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Abstract
Machine learning classifiers’ capability is largely
dependent on the scale of available training data
and limited by the model overfitting in data-scarce
learning tasks. To address this problem, this work
proposes a novel Meta Functional Learning (MFL)
by meta-learning a generalisable functional model
from data-rich tasks whilst simultaneously regular-
ising knowledge transfer to data-scarce tasks. The
MFL computes meta-knowledge on functional reg-
ularisation generalisable to different learning tasks
by which functional training on limited labelled
data promotes more discriminative functions to be
learned. Moreover, we adopt an Iterative Update
strategy on MFL (MFL-IU). This improves knowl-
edge transfer regularisation from MFL by pro-
gressively learning the functional regularisation in
knowledge transfer. Experiments on three Few-
Shot Learning (FSL) benchmarks (miniImageNet,
CIFAR-FS and CUB) show that meta functional
learning for regularisation knowledge transfer can
benefit improving FSL classifiers.

1 Introduction
The success of current deep architectures benefits a great deal
on representation learning, in the sense of learning “big mod-
els” of richer representations for many tasks. Recent develop-
ments on self-supervised learning, or models trained on very
large-scale data [Devlin et al., 2018; Brown et al., 2020],
seem to suggest that powerful and universal representations
could be learned for all tasks in all domains.

Given a universal feature extractor, can a good classifier
for a particular task be effectively learned from only a few
labelled examples of that task? Having a good universal rep-
resentation does not guarantee fitting generalisable hypothe-
ses of different individual tasks from a few labelled samples.
For a Few-Shot Learning (FSL) task, many researchers had
devoted their efforts in addressing the severe overfitting prob-
lem resulting in inferior classification accuracy and generali-
sation on novel categories [Ravi and Larochelle, 2016; Ye et
al., 2020]. Typical FSL settings [Chen et al., 2019] assume
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Figure 1: The illustration of hypotheses learned with k-shot data on
binary classification tasks with continuity, cluster and manifold dis-
tributions. Plots(a) are the ground-truth data distributions, and (b-d)
represent the hypotheses learned with 1/3/30-shot data. Without effi-
cient data training, the hypotheses (plots(b)) fail to learn the ground-
truth data distributions, whilst the hypotheses (plots(c-d)) are pro-
gressively capable to learn them with the increased regularisation
knowledge deriving from the labelled data. Best viewed in color.

that given a large amount of labelled data on source/base
tasks, and few labelled data on target/novel tasks, a FSL al-
gorithm can learn good hypotheses on novel tasks. Moreover,
one may further consider Cross-Domain Few-Shot Learning
(CD-FSL) when the source and target tasks are from signifi-
cantly different semantic domains [Tseng et al., 2020].

Given a learned representation from richly labelled data,
we consider that the underlying data distribution should fol-
low the continuity, cluster, and manifold assumptions, as
in Semi-Supervised Learning (SSL) [Chapelle et al., 2009].
Figure 1 illustrates this phenomenon from both SSL and su-
pervised learning. Hypotheses learned from larger amount
of examples (richer) are favoured than those trained by fewer
examples. Moreover, good hypotheses should prefer geomet-
rically simpler decision-boundaries and encourage points in
the same cluster to have the same label. This should be a
general principle for task-agnostic patterns of a hypothesis.

In a hypothesis/function space, we aim to learn gradu-
ally task-agnostic patterns of change in fitting hypotheses
to training data from few to many labelled examples. In
particular, the latent knowledge of task-agnostic patterns of
change in a hypothesis fitting process is to be learned as a
functional, estimated from a family of richly labelled data
on source tasks that simultaneously satisfies new hypothe-



ses of the same/similar family of functional generalisable to
learning new target tasks. To that end, we introduce a meta-
learning strategy to learn this functional, called Meta Func-
tional Learning (MFL).

Essentially, our MFL learns a functional regularisation on
how to best fit new hypotheses on scarcely labelled novel
tasks according to how to best fit hypotheses on richly la-
belled base tasks, thus imposing penalties (constraints) on
excessive optimisation (overfit) in fitting the novel hypothe-
ses. Particularly, given the task of learning a novel hypothesis
from scarcely labelled data, our functional encourages a pro-
cess of learning the hypothesis by approximating the learn-
ing process of richly labelled data, from which it favours to
satisfy the underlying data distribution principles of continu-
ity, cluster, and manifold. The functional from MFL captures
model learning regularisation knowledge from source data
and transfers it to guide the FSL of novel tasks. Our ap-
proach to knowledge transfer as learning regularisation (how
to learn) differs fundamentally to other existing methods of
knowledge transfer on what to learn, e.g., representations in
FSL. Figure 1 illustrates our idea of MFL that learns a task-
agnostic, transferable and generalisable functional, a function
in the function space, to remit the overfitting problem in hy-
pothesis optimisation given scarcely labelled data.

Specifically, we explore a meta-learning paradigm to learn
a functional of meta-knowledge for learning process reg-
ularisation. That is, MFL first samples many functional
episodes to craft a functional set of function pairs trained on
few/many labelled data with a base classifier, e.g., a Logis-
tic Regression (LR). MFL then minimises the distances be-
tween its predicted functions and target functions, achieving
the meta-knowledge learning/transfer through functional reg-
ularisation. We formulate an iterative update strategy to con-
nect a sequence of basic module blocks, forming an over-
all model by Iterative Update (MFL-IU). Our contributions
are: (1) We formulate knowledge transfer in few-shot learn-
ing as a problem of transfer learning regularisation (how to
learn) rather than knowledge transfer in representation (what
to learn). This problem is solved by meta functional learn-
ing. (2) We introduce an iterative update strategy for meta
functional learning that aims to gradually improve the classi-
fier’s learning ability through the transfer of functional regu-
larisation. (3) We apply the meta functional learning to both
the standard few-shot learning and the cross-domain few-shot
learning problems. We provide comprehensive experiments
on miniImageNet, CIFAR-FS and CUB to validate the effec-
tiveness of MFL and MFL-IU in improving FSL by minimis-
ing model overfit.

2 Related Work
Model Transformation and Composition. Our investiga-
tion on knowledge transfer by functional regularisation is re-
lated to previous works on model transformation and compo-
sition, in particular, a model regression network with MLP
architecture for learning a generic, category agnostic trans-
formation from small-sample models to the underlying large-
sample models [Wang and Hebert, 2016]. Subsequently, a
MetaModelNet [Wang et al., 2017] was proposed for trans-

ferring the model dynamic from head classes to tail classes
in long-tail recognition problem. Functional gradient learn-
ing [Johnson and Zhang, 2019] was explored to learn the
composition of functions and an incremental strategy was
adopted for gradually learning a generator network. And
MetaReg [Balaji et al., 2018] proposed to explicitly meta-
learn a regularization function for domain generalization. Our
work is partly inspired by these works but we expand the ex-
isting works to a new method of meta functional learning to
construct generalisable learning regularisation knowledge ca-
pable of guiding ‘infant’ functions to become ‘mature’ func-
tions in a process of function update.
Few-Shot Learning. Existing methods for few-shot learn-
ing can be divided into several categories. 1) Metric-based
methods learn a common feature space where categories can
distinguish with each other based on a distance metric, and
then infer labels for query data with a nearest neighbor clas-
sifier [Snell et al., 2017] or a separate learnable similar-
ity metric [Sung et al., 2018]. 2) Gradient-based methods
design the meta-learner as an optimiser that is learned to
update model parameters. These approaches aim to learn
good initialised parameters for a network so that the classi-
fiers for novel classes can be learned with several gradient
update steps on few labelled examples [Finn et al., 2017;
Ravi and Larochelle, 2016]. 3) Weight generation methods
learn to generate classification weights for novel classes. A
typical generation method directly predicts the classification
weights from the activation statistics of their categories [Gi-
daris and Komodakis, 2018; Qi et al., 2018]. Besides, some
work try to generate better classification weights with denois-
ing auto-encoders for weights reconstruction [Gidaris and
Komodakis, 2019] or looking into the mutual information be-
tween generated weights and support/query data [Guo and
Cheung, 2020]. Different from existing work to generate
weights from the activations of a feature extractor, we aim
to investigate the function learning update dynamics (a func-
tional) which is not limited to backbone training strategies.

3 Methodology
Problem Definition. In the transfer learning scenario, we
consider a large-scale labelled source/base image-label pair
set Dsrc = {Ij,yj}Mj=1, yj ∈ Cbase, and a small labelled

novel/target image set Dnov = {Ij,yj}Nj=1, yj ∈ Cnov , from
a base Cbase and a novel category Cnov respectively. OnDsrc,
we learn a representation function ψ : Ij → xj , and then we
learn a classifier fφ : ψ (Ij) → yj , where φ is the parame-
ter of f . A common practice in deep learning is optimising
end-to-endψ and f by formulating a multi-class classification
problem overDsrc with a cross-entropy loss. We employ this
process here to compute a feature representation ψ.
Functional Learning. Our goal is to learn to fit a functional
regularisation, T : fφ → fφ̃. Specially, the input fφ (ψ (I))

is a classifier fitted by few labelled samples, and T (fφ) aims
at approximating the corresponding function fφ̃ with regu-
larisation knowledge learned from many labelled examples.
We use φ and φ̃ to denote the parameters learned by few and
many labelled examples.
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Figure 2: The overall model design for Meta Functional Learning (MFL). Plots (1-3) and (1, 2, 4) depict the process of MFL with prototypes
and MFL with iterative updates, respectively. Each residual block in plot (4) represents a network architecture in the blue block of plot (3).

3.1 Meta Learning Task-Agnostic Functional
Rather than directly regressing T by a crafted functional set,
we adopt a meta-learning strategy here. In principle, such a
strategy helps cover a distribution of related tasks, sampled by
episodes, and thus mimicking the predicting future functions
from different domains. Our insight is that: despite the data
may be different between the source and target domains, the
underlying patterns of change in fitting hypotheses to training
data from few to many labelled examples, should be in princi-
ple, the same, or similar at least. The functional T learned to
represent such meta-knowledge of model convergence in one
domain, could be generalisably applied to a novel domain. To
that end, T should be learned in a task-agnostic manner.
Learning Task-Agnostic Knowledge Transfer. Our empir-
ical study (in Fig. 1) shows the task-agnostic knowledge, i.e.
the meta-knowledge of functional regularisation, extracted
from a family of source tasks, could potentially be utilised
to improve the generalisation of new tasks from that fam-
ily. Particularly, to learn a regularisation knowledge transfer,
we adopt the meta-learning strategy to learn the functional
T over multiple learning episodes of the source tasks, sam-
pled from base categories Cbase. Then the learned functional
T is generalised and applied to tasks in target dataset Dnov .
Our Meta Functional Learning (MFL) scheme is specified in
Fig. 2: (1) The representator ψ is firstly trained on Dsrc; then
(2) we sample the functional episodes to train T ; and finally,
(3) we learn T by prototypes and functional episodes or (4)
learn Tx with x iterative updates.

3.2 Sampling Functional Episodes
Rather than directly sample episodes from source data, we
compute the functional episodes to support the learning of T .
Given the trained ψ, the goal of this step is to craft the paired
functional setFT =

{
F (b)
T

}
onDsrc and the class b ∈ Cbase;

and we denote F (b)
T =

{(
f
(b)
φ , f

(b)

φ̃
, f

(b)
p

)}
, where f (b)φ and

f
(b)

φ̃
are the classifiers of class b, trained by few and many

examples, respectively; and f (b)p represent the prototypes of
the positive class b and other negative classes, computed by
few labelled examples which are used for training f (b)φ .

The sampled functional episodes include different classes
in Cbase. This will help our meta functional learning al-
gorithm to learn task-agnostic functional T . Specifically,
for class b (b ∈ Cbase), we compute functional tuple set
F (b)
T =

{(
f
(b)
φ , f

(b)

φ̃
, f

(b)
p

)}
. For each tuple, f (b)

φ̃
is trained

by the set of positive examples {ψ (Ij) , yj = b}, i.e., all im-
ages in class b, and negative examples {ψ (Ij) , yj 6= b} by
randomly sampling from other classes. To obtain the set of
tuples, this process is randomly repeated for Ml times. To
compute f (b)φ , we sample s samples and k×s samples from

class b and other classes. For each f (b)
φ̃

, we randomly sample
samplesMf times and use different hyper-parameters to train
the classifiers f (b)φ for increasing their diversity.

Remark. First, we adopt the f (b)φ by a vanilla binary classi-
fier for class b, and the generalised multi-class scenario (one
vs. all setting) is also extended in the experiments. We utilise
the Logistic Regression (LR) classifiers here, and f

(b)
φ and

f
(b)

φ̃
are the corresponding vectors of LR parameters. Second,

rather than directly learning T : fφ → fφ̃, our MFL learns
an extended form with prototypes, i.e. T : (fφ, fp) → fφ̃,
where fp is a vector by concatenating the positive and neg-
ative prototypes, which are computed by averaging the em-
beddings of samples from corresponding classes. Essentially,
fp is very important to our MFL, as it provides important
category-related prototypes, to help T better learn the cate-
gory agnostic knowledge in the meta training episodes.

3.3 Meta Functional Learning with Prototypes
Given the functional sets FT , we design a meta functional
learning mechanism to learn the functional regularisation T .
For any given class b, the objective of our MFL is to approx-
imate the ground-truth output f (b)

φ̃
= T

(
f
(b)
φ , f

(b)
p

)
. We in-

troduce Mean Square Error (MSE) to measure the difference
of parameter vectors

(
fφ, fφ̃, fp

)
as,

lτ = E(fφ,fφ̃,fp)∼FT

∥∥∥fφ̃ − T (fφ, fp)
∥∥∥2 (1)



Algorithm 1 Meta Functional Learning (MFL).

Require: Embeddings Ψsrc = {ψ(Ij), yj ∈ Cbase} of Dsrc;
Classifier fc; Sampling time Ml, Mf ; Hyper-parameter
set H; Shot number s, s× k; Train epochs T ;

Ensure: Functional set FT ; Functional regularisation T ;
1: // Sampling Functional Episodes
2: FT = Φ; F (b)

T = Φ, b ∈ Cbase;
3: for all b ∈ Cbase do
4: Sample episode El = {ψ(Iij), yj = b}Nbi=1

⋃
{ψ(Iij), yj 6= b}2×Nbi=1 from Ψsrc and train f b

φ̃
on El;

5: Randomly sample sub-episode Ef including s(s × k)
ψ(Ij) with yj = (6=)b from El and train f (b)φ on Ef ;

6: Compute f (b)p including the prototypes of ψ(Ij) with
yj = b and yj 6= b in Ef ;

7: F (b)
T = F (b)

T
⋃

(f
(b)
φ , f

(b)

φ̃
, f

(b)
p );

8: Repeat line 6-7 using fc with h in H;
9: Repeat line 5-8 for Mf times;

10: Repeat line 4-9 for Ml times;
11: FT = FT

⋃
F (b)
T

12: end for
13: // Meta Function learning
14: while t < T do
15: Randomly split mini-batches with size n from FT ;
16: for each mini-batch do
17: Predict functions T (fφ, fp) with T ;
18: Compute the loss in Eq. 1;
19: Update the parameters of T ;
20: end for
21: end while

Model Implementation. The functional T is implemented
as a deep network, with the model architecture in Fig. 2(3).
It consists of a residual block, where the LeakyReLu acti-
vation function is used to learn the nonlinear mapping from
fully connection layers. We employ BatchNorm and dropout
to improve the generalisation of T . The skip connection is
used to keep the scale of classifiers’ parameters and avoid the
degradation of learning. The pseudo-codes of sampling func-
tional episodes and MFL are shown in Alg. 1.
MFL with Iterative Updates. The model in Fig. 2(3) can
be updated by multiple blocks. Specifically, as illustrated in
Fig. 2(4), we enable MFL by a sequence of blocks, i.e. MFL
with Iterative Updates (MFL-IU). And MFL-IUx represents
the output of xth basic block, i.e. Tx (Tx−1 · · · (T1 (fφ, fp))).
A simple version is MFL-IU1 by only using one block for
MFL. The training process of MFL-IU is illustrated in Alg. 2.

4 Experiments
To evaluate the effectiveness of MFL, we tested MFL on two
data-scarce learning problems: N -way K-shot classification,
i.e. a task aiming to discriminate between N classes with
K labelled samples of each class, by (1) standard FSL and
(2) Cross-Domain FSL (CD-FSL). In particular, we adopted
a binary classifier as a vanilla classifier and generalised it to

Algorithm 2 MFL with Iterative Updates (MFL-IU).
Require: Functional set FT ; Iterations X; Train epochs T ;
Ensure: Functional regularisation T = {T1, ..., TX};

1: while t < T do
2: Randomly split mini-batches with size n from FT ;
3: for each mini-batch do
4: for x < X do
5: Predict functions Tx(fφ, fp) with Tx;
6: Compute the loss in Eq. 1;
7: Update the parameters of Tx;
8: end for
9: end for

10: end while

multi-way classification scenari with one vs. all manner. We
first evaluated MFL on basic 2-way FSL tasks and then in-
vestigated whether the learning pattern of MFL can be gener-
alised to multi-way FSL tasks. Furthermore, the experiments
on CD-FSL were carried out for learning tasks with different
shot numbers to investigate the model generalisation capacity
to multi-shot FSL tasks.
Datasets. We employed three FSL datasets: 1) miniImageNet
is a subset of the ILSVRC-12 dataset and contains 100 classes
with 600 images per class. We followed the split in [Ravi and
Larochelle, 2016] and used 64, 16 and 20 classes as base, val-
idation and novel set. 2) CIFAR-FS is a dataset with lower-
resolution images, and it contains 100 classes with 600 in-
stances in each class. Following the split in [Bertinetto et al.,
2019], we used 64 classes to construct the base set, 16 and 20
for validation and novel set. 3) CUB is a fine-grained dataset
which consists of 200 bird categories with 11788 images in
total. We used 100, 50 and 50 classes for base, validation and
novel set with the previous setting in [Hilliard et al., 2018],
and we conducted all experiments with the cropped images
provided in [Triantafillou et al., 2017].
Implementation. We used Conv4 as the backbone for learn-
ing a feature representation. The architecture of this Conv4
network is provided by [Snell et al., 2017] and it contains
four convolutional blocks. Each block comprises a 64-filter
3 × 3 convolution, batch normalization layer, a ReLU nonlin-
earity and a 2 × 2 max-pooling layer. For training the net-
work, we randomly split the images from base classes into
(90%, 10%) partitions as (train, validation) sets. We trained
the backbone over 120 epochs. The batch size and learning
rate are set as 64 and 0.01. For training MFL/MFL-IU, we
employed BatchNorm (0.1), dropout (0.9) and LeakyReLU
(0.01), and the parameters for the first and second fully con-
nected layers are 6000 and 1601 respectively. Moreover, we
trained MFL/MFL-IU over 50 epochs with batch size (256)
and learning rate (0.01). We adopted the Logistic Regression
(LR) function as the base binary classifier and the parame-
ters for computing functional set are Ml = 5,Ms = 100,
k = {1, 2, 3, 4} and H = 1e{−2,−1, 0, 1, 2}. Specifically,
we set s = {1, 2, 3, 4, 5} to construct functional tuple sets
for s-shot learning scenarios in FSL. In all experiments, we
selected the best model by evaluating them on a validation
set and evaluated all methods with 600 episodes randomly
selected from the novel classes in the corresponding dataset.



Dataset Methods 2-way 3-way 4-way 5-way 10-way 20-way

miniImageNet

Baseline† 70.09±1.13 55.74±0.99 46.33±0.79 40.41±0.68 26.50±0.38 16.09±0.21
ProtoNet† 73.76±1.34 59.34±1.14 51.24±0.95 45.22±0.81 29.04±0.44 18.09±0.23
MAML† 73.56±1.38 62.21±1.16 52.44±0.94 48.29±0.83 31.41±0.47 -

Vanilla LR 72.86±1.13 59.51±0.93 51.05±0.83 46.18±0.77 31.04±0.44 21.09±0.24
MetaModelNet‡ 76.34±1.36 62.54±1.14 53.51±0.97 47.99±0.85 31.02±0.46 19.23±0.24
MFL (Ours) 76.50±1.17 63.12±0.99 54.53±0.86 49.01±0.80 33.26±0.45 22.40±0.26
MFL-IU3 (Ours) 78.25±1.24 65.77±1.00 56.60±0.89 51.17±0.83 34.74±0.46 23.45±0.26

CIFAR-FS

Baseline† 72.66±1.14 59.44±1.06 50.77±0.85 46.16±0.77 32.46±0.46 22.04±0.26
ProtoNet† 73.36±1.13 60.45±1.20 51.87±1.01 47.04±0.91 31.41±0.51 20.48±0.25
MAML† 75.82±1.35 63.06±1.23 56.82±1.03 50.15±0.94 39.52±0.60 -

Vanilla LR 76.53±1.16 64.12±1.02 56.62±0.92 51.48±0.82 38.67±0.49 28.27±0.28
MetaModelNet‡ 79.37±1.25 67.96±1.23 60.11±1.11 55.26±1.02 39.48±0.61 27.09±0.31
MFL (Ours) 80.50±1.15 69.57±1.05 61.86±0.98 57.05±0.88 43.15±0.54 31.20±0.29
MFL-IU3 (Ours) 82.17±1.18 72.30±1.11 64.72±1.05 60.11±0.94 45.46±0.60 32.95±0.30

Table 1: Few-Shot Learning Evaluation: Comparison to Vanilla LR and prior work on miniImageNet and CIFAR-FS with Conv4 backbone.
Mean accuracies (%) with 95% confidence intervals results are reported on N -way 1-shot FSL. (·)† represent the experimental results with
the released codes and (·)‡ are our re-implemented results with the corresponding paper. Bold: the best scores.

4.1 Meta Functional Learning
Competitors. We compared our methods against existing
models for N -way 1-shot FSL tasks from three perspectives:
1) Comparison with the base classifier: We used Logistic Re-
gression (LR) as a typical classifier. As in Tab.1, the Vanilla
LR represents a naive LR classifier trained on labelled data,
while MFL and MFL-IU3 are the predicted functions with our
MFL and MFL-IU3, respectively. 2) Comparison with typical
FSL methods: Baseline [Chen et al., 2019] ProtoNet [Snell
et al., 2017], and MAML [Finn et al., 2017]; 3) Comparison
with a model transformation method: MetaModelNet [Wang
et al., 2017]. Since no official result is provided on these com-
parison methods in N -way classification FSL, we re-ran the
released code in [Chen et al., 2019] for evaluating FSL meth-
ods and evaluated MetaModelNet with our re-implemented
model following [Wang et al., 2017].
Results and Analysis. Table 1 shows the comparative re-
sults on miniImageNet and CIFAR-FS. We can see that:
(1) Our methods can effectively transfer the regularisation
knowledge to benefit the naive functions, i.e. Vanilla LR,
yielding more robust and accurate functions with significant
performance improvement on 2/3/4/5/10/20-way 1-shot FSL;
(2) Our methods significantly outperform three typical FSL
methods, achieving the potentially smooth and discrimina-
tive hypotheses on a fixed ; (3) MetaModelNet can improve
the performance of the Vanilla LR in low-way (1-5 way) FSL
tasks, while the improvement in higher way (10/20 way) FSL
tasks is limited. In contrast, our methods performed well in
all N -way 1-shot FSL tasks. This verifies that our methods
are more robust and generalisable to multi-way FSL tasks.
Moreover, MFL and MFL-IU3 are both effective in improv-
ing the performance of the Vanilla LR. MFL-IU3 performed
better than MFL due to the benefit from the progressive in-
creasing functional regularisation knowledge provided by the
iterative update strategy.

4.2 Learning Cross-Domain
We employed MFL and MFL-IU3 on a more challenging
task, CD-FSL. We followed the miniImageNet → CUB set-

Dataset miniImageNet→ CUB

#shot 1 2 3 4 5

Baseline 36.46 45.21 50.94 55.76 58.52
ProtoNet 41.06 50.88 52.73 60.01 60.38
MAML 42.22 49.33 55.07 57.72 58.08

Vanilla LR 42.42 51.92 58.42 62.74 66.21
MetaModelNet 36.54 42.40 45.95 50.81 52.52
MFL (Ours) 44.04 53.10 59.15 63.54 66.94
MFL-IU3 (Ours) 45.17 53.69 60.34 64.50 67.71

Table 2: Cross-Domain Few-Shot Learning Evaluation: Mean accu-
racies (%) of our methods and the competitors with Conv4 backbone
on 5-way K-shot tasks under the cross-domain scenario.

ting in [Chen et al., 2019], where Dsrc and Dnov are the im-
ages from the base classes of miniImageNet and the novel
classes of CUB, respectively. We adopted the same competi-
tors in section 4.1 and carried out experiments on CD-FSL by
using 5-way K-shot settings to investigate model effective-
ness on different shot learning scenarios. Table 2 shows the
results with the following observations: (1) By directly us-
ing the learned representation trained on miniImageNet, the
three existing FSL methods give inferior performance on CD-
FSL. (2) MetaModelNet, the model transformation method,
improved the Vanilla LR on FSL but failed on CD-FSL, re-
sulting in a poorer transformed classifier than Vanilla LR. (3)
Our methods are able to improve the Vanilla LR by transfer-
ring the regularisation knowledge in model learning across
domains, yielding a more accurate classifier with 1%-3% in-
crease of classification accuracy on 5-way K-shot CD-FSL.

4.3 Visualisation
To validate our hypothesis, i.e. the regularisation knowledge
transfer with MFL, we adopted T-SNE [Maaten and Hinton,
2008] to visualise the classification results of Vanilla LR and
MFL-IU3 on 2-way 1-shot tasks from the novel classes of
miniImageNet. Specifically, we showed three typical data
distributions, i.e. continuity, cluster and manifold, for com-



(a1) Ground-truth (b1) Vanilla LR (c1) MFL-IU3
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Figure 3: The T-SNE visualisation of 2-way 1-shot FSL tasks from miniImageNet. Plots (a1-3) depict the data distributions with ground-truth
labels, while plots (b1-3) and (c1-3) are the classification results of Vanilla LR and MFL-IU3, respectively. The red/blue stars and round
points represent the class(0/1) train and test data, while numbers in plots are the classification accuracies of corresponding methods.

Backbone Conv4 ResNet-12

#shot 1 5 1 5

Vanilla SVM 46.0 62.36 58.25 74.26
MFL (Ours) 48.98 64.32 58.95 74.81
MFL-IU3 (Ours) 50.77 65.42 59.45 75.19

Table 3: Mean accuracies (%) of Vanilla SVM and SVM with MFL
and MFL-IU3 on 5-way 1/5shot tasks from miniImageNet.

prehensively describing the regularisation behaviors with the
learned functional regularisation knowledge. Figure 3 shows:
(1) In a specific feature space, the data distributions fit the
characters of continuity, cluster or manifold (Fig. 3(a1-3));
(2) The few-shot classifiers easily overfit to the labelled data,
resulting in hypotheses lacking of regularisation and inferior
classification results (Fig. 3(b1-3)); (3) Our MFL-IU3 can
remit this limitation via imposing the functional regularisa-
tion knowledge into classifiers, achieving more reasonable
hypotheses with superior classification results (Fig. 3(c1-3)).

4.4 Ablation Study
Generalisation on Different Classifiers and Backbones
We conducted experiments to investigate the generalisation
ability of MFL on different base classifier and backbones.
Specifically, we used linear Support Vector Machine (SVM)
as a base classifier, and two backbone networks Conv4 and
ResNet12 [Wang et al., 2020] for learning a representation.
As in Tab. 3, our methods perform well on different classi-
fiers, i.e. LR and SVM, verifying the generalisation ability of
MFL on different classifiers. Besides, our methods show well
generalisation ability on different backbones. Noticeable, the
improvement on Conv4 is larger than that on ResNet12, we
conjecture this may attribute to the shallow architecture of
Conv4, yielding less discriminative representation in which
the learned vanilla classifiers are easily stuck in the overfitting
problem and our MFL can effectively extricate them from this
dilemma via the knowledge of functional regularisation.

Effects of Shot Number and Iterative Steps
To demonstrate the effectiveness of the iterative update strat-
egy, we conducted experiments using MFL-IUx with x it-
erative steps. Besides, we further investigated the general-
isation ability of MFL on FSL with different shot number.
Figure 4 shows the results of MFL-IUx (x = 1, 2, 3) on 5-
ways K-shot (K = 1, 2, 3, 4, 5) FSL and we can see that: (1)
The MFL-IUxwith different iterative steps can both boost the

Figure 4: Mean accuracies (%) of Vanilla LR and MFL-IUx on 5-
way K-shot tasks from miniImageNet with Conv4 backbone.

classifiers’ performance on 1/2/3/4/5-shot FSL; (2) With the
increase of iterations, the predicted functions become more
accurate, demonstrating the effectiveness of iterative updates;
(3) With the number of shot increasing, the improvement on
Vanilla LR with MFL-IUx deceases. This suggests that the
hypotheses can gradually learn regularisation knowledge with
the help of available labelled data, yielding more robust hy-
potheses where the boosting space with regularisation knowl-
edge is narrow, thus the functional regularisation knowledge
in MFL-IUx brings less improvement.

5 Conclusions
In this work, we explored the idea of knowledge transfer
by learning a meta functional of regularisation in the model
learning function spaces between a richly labelled domain
and a scarcely labelled domain. We demonstrate that clas-
sifiers with less training data can gradually learn the func-
tional regularisation knowledge from a concurrent learning
process on more labelled data. Based on this observation, we
consider that this functional regularisation knowledge can be
transferred across different domains for model learning tasks
when training data is scarce. We formulated the MFL with
iterative updates. Extensive experiments on miniImageNet,
CIFAR-FS and CUB, show that the transfer of model learning
regularisation knowledge is effective in learning more accu-
rate hypotheses (classifiers) given scarcely labelled data.
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