliding windows in the
video were used as the inputs of the DBN. The results
are shown in Fig. 6 and compared with our TOS-LDA
model. It is evident that our TOS-LDA significantly
outperforms the DBN for both anomaly categories. This
is not surprising given the complex and uncertain nature
of multi-camera scenarios.  Specifically, multi-camera
scenarios usually contain significantly uncertainties on
the spatial and temporal characteristics. A DBN tends to
be over-fitting given sparse data and is more sensitive to
noise in behaviour representation. On the other hand, our
TOS-LDA is a bag-of-words model which is much less
sensitive to noise and more likely to perform well given
sparse data.

Online vs. Offline — Fig. 8 shows that using our online
detection procedure, the detection accuracy was degraded.
This is expected as the online procedure was only based
on partial visual evidences. Nevertheless, the online TOS-
LDA detection still gave good accuracy for detecting both
long-scale co-occurrence anomalies and short-scale tempo-

ral order anomalies whereas the online detection accuracy
using the LDA model was significantly worsen, especially
for short-scale temporal order anomalies.
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Figure 8. Detection accuracy comparison between online and of-
fline processes.

Fig. 9 illustrates the online anomaly detection process
for a complex behaviour (Fig. 9 (a)): people went down us-
ing the lift (camera 5) to the ground floor and then split into
two groups: (1) one person walked out of the building fol-
lowing a normal path (cameras 3-2-1) and (2) a group of
persons moved to the staircase area in camera 4 following
an abnormal path (cameras 3-4). The results for selected
frames are shown in Fig. 9 (b)-(d), each of which shows the
detected behaviours being classified to normal (green) and
abnormal (red) using the TOS-LDA model (top row) and the
LDA model (middle row). Clearly, the proposed TOS-LDA
was able to produce more accurate detection of the triggered
abnormal behaviours in such complex situation involving
multiple objects in a distributed camera network. To further
investigate the reason, in each figure of (b)-(d), we plot-
ted the predicted log-likelihoods of occurrences of regional
behaviours in the corresponding sliding window by using
TOS-LDA (bottom left) and LDA (bottom right) where the
log-likelihoods above the threshold (blue dash line) indicate
the likely occurrences of corresponding regional behaviours
and the log-likelihoods corresponding to truly observed re-
gional behaviours are highlighted by green (normal) and red
(abnormal). It can be seen that with the increase of available
observations, the LDA tended to predict that all regional be-
haviours were likely to occur except those corresponding to
regions without activities (for example region 19 in camera
3). In fact, Eq. (7) evaluated how likely a possible regional
behaviour would occur given the available observations. In
the LDA model, adding a new word in the temporal docu-
ment just slightly increased the counts of the words. It thus
became less sensitive to subtle changes of profiles of counts
as the number of available observations increased. In con-
trast, topics learned from TOS-LDA model encoded tempo-
ral structure of words. Introducing an unexpected new word
to a temporal document would therefore significantly affect
the likelihood of the new observation. This led to more ac-
curate prediction of how likely regional behaviours would
or would not occur in the next sliding window.
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Figure 9. Online behaviour prediction and anomaly detection. (a) Illustration of normal behaviours (following the green arrows) and
abnormal behaviours (following the red arrows). (b)-(d): Detected behaviours in the sliding windows. Top row and middle row: the
detection results using TOS-LDA and LDA. Bottom left and right: predicted log-likelihoods from TOS-LDA and LDA. Behaviours with
log-likelihoods above the threshold (blue dash line) are likely to occur and log-likelihoods corresponding to truly occurred behaviours were

highlighted by green (normal) and red (abnormal).

6. Conclusions

In this paper, we proposed a unified framework using La-
tent Dirichlet Allocation (LDA) for representing and mod-
elling behaviour global correlations within a distributed
camera network. The proposed Temporal Order Sensi-
tive LDA (TOS-LDA) produced superior overall accuracy
than that of both the LDA model and a Dynamic Bayesian
Network based model for detecting both long-scale co-
occurring anomalies and short-scale temporal order anoma-
lies under significant correlation uncertainties. Further-
more, we proposed a novel online behaviour prediction
and anomaly detection procedure. Experiments using real-
world multi-camera CCTV footages demonstrated its com-
parable accuracy to off-line batch-mode processing but with
a significant advantage of on-the-fly processing for anomaly
detection.
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