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Abstract

The topical domain generalization (DG) problem asks
trained models to perform well on an unseen target domain
with different data statistics from the source training do-
mains. In computer vision, data augmentation has proven
one of the most effective ways of better exploiting the source
data to improve domain generalization. However, existing
approaches primarily rely on image-space data augmenta-
tion, which requires careful augmentation design, and pro-
vides limited diversity of augmented data. We argue that
feature augmentation is a more promising direction for DG.
We find that an extremely simple technique of perturbing
the feature embedding with Gaussian noise during train-
ing leads to a classifier with domain-generalization perfor-
mance comparable to existing state of the art. To model
more meaningful statistics reflective of cross-domain vari-
ability, we further estimate the full class-conditional feature
covariance matrix iteratively during training. Subsequent
Jjoint stochastic feature augmentation provides an effective
domain randomization method, perturbing features in the
directions of intra-class/cross-domain variability. We verify
our proposed method on three standard domain generaliza-
tion benchmarks, Digit-DG, VLCS and PACS, and show it
is outperforming or comparable to the state of the art in all
setups, together with experimental analysis to illustrate how
our method works towards training a robust generalisable
model.

1. Introduction

Deep learning methods demonstrate exceptional perfor-
mance in different fields of computer vision, such as ob-
ject recognition, semantic segmentation or object detection.

* Equal contributions.
1 Corresponding author.
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Figure 1: Illustrative schematic of our stochastic feature
augmentation method. The trained vanilla model has lim-
ited robustness as simple perturbed feature instances, as
might be encountered experiencing domain-shift, could in-
duce the classifier to make a mistake. During the training,
we persistently perturb the feature embedding, which leads
to classification mistakes. In order to discriminate these er-
roneous perturbed instances, the feature spare must adapt to
separate the classes with a more robust decision boundary.
This new boundary is in turn more robust to domain-shift.

However, these machine learning systems’ performance
drops dramatically when encountering test data, which is
statistically different from the training data [5]. This issue
is known as the domain shift problem, which domain gener-
alization (DG) research aims to address. Models with good
DG properties are crucial in practical applications since the
distribution of testing data in deployment is inevitably dif-
ferent from training data collected for model fitting [17],
whether due to either the expense or simple impossibility of
collecting representative training data.

DG research traces back to a decade ago [3]. Since then
a variety of methods were proposed to push the DG bound-
ary, including learning domain-invariant features [28, 14],
extracting the underlying domain knowledge [15, 20], and
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meta-learning inspired methods [21, 2, 6, 22]. Among exist-
ing DG strategies, data augmentation based approaches [33,

, 44] have become popular. Data augmentation is already
widely used to reduce overfitting in conventional supervised
learning [ 18], by inserting predefined class-preserving op-
erations, such as transformation, cropping, rotation, flip-
ping. Intuitively, augmenting the source domain data with
diverse samples better representing the breadth of plausible
domains also leads to improved generalization to novel do-
mains, especially when there are only a few known source
domains to start with. However, existing augmentation-
based approaches primarily rely on image-space augmen-
tations, which are non-trivial to design due to the diffi-
culty of specifying- or learning how to synthesize images in
new domains. Existing approaches include perturbing in-
puts by gradient-descent on the signal from a domain clas-
sifier [33], generating adversarial samples [38] and using an
image synthesis network to generate novel images that fool
a domain classifier [44]. These approaches are all compu-
tationally expensive and complex. In contrast, feature-level
data augmentation have also proven effective recently in a
supervised learning context [37]. We are inspired by these
ideas to explore feature-level augmentation solutions to DG,
as shown in Fig. 1.

In this paper, we first show that an extremely simple fea-
ture augmentation of perturbing latent features using white
Gaussian noise already leads to comparable performance to
recent state-of-the-art. This strategy outperforms the above
mentioned highly engineered approaches that rely on train-
ing image-to-image generation networks, or gradient-based
adversarial sample generation; while being extremely sim-
ple to implement and much faster to run. Nevertheless,
while feature augmentation helps to enhance the breadth
of seen domains for training, a limitation is that one can
not add too much noise without risking inducing a non-
class-preserving augmentation, which then has the counter-
productive effect of introducing label-noise. To enable more
meaningful and class-preserving augmentations, we aim to
estimate the natural directions of correlation that already ex-
ist in a given source dataset. Specifically, we estimate the
feature covariance online during training using moving av-
erage and then use it to simulate a joint (multivariate Nor-
mal) noise distribution across the features. Estimating class-
conditional covariance further ensures that the learned noise
follows the class-preserving but inter-domain directions.

The proposed method potentially applies to any base DG
method. We show that it improves the vanilla method to
achieving the state of the art performance on three bench-
marks, Digit-DG, VLCS and PACS. Furthermore, we show
the feature evolution from pretrained Vanilla to our SFA
trained features to understand how the proposed method es-
sentially improves model generalization.

2. Related Work
2.1. Domain Generalization

Various methods have been proposed in the DG litera-
ture, spanning shallow [15, 28, 14] and deep [20, 27, 21,
, 0, 39, 44, 46] learning methods. Representative works
can be categorized into: domain invariant/agnostic model

learning [28, 14, 27, 23, 15, 20], meta-learning based DG
methods [21, 2, 6, 22], data augmentation based DG meth-
ods [33, 38, 44], and self-supervision based methods [4, 39].

Our work is most relevant to the data augmentation based
DG methods. [33] designed a special Bayesian architecture
and required one-step of back-propagation to generate im-
age perturbations. [38] targeted finding the ‘hardest’ (adver-
sarial) samples for the current model and appending them
into the training data, which requires a costly minimax op-
timization at each iteration. [44] proposed to generate novel
augmentation images via domain-adversarial training of an
image generation network, extended with optimal-transport
based metrics in [45]. In this paper, we take a different
perspective and propose a simple yet effective feature-level
data augmentation technique for DG. Our feature augmen-
tation could be implemented with a few lines of code and
applies to any base DG methods in a plug-in manner.

2.2. Feature Interpolation and Augmentation

It has been observed that deep features are usually well
linearized [36], so that simple vector interpolation can
change the content of a feature [13]. [37] also demonstrated
that feature augmentation by simply mixing up features im-
proves model generalization. Our approach is inspired by
such feature augmentation techniques. However, unlike ex-
isting works [13, 36] which learn the interpolation for some
‘semantic’ change, our feature augmentation aims to retain
category information and span the space of domains.

Unlike some recent work [46], which explicitly perturbs
latent features in a mix-up inspired way [37] by exploit-
ing domain labels, our method perturbs feature embedding
without using any domain labels.

2.3. Domain Randomization

Domain randomization has been widely used in differ-
ent tasks [34, 43, 31, 31, 42, 26] in computer vision. [34]
firstly proposed to apply diverse random rendering styles
to synthetic data, such that the test data was likely to lie
within the training distribution, thus improving generaliza-
tion. [31] proposed to improve domain randomization by
the guidance from the task-specific prior knowledge. Our
proposed data adaptive noise generator preserves the intra-
class variations, but fits to the inter-domain variation ob-
served among training domains. Thus, when using the sam-
pled noise to perturb the original feature, it interpolates the
features along directions spanning the inter-domain direc-
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tions while preserving inter-class directions, thus serving as
an implicit domain randomization.

2.4. Stochastic Neural Networks

Incorporating random variables during learning and in-
ference is common in variational inference models, such
as Varitional Autoencoder (VAE) [16] and Variational In-
formation Bottleneck (VIB) [!], to fulfill the optimiza-
tion of their KL divergence term. Recently, some re-
searchers [25, 41] also observed the benefits of injecting
noise into the latent feature representation for improving
adversarial defense. However, all their focuses are differ-
ent to us and none of them has considered modeling feature
correlation in their noise sampling.

3. Methodology

Problem Definition. In the typical domain general-
ization setting, there are N multiple source domains,
{D',..., DN}, where each D’ contains M (M may vary
across different domains) data and label pairs with joint
distribution P/(X,Y) : x € X,y € V}IL,. The goal
in DG is to train a model on the source domains, and test
it on an unseen target domain DV+!, The unseen target
domain is normally different from the source domains as
Pi(X,Y) # PNTU(X,Y),j=1,...,N.

3.1. Vanilla ERM Baseline

Let us assume the training model, namely a deep con-
volutional neural network, consists of a feature extractor
Fo and a classifier G, parameterized by © and v respec-
tively. Typically, the feature extractor Fg is formed of mul-
tiple separate layers F’,. Then, given an input image x,
its prediction through this model is § = Gy o Fgo(x) =
Gy o FhL o+ o FY (x), where L means the number of
total layers of the feature extractor. At training, a vanilla
baseline is trained using source domain data by the empiri-
cal risk minimization (ERM) objective.

argmin Lom({D’}, Fo, Giy)
| 1L 1
= argmin Z 2] > UGy oFe(x)y)

where £ is the loss function, i.e. cross entropy loss in our
problem. We build on vanilla ERM here, as it is known as a
very strong baseline [20, 17]. Neveretheless, one can apply
our SFA on top of almost any alternative base DG method.

3.2. Feature Augmentation

Some previous works [35, 37, 46] have suggested that
various kinds of feature augmentation can help to improve

model generalization. Different from the standard data aug-
mentation on the raw image space, feature augmentation ap-
plies the ‘transformation’ directly on the feature space. For
instance, given a latent embedding tensor 2' = Fi(z'~1),
zi ¢ RNVXEXHXW aq the output of the layer i of the fea-
ture extractor, it can be augmented as

7' = A®Z) )

where A(.) is an feature augmentation function, which will
perturb the vanilla representation Z" into a new representa-
tion 2'. For one instance, in [37] A is implemented as,

AZ)=ax2fyma + (1 -a) %2y )

which mixes up two features from two different classes to a
novel interpolated vector.

3.3. Stochastic Feature Augmentation (SFA)

In this paper, we propose to augment feature representa-
tion using random noise. More specifically, the latent fea-
ture embedding is augmented by simply multiplying and
adding random variables sampled from certain distribu-
tions. The feature augmentation function is formulated as

)

2 =AZ)=a0z +3 “4)

where o € RVXEXHXW gnd g ¢ RVNXEXHXW gre the
noise samples, and ® indicates element-wise multiplica-
tion. Each element o is sampled from some distributions,
i.e. Normal distributions A (u, X) in this paper. In partic-
ular, the statistical moments (s, ) can be hyperparameters
or updated during the model optimization by incorporating
features’ statistics. In the following we will introduce two
variants of our SFA, including a simple white noise baseline
and an adaptive full-covariance version.

3.3.1 Simple Data-independent Noise

First we investigate the simplest version of this stochas-
tic feature augmentation. We set y as constant and X as
a constant diagonal matrix, formulating SFA as a data-
independent stochastic feature augmentation module. With
this parameterisation, the SFA function can be treated as
perturbing the original feature representations randomly
without preferring any particular perturbation directions.
Now the scale « and bias [ are sampled from two multi-
varate Gaussian distributions,

(e NN(l,O'lI)
,@ NN(O,O’QI)

where, I is the identity matrix, o1, 0y are two scalar hy-
perparmeters. By default we set o1 = o5 to reduce hyper-
parameters. Although the perturbation does not follow any
‘meaningful’ direction here, it empirically already improves
the base ERM method significantly.

®)
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Figure 2: The overall pipeline of our method. Our SFA module is a plug-in module which can be incorporated into any neural
DG method. As illustrated on the right, our SFA perturbs the latent features using a combination of non-adaptive uniform

and data-adaptive shaped noise.

3.3.2 Adaptive Dependent Noise

The simple strategy above samples the random noise from a
data-independent uniform diagonal Normal distribution. As
we will show later, this is already a highly effective regular-
izer for DG. Nevertheless, an issue is that the sampled noise
does not follow the class-preserving directions, so while
there are augmentation benefits, these could be undermined
in practice by effectively introducing label-noise. Second,
sampling uniform-diagonal noise to perturb the feature em-
bedding, does not consider the correlation between different
feature dimensions which can be important for the seman-
tics of the representation. In particular, we would like to
sample more aggressively along latent directions spanned
by the data domains; and less aggressively along latent di-
mensions spanned by different categories.

We therefore propose an adaptive data dependent regu-
larizer in which we assume that, besides the uniform noise
generator above, we also have a class-conditional noise gen-
erator with its own full covariance matrix. Now the SFA
function is defined as

) (6)
=a®2+p8+¢€

where £ € RY*K is sampled from class-specific Multi-
variate Normal distributions N(0,X.),c € [1,C], 2. €
RK X K .

Next we specify how to estimate these class-wise covari-
ances X.. Our strategy is to fit them to the observed data co-
variance. Since there is insufficient data in each mini-batch
to do this accurately, we intermittently estimate the covari-
ance using data from K mini-batches and update them on-
line using exponential moving average (EMA) as

.= Ax 3.+ (1= \) * Cov(Meangim=(2,3)(Z")[y = ¢])
(N
where A\ is the discount factor.

Algorithm 1: Stochastic Feature Augmentation (SFA)

Data: feature z¢; label y; noise scalars o1, 02; EMA
rate \; bool adaptive.
Result: augmented feature 2*.
/+ SFA-S: data-independent noise =*/
1 Sample & ~ N'(1,01I) and B ~ N(0,021) ;

2 Compute the augmented feature a0z + B;

/* SFA-A: adaptive noise */
3 if adaptive == True then
4 Estimate the class-wise covariances

Eo= Ak 4 (1= M) %
Cov(Meangim—(2,3)(2")[y = c]);
5 Sample £[y = ¢,:] ~ N(0,X%.) ;
6 Compute the augmented feature =2 +¢
7 end

Compared to the baseline in Sec 3.3.1 we now model
feature correlations across the hidden dimensions. Note that
because the covariance is taken over all instances, aggregat-
ing over domains, directions of high inter-domain variabil-
ity will be modeled by these covariances. However, because
we use the labels to fit class-conditional covariances, intra-
class variations are preserved in X..

During the forward pass, elements of £ are sampled as,

Ely =c¢,:] ~N(0,%,) 3
where the minibatch feature instances from the same class

share the same noise.

Loss Function The loss function for using SFA is

N

1 1 N

Lermesta = N § |,Dj| E E(Glﬁ o Fg (X)’ y) )
Jj=1 x,yeDI

where Fio (x) is the latent feature embedding augmented by
our SFA module in the forward pass. Since the multivariate
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normal distribution in Eq. (8) is straightforward to repara-
materize, back-propagation requires no special machinery.

The overall pipeline of our proposed method is illus-
trated in Fig. 2. Meanwhile, the pseudo code of our pro-
posed module is in Alg. 1, which show just how easy it is
to implement our SFA. Practically, we apply 12 norm on the
final feature, stabilizing model training. We checked that
removing our SFA module while retaining the 12 norm does
not give any improvement, confirming the effectiveness is
all from our proposed module.

3.4. Training and Inference

During training we optimize the model parameters using
the following objective,

in L Lerm.- 10
arg%l}il erm""'y erm-sfa ( )

At inference, the SFA module will be disabled and feature
extractor Fp is deterministic. Although we introduce o1, 0o
(01 = 02) in our method, we empirically find that they are
consistent across all benchmarks and do not require much
tuning.

4. Experiments
4.1. Datasets and Settings

Datasets. To evaluate the efficacy of our proposed method,
we conduct extensive comparative evaluations on three DG
benchmarks: Digit-DG [45], VLCS [&], and PACS [20].
Specifically, Digit-DG is a combination of four handwrit-
ten digit recognition datasets (MNIST [19], MNIST-M [1 1],
SVHN [29] and SYN [ 1]) with domain shit mainly in font
style, stroke color and background. VLCS contains five
classes (bird, car, chair, dog, and person) which were col-
lected from four photo datasets (PASCAL VOC 2007 [9],
LabelMe [32], Caltech [7], and Sun [40] datasets). PACS
consist of seven classes of images (dog, elephant, giraffe,
guitar, horse, house, and person) for training and testing.
These images are depicted in four image styles (photo, art,
cartoon, sketch), presenting larger domain discrepancy than
the other two. In all experiments, we strictly followed the
previous works [39, 44] which used standard image aug-
mentations on PACS&VLCS but not on Digit-DG.

Evaluation Protocol. Following prior works [22, 20, 4],
we apply the leave-one-domain-out protocol for fair com-
parisons. Namely, during the training, one domain is se-
lected as the held out domain while the remaining domains
are treated as source domains for model training. For per-
formance measure, we report top-1 classification accuracy
on each test domain and the average accuracy accordingly.
Competitors. We evaluate both stochastic feature aug-
mentation methods including the simple non-adaptive vari-
ant (SFA-S, Sec 3.3.1), and the adaptive variant (SFA-A,

Category Method

Vanilla ERM
JiGen [4]
RSC [30]

EISNet [39]

MASEF [6]
CCSA [27]
DANN [12]
MAML [10]
MLDG [21]
MetaReg [?]
Epi-FCR [22]
MMD-AAE [23]
CrossGrad [33]

DDAIG [44]
L2A-OT [45]

SFA-S(Ours)
SFA-A(Ours)

‘ Domain Supervision

PR P TR TRRER R R
IR N N NI N N N N N N N NIRRT T

Table 1: Domain generalization method categorization by aug-
mentation and domain supervision. A: augmentation-based DG;
B: non-augmentation-based DG. v: Requires domain labels; X:
Does not require domain labels.

Sec 3.3.2). We compare our methods with fifteen state-
of-the-art DG methods categories in Tab. 1, and a base-
line method (named Vanilla) that directly aggregates all
the source domain data for model training without any DG
tricks. As we previously described in Sec. 2.1, these com-
petitors span different types. However, in our evaluation
context, we primarily aim to study the efficacy of augmen-
tation for DG. To this end, we summarized these DG meth-
ods into two categories: (A) augmentation-based DG and
(B) non-augmentation-based DG. Also, we conducted a rig-
orous assessment by marking those methods that explicitly
leveraged domain label information in model training.

4.2. Evaluation on Digit-DG

Implementation details. = We use exactly the same net-
work configuration in previous works [44], which consists
of four Conv (3 x 3, 64 kernels) — ReLU — Maxpooling
(2 x 2) modules and one softmax classification layer. We
warm up the model from scratch first for 500 iterations us-
ing only the ERM loss and then add SFA loss for the rest
5500 iterations. We use M-SGD with batch size 42, mo-
mentum 0.9, learning rate 0.01 for classifier and 0.01(0.02)
for feature extractor in SFA-S(SFA-A) and weight decay
Se-4. During training, our SFA module is added on the
penultimate feature layer to perform feature augmentation
for source domains. We set 037 = 02 = 1,7 = 3.0. For
SFA-A, we update the estimated X, every K = 8 batches
and set A = 0.3.

Results. We summarize the evaluation results on Digit-
DG with comparison to the state-of-the-art methods in
Tab. 2. Using simple data-independent noise for feature
augmentation, our SFA-S model outperforms the existing
best augmentation-based DG method (L2A-OT [45]) by a
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Target ‘MNIST MNIST-M SVHN SYN | Ave.

Vanilla ERM 95.8 58.8 61.7 78.6 | 73.7
CCSA [27] 95.2 58.2 65.5 79.1 | 74.5
MMD-AAE [23] 96.5 58.4 65.0 784 | 74.6
JiGen [4] 96.5 61.4 63.7 74.0 | 73.9
CrossGrad [33] 96.7 61.1 65.3 80.2 | 75.8
DDAIG [44] 96.6 64.1 68.6 81.0 | 77.6
L2A-OT [45] 96.7 63.9 68.6 83.2 | 78.1
SFA-S(Ours) 96.7 66.3 68.8 85.1 | 79.2
SFA-A(Ours) 96.5 66.5 70.3 85.0 | 79.6

Table 2: Domain Generalization results on Digit-DG benchmark.

clear margin of 1.1%. Please note, L2A-OT requires careful
design and expensive training cost to achieve these results.
In contrast, our SFA-S only requires some trivial noise sam-
ples, as described in Alg. 1, and is trained at the same speed
as the Vanilla ERM lower bound. Our SFA-A model with
adaptive data-dependent noise achieves the best overall per-
formance (Avg.), which further improves the DG perfor-
mance upon our SFA-S model by 0.4%. Notably, on the
most two difficult target domains (MNIST-M and SVHN),
our SFA-A model obtains significant improvements (+7.7%
and +8.6% respectively) compared with the Vanilla model.
This shows that our SFA can effectively deal with large do-
main shifts caused by complex backgrounds and cluttered
digits.

4.3. Evaluation on PACS

Implementation details. We follow the latest state of the
art art [39] using ResNet-18 (ImageNet pretrained) as our
backbone model and use the predefined protocol in [20] for
fair comparison. We train the model with the same training
strategy as above for total 3.5k iterations and set learning
rate 0.001 for classifier and 0.001(0.002) for feature extrac-
tor for SFA-S(SFA-A). Again we add our SFA-S/SFA-A in
the penultimate feature layer and setocl = 02 = 1,7y = 1.0.
For SFA-A, we update the estimated 3. every K = 12
batches and set A = 0.3.

Results. From the results in Tab. 3, we can see that again
our SFA-S variant has already achieved the comparable per-
formance to the previous state of the art methods. Our SFA-
A improves the simple variant SFA-S with 0.7% accuracy,
resulting in a clear improvement margin of 2.6% accuracy
over the vanilla ERM method and outperforming the data
augmentation DG method CrossGrad [33] with 3.9%. Al-
though not as good as recent state of the art methods, such
as EISNet and L2A-OT [45], our method wins in term of
its efficiency and simpleness. And note that L2A-OT uses
domain labels at training, whereas we do not.

Target ‘Art. Cartoon Photo Sketch | Ave.

Vanilla ERM 77.6 73.9 94.4 703 | 79.1
DANN [12] 81.3 73.8 94.0 74.3 | 80.8
MAML [10] 78.3 76.5 95.1 72.6 | 80.6
MLDG [21] 79.5 713 94.3 71.5 | 80.7
CrossGrad [33] | 78.7 73.3 94.0 65.1 71.8
MetaReg [2] 79.5 75.4 94.3 722 | 80.4
Epi-FCR [22] 82.1 71.0 93.9 73.0 | 815
RSC' [30] 78.9 76.9 94.1 76.8 | 81.7
EISNet [39] 81.9 76.4 95.9 743 | 822
L2A-OT [45] 83.3 78.2 96.2 73.6 | 82.8

SFA-S(Ours) 80.1 76.2 94.1 73.5 81.0
SFA-A(Ours) 81.2 71.8 93.9 73.7 | 81.7

Table 3: Domain Generalization evaluation results on PACS
dataset with ResNet18. t is the result reproduced by [30].

4.4. Evaluation on VLCS

Implementation details. We follow the latest work
EISNet [39] that uses AlexNet (ImageNet pretrained) on
this benchmark. We follow the train/test protocol as
per [39]. We set the learning rate 0.0002 for classifier and
0.0001(0.0002) for feature extractor for SFA-S(SFA-A). We
train the model using the same strategy as above for total 4k
iterations. We set 01 = ¢2 = 1,7 = 1.0 same as above.
For SFA-A, we update the estimated 3. every K = 20
batches and set A = 0.3.

Results. From the results in Tab. 4, we can see that our
SFA-S achieves the comparable overall performance to all
the recent DG competitors except EISNet [39], and stands
out when V is the heldout domain, again demonstrating the
effectiveness of this simple feature augmentation technique.
SFA-A, which shows the best performance heldout C do-
main, now improves SFA-S with a margin of 0.5% and the
Vanilla ERM method 1.3%, demonstrating its consistent ef-
fectiveness as the previous setups.

5. Further Analysis

Choice of noise distribution. =~ We chose to use Normal
distribution across all benchmarks. We also compared other
potential noise distributions including Laplace and uniform
in Tab. 5 using SFA-S(53) baseline (additive noise only).
From the results we can see that: (i) simple Gaussian noise
is best overall, although (ii) any choice of noise distribu-
tion provides an consistent improvement on the determinis-
tic ERM baseline.

Where to add SFA module? We explore adding our SFA
module at different potential locations within the 4-layer
CNN used for Digit-DG. From the results in Tab. 6, we can
see that: (i) injecting noise at Layer 2 is the best, but (ii) any
location for noise injection provides an improvement on the
deterministic Vanilla ERM baseline.
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(a) Raw features
with pretrained Vanilla
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(d) Test features with pretrained Vanilla

(b) SFA features
with pretrained Vanilla

(c) SFA features
with trained SFA
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(e) Test féatures with SFA

Figure 3: T-SNE visualization of features on Digit-DG. Plots (a-c) the features of training data, and plots (d-e) are the features

of test data.

Target ‘ v L C S Ave.
Vanilla ERM 719 592 969 62.6 | 72.7
D-MTAE [14] 639 60.1 89.1 61.3 | 68.6
CIDDG [24] 644 63.1 88.8 62.1 | 69.6
CCSA [27] 67.1 62.1 923 59.1 | 70.2

DBADG [20] 700 635 93.6 613|721
MMD-AAE [23] | 67.7 62.6 944 644 | 723

MLDG [21] 67.7 613 944 659 | 72.3
Epi-FCR [22] 67.1 643 941 659 | 729
JiGen [4] 70.6 609 969 643 | 732
MASF [0] 69.1 649 948 67.6 | 74.1
EISNet [39] 69.8 635 97.3 68.0 | 74.7
SFA-S(Ours) 69.6 622 962 658 | 73.5

SFA-A(Ours) 704 620 972 662 | 74.0

Table 4: Domain Generalization evaluation results on VLCS
dataset with AlexNet.

Target | M MM SV SY | Ave
VanillaERM | 958 58.8 61.7 786 | 737

SFA-S(Uniform) | 95.6 63.8 623 83.0 | 76.2
SFA-S(Laplace) | 955 643 654 82.1 | 76.8
SFA-S(Normal) | 959 640 650 829 | 77.0

Table 5: Analysis of noise type using SFA-S(3) on Digit-DG.

Parameter sensitivity analysis on noise strength. Our
simple model SFA-S has only a single hyperparameter o1 =
o9 of noise strength. In Tab. 7, we perform a sensitiv-
ity study on this hyperparameter. From the results we can
see that a moderate noise strength of o7 = o9 = 1 per-

Target | M MM SV SY | Ave.
VanillaERM | 958 58.8 61.7 78.6 | 73.7

SFA-S(Layer 0) | 96.3 64.7 642 819 | 76.8
SFA-S(Layer 1) | 96.3 66.0 669 829 | 78.0
SFA-S(Layer 2) | 96.7 66.3 68.8 85.1 | 79.2
SFA-S(Layer 3) | 95.8 655 668 87.3 | 789

Table 6: Analysis of location choice to inject noise using SFA-
S(a, B) on Digit-DG benchmark.

Target | M MM SV SY | Ave
VanillaERM | 95.8 588 61.7 786 | 73.7

SFA-S(0.01) | 962 654 679 85.0 | 78.6
SFA-S(0.1) 964 659 68.1 853 | 789
SFA-S(1) 96.7 663 68.8 85.1 | 79.2
SFA-S(10) 964 655 674 838 | 783
SFA-S(100) | 964 652 672 843 | 783
SFA-S(1000) | 96.0 645 673 848 | 78.2

Table 7: Parameter sensitivity analysis of SFA-S(«, 8) with dif-
ferent values of o1 = o2 on Digit-DG.

forms best, but SFA is not sensitive to the specific setting of
this hyperparameter as it clearly surpasses the Vanilla ERM
baseline across six orders of hyperparameter magnitude.

Ablation study of noise components in SFA. We conduct a
thorough study of three noise components in our SFA: scale
«, bias 3, and covariance £. In Tab. 8, there are different
variants: non-adaptive additive/multiplicative noise (SFA-
S(B)/SFA-S(«v)), adaptive additive noise (SFA-S(£)) and
their different combinations (SFA-S(3, «)), (SFA-S(&, «))
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Target | M MM SV SY | Ave
VanillaERM | 958 588 61.7 786 | 73.7

SFA-S(5) 959 640 650 829 | 77.0
SFA-A(E) 952 646 665 829 | 773
SFA-S(o) 96.1 656 675 84.1 | 783

SFA-S(5, o) 96.7 663 688 851 | 79.2
SFA-A(&, o) 96.0 67.2 694 844 | 793
SFA-A(B,a,&) | 96.5 66,5 703 85.0 | 79.6

Table 8: Ablation study of SFA noise components on Digit-DG.

Target Art  Cartoon Photo Sketch ‘ Ave.

EISNnet+SFA-A | 82.1 76.7 95.5 7577 | 825
DDAIG [44](*) 80.2 75.0 94.4 74.5 ‘81.0

DDAIG+SFA-A | 81.3 75.9 94.6 752

EISNet [39](*) ‘82.6 75.3 949 748 ‘81.9
‘ 81.8

Table 9: Results of incorporating SFA on other SoTA methods
on PACS using ResNet18. *: results reproduced by running their
public code base.

and (SFA-A(S, «, £)). Table 8 shows that: (i) simply using
non-adaptive additive noise bias only S can obtain a con-
siderable improvement (+3.3%) compared with the Vanilla
ERM method, and using adaptive noise £ gives larger im-
provement margin (+3.6%) which is expected. Among all
single-noise variants, the multiplicative noise o works most
effectively enabling a 4.6% gain. (ii) using the combination
of different noise works better than single noise and com-
bining £ and « is more beneficial than combining /3 and «,
(iii) the full model SFA-A(S3, a, £) using all different noise
further improves the quality of feature augmentation result-
ing in a 5.9% gain over the Vanilla ERM method.
Incorporating SFA on other base DG methods. Be-
sides incorporating our SFA on top of the Vanilla ERM
method, we also investigate its efficacy on improving SoTA
DG methods EISNet [39] and DDAIG [44]. We can
clearly observe that both base DG methods get improved
(+0.6%, +0.8%) by our SFA module on the challenging
PACS benchmark using ResNet-18 backbone in Tab. 9.
Please note that DDAIG is an image-augmentation based
DG method, whereas EISNet is not. This observation fur-
ther shows that our SFA works well with different DG alter-
natives and confirms that our method is complemented with
image-augmentation techniques.

Visualization of trained features.  To illustrate the im-
pact of SFA augmentation on representation learning, Fig-
ure 3 provides t-SNE visualization of the penultimate fea-
ture layer for the Digit-DG benchmark. The first three plots
(a)-(c) are from source domain training data. We can see
that while the initial ERM features are well separated (a),
applying the SFA module on these (fixed) features with-

Cross Entropy Loss
LN - A N (S

"

o

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

Figure 4: The loss curve of the Vanilla ERM, SFA-S and
SFA-A on Digit-DG.

out adaptation leads to a blurring of category boundaries
and overlapped features (b). When performing representa-
tion learning under SFA augmentation (c), the encoder is
forced to learn a better and more robust feature separation
compared to the initial ERM baseline in order to reduce the
overlap despite the injected perturbation, and minimise the
loss. The second two plots (d-c) correspond to test data
drawn from a novel target domain. Due to the domain shift
all the features are less well distributed. However thanks to
the additional robustness imbued by the SFA augmentation
in (c), the test data remains more separable under domain-
shift (compare Figure 3(e) vs (d)).

Training loss curve.  We visualize the training loss curve
of the vanilla method with and without incorporating our
SFA modules. From the loss curve in Fig. 4, it is seen
in both case the training loss is reasonably minimized, in-
dicating that injecting random noise does not break the
model convergence. Meanwhile, our SFA-S and SFA-A
have slightly larger loss than Vanilla ERM method during
optimization, which is expected as our methods try to con-
fuse classifier leading to more mistakes.

6. Conclusion

In this paper we proposed a simple stochastic feature
augmentation approach to improving model performance
under domain shift. Our SFA provides a simple plug-in
module, that provides state of the art performance when
used to augment a Vanilla ERM baseline. Unlike alternative
data-augmentation based approaches which are extremely
complex, our approach can be added to any existing model
in a few lines of code, and induces almost no training over-
head. We believe SFA provides an excellent tool for practi-
tioners and a strong baseline for research going forward.
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